Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

In-Situ Synthesis of Electroactive Conjugated Microporous Fullerene Films Capable for Supercapacitive Energy Storage

Mingxiao Sun, Puxing Kuang, Leiqiang Qin, Cheng Gu, Zengqi Xie & Yuguang Ma

State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer

Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640,

P. R. China.

E-mail: gucheng0625@126.com, msxiez@scut.edu.cn, ygma@scut.edu.cn.

Contents

Supplementary Figures	S2
Supplementary Tables	S11
Supplementary Materials and Methods	S13
Supplementary References	S16

Supplementary Figures

Fig. S1 (a) Side view and (b) top view of the structure of the C_{60} Me5Th monomer simulated using density of function theory calculations at the B3LYP 6-31G* level (C, white; S, yellow; H atoms were omitted).

Fig. S2 (a) Setup of three-electrode electrochemical cell for the polymerisation of monomers to deposit CMP films on ITO, and (b) CV curves of the 1st cycle of chlorobenzene solution of C_{60} Me5Th in the presence of *n*-Bu₄NPF₆ as electrolyte (0.1 M) at 25 °C. At the 1st positive scan, C_{60} Me5Th exhibited onset oxidative potentials at 1.15 V, which were attributed to the oxidation of thiophene units in the monomers. As the bias was higher than this potential, the polymerization occurred between thiophene cation radicals at the 2- and 5-position and yielded cationic networks via radical-radical combination. Therefore, we set the maximum potential at 1.3 V. At the first reduction scan, the peaks observed at 0.29 V were assigned to the reduction of cationic networks. We set the minimum potential as low as -0.2 V to assure the formation of neutral networks.

Fig. S3 13 C solid-state MAS NMR spectra of C₆₀Me5Th-CMP.

Fig. S4 FT-IR spectra of and C_{60} Me5Th (black curve), C_{60} Me5Th-CMP film (red curve) and C_{60} Me5Th-CMP powder (blue curve).

The films assumed a smooth and homogeneous surface morphology without any large particles or aggregates, as revealed by the SEM image. This smooth morphology originated from two points: (1) The conventional electropolymerization method is uncontrolled with rough film morphology; however by developing controlled electropolymerization method, we could produce porous films with high quality and smooth morphology. (2) The multi-thiophene groups benefit the formation of crosslinked films with uniform structure, thus smoothing the morphology of the films.

Fig. S6 HR-TEM images of the C_{60} Me5Th-CMP film.

Fig. S7 (a) Nitrogen sorption isotherm curves collected at 77 K for the C_{60} Me5Th-CMP powder (solid circles: adsorption, open circles: desorption). (b) Pore size and pore size distribution profiles of the C_{60} Me5Th-CMP powder. (c) Kr sorption isotherm curves collected at 77 K for the CMP films (solid circles: adsorption, open circles: desorption).

Fig. S8 Absorption spectra of the C_{60} Me5Th-CMP film and C_{60} Me5Th spin-coated film.

Fig. S9 (a) Cyclic voltammetry profiles of the 20-nm thick C_{60} Me5Th-CMP films (red curve) and C_{60} Me5Th monomer (black curve). (b) HOMO-LUMO levels of the C_{60} Me5Th-CMP films and C_{60} Me5Th monomer.

Fig. S10 CV curves of CMP films with different scan cycles of (a) 10 cycles, (b) 20 cycles and (c) 30 cycles. The CMP films prepared with 10 cycles exhibited the best reversibility.

Fig. S11 (a) The relation of the monomer concentration and the absorbance, and (b) The relation of the film thickness and the absorbance.

The mass of the CMP film deposited on the ITO or GC electrode is too little to be measured by balance. Thus we estimate the mass by Lambert-Beer's law:

$$A=K \times C \times L$$
 Equation 1

(A: absorbance, K: absorption coefficiency, C: concentration, L: optical length)

For solution samples:

$$A_S = K_S \times C_S (mg ml^{-1}) \times L_S (cm)$$
 Equation 2

The L_S, equal to the thickness of colorimetric cell, is 1 cm in our experiments.

From Figure S11a we could get

$$K_{\rm S} = 80.25 \text{ ml mg}^{-1} \text{ cm}^{-1}$$

For film samples:

$$A_F = K_F \times C_F (mg ml^{-1}) \times L_F (cm) = K_F \times \rho (g cm^{-3}) \times D (nm)$$
 Equation 3

(p: film density, D: film thickness)

From Figure S11b we could get

$$K_{\rm F} \times \rho \,({\rm g}\,{\rm cm}^{-3}) = 0.00163 \,{\rm nm}^{-1}$$

We suppose that the change of absorption coefficiency of C₆₀ after polymerization is negligible,

$$K_F = K_S = 80.25 \text{ ml mg}^{-1} \text{ cm}^{-1}$$

Finally we get the ρ value

$$\rho$$
=0.00163 nm⁻¹/ 80.25 ml mg⁻¹ cm⁻¹=0.2031g cm⁻³

With the density of the CMP film, the mass of a 26.3 nm-thick film is calculated to be

m= 0.2031 g cm⁻³ × 26.3 nm × 1 cm²= 0.5342 μ g.

Fig. S12 The cathodic CV peak currents and anodic CV peak currents at different scan rates (acetonitrile as solvent, 0.1 M TBAAsF₆ as electrolyte).

Fig. S13 The Bode spectra of the CMP pseudocapacitors.

Fig. S14 The equivalent circuits of the impedance spectra of CMP films under (a) open circuit potential, (b) oxidation potential of PTh, and (c) reduction potential of C_{60} . (The parameter of the equivalent circuits see Table S3).

Fig. S15 The capacitive properties of the CMP films as a capacitor in the two-electrode system (0.1 M TBAAsF₆/acetonitrile as the electrolyte system). (a) Galvanostatic charge–discharge curves at different current densities. (b) The mass specific capacitance at different current densities. (c) The self discharge curve of the two-electrode capacitor.

Fig. S16 Cycling stability of CMP films upon charging/discharging at a current density of 30 A g⁻¹.

Fig. S17 (a) CV curves of PC_{60} pseudocapacitors at different scan rates, (b) impedance spectra of PC_{60} films, (c) galvanostatic charge–discharge curves at different current densities, and (d) capacitance at different current densities.

Supplementary Tables

Compounds	Wavenumber (Strength)	Assignment			
	1792 (w)	C=C stretching hand of henzene			
C ₆₀ Me5Th-CMP	1592 (w)				
	1435 (w)	- C-C stratching hand of this hand			
	1229 (w)	C-C stretching band of thiophene			
	1158 (m)	C-C vibration band of thiophene			
	1051 (s)				
	971 (s)	C-H deformation band of thiophene (3-H)			
	774 (m)	C-H deformation band of benzene			
	697 (w)	C-S stretching band of thiophene			
	470 (s)	C-H deformation band of thiophene (3-H)			
	1801 (w)				
	1590 (s)	C=C stretching band of benzene			
	1445 (s), 1414 (s)				
	1236 (s), 1190 (m)	C=C stretching band of thiophene			
	1088 (w)	C-C vibration band of thiophene			
C ₆₀ Me5Th	1036 (m)				
	940 (w)	C-H deformation band of thiophene (3-H)			
Monomer	870 (s)	C-H vibration band of benzene			
	851 (s)				
	824 (s)	C-H deformation band of thiophene (2-H)			
	753 (s), 728 (s)	C-H deformation band of benzene			
	700 (s)	C-S stretching vibration band of thiophene			
	611 (m)	C-H deformation band of thiophene (2-H)			
	492 (w)	C-H deformation band of thiophene (3-H)			

Table S1 Assignment of IR bands of the $C_{60}Me5Th$ -CMP films and the monomer

Porosity		Band gap							
CMD film	Surface	Pore	Pore	Optical band gap		Electrochemical band gap			
	area	size	volume	λ_{\max}	λ_{onset}	Egopt	НОМО	LUMO	EgEC
	$[m^2 g^{-1}]$	[nm]	$[cm^3 g^{-1}]$	[nm]	[nm]	[eV] ^{a)}	[eV] ^{b)}	[eV] ^{b)}	[eV] ^{c)}
C ₆₀ Me5Th	605	0.6	0.66	224	675	1.04	5.62	2 74	1 00
СМР	093	0.0	0.00	334	075	1.64	-3.02	-3.74	1.00
C ₆₀ Me5Th				202	501	2.12	5 70	2.50	2.20
monomer				282	581	2.13	-3./8	-3.50	2.28

Table S2 Porosity, optical, and electrochemical properties of the CMP films and monomer

^{a)} E_g^{opt} was estimated from the onset of UV-vis spectra. ^{b)} HOMO and LUMO levels were estimated from the onset of the oxidation and reduction peaks of CV profile. ^{c)} E_g^{EC} was determined by CV.

(a)	Rs (ohm)	0.89	
	Rct1 (ohm)	54	
(b)	Rs (ohm)	1	
	Rct1 (ohm)	53	
	Rct2 (ohm)	1601	
(c)	Rs (ohm)	0.9	
	Rct1 (ohm)	54	
	Rct2 (ohm)	869	

Table S3 The parameter of the equivalent circuits (acetonitrile as solution and $TBAAsF_6$ as electrolyte). (a) open circuit potential. (b) oxidation potential of PTh. (c) reduction potential of C_{60} .

Supplementary Materials and Methods

Chemicals. *n*-Tetrabutylammonium hexafluorophosphate (*n*-Bu₄NPF₆, 98%) and *n*-tetrabutylammonium hexafluoroarsenate (*n*-Bu₄NAsF₆, 99%) were purchased from Alfa Aesar and were recrystallized twice and dried for 24 h under vacuum before use. The other reagents were obtained commercially and used as received. Toluene and THF were dried by distillation from sodium. 1,2-Dichlorobenzene and chloroform were dried by sodium hydride.

Synthesis of C₆₀Me5Th. C₆₀Me5Th was synthesized according to Scheme S1.

Scheme S1. Schematic of the synthesis of C_{60} Me5Th.

3-(4-bromine-phenyl)-thiphene (1). This compound was prepared according to the procedure previously reported.^[S1] A mixture of 1-bromo-4-iodobenzene (1.10 g, 3.90 mmol), 3-thiopheneboronic acid (0.50 g, 3.90 mmol), tetrakis(triphenylphosphine)palladium (158.0 mg, 0.137 mmol), K₂CO₃ (2.70 g, 19.5 mmol), toluene (10 mL), THF (10 mL), and water (5 mL) was heated at 85 °C for 20 h under Ar. After cooling to room temperature, CHCl₃ and water were added to the reaction mixture and the organic phase was dried over MgSO₄. The solvent was removed under reduced pressure. The residue was passed a silica-gel column chromatography by using a mixture of petroleum ether and CH₂Cl₂ (5/1 v/v) as eluent to give 760 mg (3.18 mmol, 82% yield) of **1** as colorless powder. ¹H NMR (ppm, CDCl₃, 600 MHz, 25 °C): δ 7.53 (d, 2H, Ar-H), δ 7.46 (d, 2H, Ar-H), δ 7.45 (d, 1H, C-H), δ 7.40 (m, 1H, C-H), δ 7.36 (d, 1H, C-H).

C₆₀Me5Th. This compound was prepared according to the reported procedure.^[S2] A solution of 1

(573.6 mg, 12.4 mmol) in 8 mL of THF was added slowly to the solution of magnesium chips (60 mg, 2.5 mmol) in 2 ml THF, then stirred at room temperature for 3 h. Then the copper bromide dimethyl sulfide complex (512 mg, 2.5 mmol) was added. After stirring for 10 minutes, a solution of C_{60} (144 mg, 0.2 mmol) in 10 mL of 1,2-dichlorobenzene was added slowly. The mixture was stirred at room temperature. After 24 h the 1.24 ml (20 mmol) of iodomethane was added to the system and then stirred for 7 h at room temperature. The reaction was quenched by adding 0.1 M NH₄Cl saturated solution. The mixture was filtered through a pad of silica gel (CH₂Cl₂ as eluent). The concentrated residue was purified by flash column chromatography using a mixture of petroleum ether and CH₂Cl₂ (5/1 v/v) as eluent, and then isolated by HPLC (toluene as eluent) to give 215 mg of C_{60} Me5Th in a yield of 70%. This product could also be synthesised in gram scale with the yield of 60-65%.

¹H NMR (ppm, CDCl₃, 600 MHz, 25 °C): δ 7.91 (d, 5H, C-H), δ 7.80 (d, 5H, C-H), δ 7.60 (m, 10H, Ar-H), δ 7.51 (s, 5H, C-H), δ 7.43 (m, 10H, C-H), δ 1.61 (s, 3H, CH₃). ¹³C NMR (ppm, CDCl₃, 600 MHz, 25 °C): 159.18, 156.15, 152.00, 150.71, 147.78, 146.85, 144.71, 143.82, 142.76, 141.82, 140.47, 137.48, 135.77, 134.37, 129.38, 128.35, 127.68, 125.89, 125.57, 125.22, 119.68, 61.35, 59.87, 57.01, 28.68. MS (MALDI-TOF, SIN): m/z: cal.: 1531.16; found: 1531.44.

Methods. ¹H and ¹³C NMR were recorded using a Bruker AVANCE HD III 600M spectrometer operating in deuterated chloroform solution at 298 K. Chemical shifts were reported as δ values (ppm) relative to an internal tetramethylsilane (TMS) standard. UV-vis spectra were recorded on a Shimadzu UV-3600 spectrophotometer. Electrochemical experiments were performed on a CHI 760D electrochemical workstation. FT-IR spectra were measured using an IFS 66V/S Fourier transform infrared spectrophotometer. The film thickness was measured on a Veeco dektal150 profilometer. HR-TEM experiments were performed on a TEM JEOL 2100F with an acceleration voltage of 300 kV. N₂ sorption isotherm measurements were performed on micromeritics@model ASAP2020M at 77 K. HPLC experiments were performed on LC-9130 liquid chromatograph.

Synthesis of CMP films. The C₆₀Me5Th-CMP films were synthesized by electropolymerization of C₆₀Me5Th (0.8 mg mL⁻¹) in a three-electrode system using glassy carbon or ITO as the working electrodes, a titanium plate as the counter electrode, and an Ag/Ag⁺ as the reference electrode; a

mixture of chlorobenzene and acetonitrile (4/1 v/v) containing TBAAsF₆ was used as the electrolyte (0.1 M), and the electropolymerization was conducted using multicycle cyclic voltammetry in the potential range from -0.2 to 1.3 V, whereas the film thickness was controlled by regulating the number of cycles. After polymerization, the films were washed with acetonitrile to remove the unreacted monomers and doped electrolytes. The films were subsequently dried under flowing N_2 and stored under N_2 in the dark.

For the infrared spectroscopy (IR) and high-resolution transmission electron microscopy (HR-TEM), the CMP films were prepared on ITO by electrolysis of the monomer for 200 s at 1.3 V, followed by the application of a potential at -0.2 V for another 200 s to neutralize the cationic species. After polymerization, the films were washed with acetonitrile to remove the unreacted monomers and doped electrolytes. The films were subsequently dried under flowing N₂ and stored under N₂ in the dark. This method yields micrometer-thick films that can easily peel off electrodes to form freestanding films with sufficient mass for analysis.

Synthesis of C_{60} Me5Th-CMP powders. The C_{60} Me5Th-CMP powders were synthesized by the oxidative coupling polymerization as reported by the literature.^[S3] C_{60} Me5Th (150 mg, 0.098 mmol) was dissolved in 20 mL of anhydrous chloroform and then transferred dropwise to a suspension of ferric chloride (410 mg, 2.53 mmol) in 20 mL of anhydrous chloroform. The solution mixture was stirred at room temperature for 1 d under nitrogen protection. Then 100 mL of methanol was added to the above reaction mixture to quench the reaction. The resulting mixture was kept stirring for another hour and the precipitate was collected by filtration. After washed with methanol, the obtained solid was stirred vigorously in hydrochloric acid solution (37 %) for 2 h. The suspension was then filtered and washed with water and methanol (50 mL × 3, respectively). After extracted in a Soxhlet extractor with methanol for 24 h, and then with tetrahydrofuran for another 24 h, the desired polymer was collected (93% in yield) and dried at 110 °C under vacuum overnight.

Supplementary References

- S1. T. Kozo, T. Yasutomo, O. Kazuyuki, M. Noboru, Heterocycles, 2009, 78, 127.
- S2. Y. W. Zhong, Y. Matsuo, E. Nakamura, Org. Lett. 2006, 8, 1463.
- S3. Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W. Laursen, C.-G. Yan, B.-H. Han, *J. Am. Chem. Soc.*, 2012, **134**, 6084.