Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Thiophene-fused dithiaoctaphyrins: π -system switching between cross-conjugated and macrocyclic π -networks

Tomohiro Higashino,* Atsushi Kumagai, Hiroshi Imahori*

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

t-higa@scl.kyoto-u.ac.jp, imahori@scl.kyoto-u.ac.jp

Contents

- 1. Experimental Section
- 2. Synthesis
- 3. High-Resolution Mass Spectra
- 4. NMR Spectra
- 5. X-Ray Crystallographic Details
- 6. Optical Properties
- 7. Electrochemical Properties
- 8. DFT Calculations
- 9. References

1. Experimental Section

Instrumentation and Materials.

Commercially available solvents and reagents were used without further purification unless otherwise mentioned. Silica-gel column chromatography was performed with UltraPure Silica Gel (230-400 mesh, SiliCycle) unless otherwise noted. Thin-layer chromatography (TLC) was performed with Silica gel 60 F₂₅₄ (Merck). UV/Vis/NIR absorption spectra were measured with a Perkin-Elmer Lambda 900 UV/vis/NIR spectrometer. Steady-state fluorescence spectra were obtained by a HORIBA Nanolog spectrometer. ¹H and ¹³C NMR spectra were recorded with a JEOL EX-400 spectrometer (operating at 399.65 MHz for ¹H and 100.40 MHz for ¹³C) by using the residual solvent as the internal reference for ¹H (CDCl₃: δ = 7.26 ppm) and ¹³C (CDCl₃: δ = 77.16 ppm) or tetramethylsilane as the internal reference for ¹H and ¹³C (δ = 0.00 ppm). High-resolution mass spectra (HRMS) were measured on a Thermo Fischer Scientific EXACTIVE spectrometer (APCI and ESI).

2. Synthesis

Scheme S1. Synthesis of thiophene-fused dithiaoctaphyrins.

3,5-Diiododithienothiophene (2),^[S1] *N*-Boc-2-pyrrolylboronic acid (3),^[S2] and 2,5-bis[α -hydroxy- α -(4-methylphenyl)]methylpyrrole (6a),^[S3] were prepared according to literature.

3,5-Di(N-Boc-pyrrol-2-yl)dithienothiophene (4):

To a mixture of dithienothiophene **2** (30.0 mg, 70 µmol), *N*-Boc-pyrrolylboronic acid **3** (44.0 mg, 210 µmol), Pd(OAc)₂ (0.68 mg, 3.0 µmol), SPhos (2.18 mg, 5.3 µmol), and K₃PO₄ (57.3 mg, 270 µmol) was added *n*-BuOH (1.0 mL) under an argon atmosphere. The reaction mixture was stirred at 50 °C for 12 h and subsequently allowed to cool to room temperature. The mixture was poured into H₂O (20 mL) and the product was extracted with EtOAc (20 mL×4). The combined organic layer was dried over Na₂SO₄. After the solvent was removed, the residue was purified by silica-gel column chromatography (*n*-hexane:CH₂Cl₂ = 1:1) to give 4 (24.3 mg, 50 µmol, 69%) as a dark yellow solid. **4**: ¹H NMR (399.65 MHz, CDCl₃, 25 °C): δ = 7.45 (s, 2H, thienyl-H), 7.39 (dd, *J* = 2.0 Hz, *J* = 1.5 Hz, 2H, pyrrole-H), 6.42 (dd, *J* = 2.0 Hz, *J* = 1.5 Hz, 2H, pyrrole-H), 6.24 (t, *J* = 3.4 Hz, 2H, pyrrole-H), and 1.38 (s, 18H, *t*-Bu) ppm; ¹³C NMR (100.40 MHz, CDCl₃, 25 °C): δ = 148.8, 142.7, 135.3, 124.1,

123.5, 121.4, 117.1, 114.1, 110.8, 83.9, and 27.6 ppm. HRMS (ESI) calcd. for C₂₆H₂₆N₂O₄S₃Na [*M*+Na]⁺ 549.0947; found 549.0942.

3,5-Di(pyrrol-2-yl)dithienothiophene (5):

Dithienothiophene 4 (215 mg, 0.41 mmol) and K_2CO_3 (170 mg, 1.23 mmol) were added to a 3:1 mixture of MeOH and H₂O (8.0 mL) under an argon atmosphere. The mixture was refluxed for 2 h. The mixture was cooled to room temperature and H₂O (10 mL) was added to the mixture. The product was extracted with CH₂Cl₂ (20 mL×4). The combined organic layer was dried over Na₂SO₄. After the solvent was removed, the residue was purified by silica-gel column chromatography (CH₂Cl₂) to give 5 (122.7 mg, 0.37 mmol, 92%) as a yellow solid.

5: ¹H NMR (399.65 MHz, CDCl₃, 25 °C): δ = 8.35 (s, 2H, NH), 7.29 (s, 2H, thienyl-H), 6.88 (d, *J* = 2.2 Hz, 2H, pyrrole-H), and 6.35 (dd, *J* = 2.4 Hz, *J* = 2.9 Hz, 2H, pyrrole-H) ppm; ¹³C NMR (100.40 MHz, CDCl₃, 25 °C): δ = 136.4, 136.0, 125.0, 122.4, 119.0, 110.7, 110.5, and 107.8 ppm. HRMS (APCI) calcd. for C₁₆H₁₁N₂S₃ [*M*+H]⁺ 327.0079; found 327.0070.

2-(3,5-Di-tert-butylphenyl)-1,3-benzoxathiolium tetrafluoroborate (8b):

A mixture of *o*-mercaptophenol (878 mg, 7.00 mmol), 3,5-di-*tert*-butylbenzoic acid (1.64 g, 7.00 mmol) and phosphorus oxychloride (4.3 mL) was heated at 110 °C for 15 min, and then allowed to cool to room temperature. Tetrafluoroboric acid-ether complex (50% in ether, 2.9 mL) and dry Et₂O (60 mL) were successively added and the tetrafluoroborate was precipitated. The product was collected by filtration, washed several times with dry Et₂O, and dried to give **8b** (2.03 g, 4.9 mmol, 70 %) as a yellow solid.

8b: ¹H NMR (399.65 MHz, TFA-*d*₁, 25 °C): δ = 8.83 (s, 1H, *para*-ArH), 8.29 (s, 2H, *ortho*-ArH), 8.22 (d, *J* = 7.8 Hz, 2H, benzoxathiolyl-H), 8.18 (d, *J* = 7.8 Hz, 1H, benzoxathiolyl-H), 7.98 (d, *J* = 7.7 Hz, 1H, benzoxathiolyl-H), 7.88 (d, *J* = 7.7 Hz, 1H, benzoxathiolyl-H), and 1.45 (s, 18H, *t*-Bu) ppm; ¹³C NMR (100.40 MHz, TFA-*d*₁, 25 °C): δ = 157.9, 140.1, 134.9, 132.4, 127.0, 126.4, 125.1, 120.9, 118.1, 115.3, 112.4, and 31.7 ppm. HRMS (APCI, positive) calcd. for C₂₁H₂₅NOS [*M*–BF₄]⁺ 325.1621; found 325.1611.

2,5-Bis[α-(3,5-di-*tert*-butylphenyl)-α-(1,3-benzoxathiolyl)]pyrrole (9b):

Tetrafluoroborate **8b** (14.8 g, 35.8 mmol) was added to a solution of pyrrole (1.13 g, 16.8 mmol), dry pyridine (2.9 mL) and dry acetonitrile (29.2 mL) in one portion with stirring. The reaction was exothermic and the salt dissolved at once. The mixture was stirred for 30 minute at room

temperature. The reaction was quenched with H_2O (140 mL) and the product was extracted with CH_2Cl_2 (300 mL×3). The combined organic layer was washed with aqueous sodium hydroxide solution (5%, 140 mL) and with water, and dried over Na_2SO_4 . After the solvent was removed, the residue was purified by silica-gel column chromatography (*n*-hexane: $CH_2Cl_2 = 2:1$) to give **9b** (8.23 g, 11.5 mmol, 68%) as a white solid.

9b: ¹H NMR (399.65 MHz, CDCl₃, 25 °C): δ = 9.04 (s, 1H, NH), 7.44 (d, *J* = 3.9 Hz, 4H, *ortho*-ArH), 7.35 (d, *J* = 3.9 Hz, 2 H, *para*-ArH), 7.04 (d, *J* = 7.8 Hz, 2H, benzoxathiolyl-H), 7.01 (d, *J* = 7.8 Hz, 2H, benzoxathiolyl-H), 6.94 (t, *J* = 7.8 Hz, 2H, benzoxathiolyl-H), 6.88 (t, *J* = 7.8 Hz, 2H, benzoxathiolyl-H), 5.81 (d, *J* = 2.4 Hz, 2H, pyrrole-H), and 1.28 (s, 36 H, *t*-Bu) ppm; ¹³C NMR (100.40 MHz, CDCl₃, 25 °C): δ = 154.2, 150.1, 140.7, 133.5, 126.1, 122.7, 122.5, 121.8, 120.9, 111.5, 111.2, 110.8, 98.7, 34.9, and 31.4 ppm. HRMS (ESI) calcd. for C₄₆H₅₄NO₂S₂ [*M*+H]⁺ 716.3590; found 716.3577.

2,5-Bis(3,5-di-tert-butylbenzoyl)pyrrole (10b):

Pyrrole **9b** (2.18 g, 3.0 mmol) was added to a mixture of mercury(II) oxide (1.32 g, 6.0 mmol) in THF (15 mL) and 42% aqueous tetrafluoroboric acid (2.3 mL). The reaction was exothermic, and mercury(II) oxide dissolved at once. The mixture was heated at 50 °C for 3 h. The reaction mixture was diluted with CH_2Cl_2 (500 mL), and then the reaction mixture was washed successively with 10% potassium iodide solution (50 mL×2), 5% sodium hydroxide solution (50 mL), and dried over Na_2SO_4 . After the solvent was removed, pure **10b** was obtained (1.44 g, 2.9 mmol, 95%) as a white solid.

10b: ¹H NMR (399.65 MHz, CDCl₃, 25 °C): δ = 10.32 (s, 1H, NH), 7.78 (s, 4H, *ortho*-ArH), 7.68 (s, 2H, *para*-ArH), 6.87 (d, *J* = 2.2 Hz, 2H, pyrrole-H), and 1.39 (s, 36H, *t*-Bu) ppm; ¹³C NMR (100.40 MHz, CDCl₃, 25 °C): δ = 186.3, 151.2, 137.0, 134.3, 126.8, 123.5, 118.1, 35.0, and 31.6 ppm. HRMS (ESI) calcd. for C₃₄H₄₆NO₂ [*M*+H]⁺ 500.3523; found 500.3511.

2,5-Bis[a-hydroxy-a-(3,5-di-*tert*-butylphenyl)]methylpyrrole (6b):

To a stirred solution of pyrrole **10b** (129 g, 0.26 mmol) in MeOH (15 ml) and THF (15 ml) was carefully added NaBH₄ (490 mg, 13.0 mmol) and the mixture was stirred for 30 min. After the solvent was removed, water (30 mL) was added to the residue and the resulting suspension was extracted with CH_2Cl_2 . The combined organic layer was washed with water (30 mL ×3), and dried over Na_2SO_4 . The solvent was removed to afford pyrrole **6b** (129.5 mg, 99%) as a white solid, which was used immediately in the next step without further purification.

Thiophene-fused meso-(4-methylphenyl)-41,45-dithiaoctaphyrin (1a):

Trifluoroacetic acid (1.1 μ L, 14 μ mol) was added to the mixture of **5** (15.3 mg, 46 μ mol) and **6a** (14.0 mg, 46 μ mol) in dry CH₂Cl₂ (105 mL) and the reaction mixture was stirred for 4 h at room temperature under argon atmosphere. After addition of DDQ (21.0 mg, 92 μ mol), the mixture was stirred for 1 h. The reaction mixture was passed through an alumina column using CH₂Cl₂ as eluent. After the solvent was removed, the residue was separated by silica-gel column chromatography (CH₂Cl₂) to give **1a** (6.6 mg, 11.1 μ mol, 24%) as a dark green solid. Single crystals suitable for X-ray crystallographic analysis were obtained by vapor diffusion of 2-propanol into a 1,2-dichloroethane solution of **1a**.

1a: ¹H NMR (399.65 MHz, CDCl₃, 25 °C): δ = 12.88 (s, 2H, NH), 7.58 (s, 2H, thienyl-H), 7.42 (d, *J* = 7.8 Hz, 4H, Ar-H), 7.26 (br, 4H, Ar-H), 7.17 (br, 8H, Ar-H), 7.06 (d, *J* = 4.4 Hz, 2H, β-H), 7.01 (d, *J* = 4.9 Hz, 4H, β-H), 6.65 (s, 2H, thienyl-H), 6.59 (d, *J* = 4.9 Hz, 2H, β-H), 6.42 (d, *J* = 4.9 Hz, 2H, β-H), 6.38 (m, 2H, β-H), 6.36 (m, 2H, β-H), 2.50 (s, 6H, CH₃), and 2.47 (s, 6H, CH₃). UV/vis (CH₂Cl₂): λ (ε , M⁻¹ cm⁻¹) = 354 (37000), 414 (54000), 439 (56000), 555 (11000), 598 (12000), 649 (14000), and 709 (7000) nm. HRMS (ESI) calcd. for C₇₂H₄₇N₆S₆ [*M*+H]⁺ 1187.2181; found 1187.2170. Due to the low solubility, we could not obtain a ¹³C NMR spectrum in a sufficient S/N ratio.

Thiophene-fused meso-(3,5-di-tert-butylphenyl)-41,45-dithiaoctaphyrin (1b):

Trifluoroacetic acid (5.9 μ L, 77 μ mol) was added to a mixture of **5** (84.6 mg, 0.26 mmol) and **6b** (129.5 mg, 0.26 mmol) in dry CH₂Cl₂(60 mL) and the reaction mixture was stirred for 5 h at room temperature under argon atmosphere. After addition of DDQ (117.9 mg, 0.52 mmol), the mixture was stirred for 1 h. The reaction mixture was passed through an alumina column using CH₂Cl₂ as eluent. After the solvent was removed, the residue was separated by silica-gel column chromatography (CH₂Cl₂) to give **1b** (6.0 mg, 3.7 mmol, 2.9%) as a dark green solid.

1b: ¹H NMR (399.65 MHz, CDCl₃, 25 °C): δ = 12.80 (s, 2H, NH), 7.57 (s, 2H, thienyl-H), 7.50 (t, *J* = 1.9 Hz, 2H, *para*-ArH), 7.41 (t, *J* = 1.9 Hz, 2H, *para*-ArH), 7.37 (dd, 4H, *J* = 1.4 Hz, *J* = 1.9 Hz *ortho*-ArH), 7.25 (m, 4H, *ortho*-ArH), 7.09 (d, *J* = 4.4 Hz, 2H, β-H), 7.01 (d, *J* = 4.4 Hz, 2H, β-H), 6.67 (s, 2H, thienyl-H), 6.59 (d, *J* = 4.4 Hz, 2H, β-H), 6.45 (d, *J* = 4.4 Hz, 2H, β-H), 6.38 (d, *J* = 4.4 Hz, 2H, β-H), 6.30 (d, *J* = 4.4 Hz, 2H, β-H), 1.34 (s, 18H, *t*-Bu), 1.32 (s, 18H, *t*-Bu), 1.26 (s, 18H, *t*-Bu), and 1.22 (s, 18H, *t*-Bu) ppm; ¹³C NMR (100.40 MHz, CDCl₃, 25 °C): δ = 162.6, 161.6, 153.6, 153.2, 149.8, 149.6, 149.5, 145.7, 140.9, 140.1, 138.5, 138.2, 137.5, 137.1, 136.7, 134.8, 130.5, 127.8, 127.7, 127.0, 126.2, 126.1, 125.4, 125.2, 125.0, 123.5, 122.7, 122.3, 121.8, 114.5, 34.8, 34.7, 31.5, and 31.4 ppm. UV / vis (CH₂Cl₂): λ (ε , M⁻¹ cm⁻¹) = 354 (40000), 414 (67000), 439 (75000), 563 (12000), 609 (15000), 653 (18000), 709

(10000) nm. HRMS (APCI) calcd. for $C_{100}H_{103}N_6S_6 [M+H]^+$ 1579.6563; found 1579.6570.

Thiophene-fused *meso-*(3,5-di-*tert*-butylphenyl)-41,45-dithiaoctaphyrin 41,45-dioxide(7):

m-Chloroperbenzoic acid (*m*-CPBA) (5.1 mg of 75% pure reagent, 6.8 mg, 29.0 µmol) was added to a stirred solution of **1b** (20.8 mg, 13.2 µmol) in 15 mL of CH_2Cl_2 at 0 °C in one portion. The reaction mixture was stirred for 30 min at 0 °C and at room temperature for 30 min. The reaction was quenched with saturated aqueous NaHCO₃ solution. The organic layer was separated, and the aqueous layer was extracted with Et₂O. The combined organic layer was dried over MgSO₄. After the solvent was removed, the residue was purified by silica-gel column chromatography (CH₂Cl₂) to give 7 (19.4 mg, 12.0 µmol, 91%) as light green crystals.

7: ¹H NMR (399.65 MHz, CDCl₃, 25 °C): δ = 12.36 (s, 2H, NH), 7.53 (d, *J* = 1.8 Hz, 4H, *ortho*-ArH), 7.48 (s, 2H, thienyl-H), 7.47 (m, 2H, *para*-ArH), 7.38 (d, *J* = 1.8 Hz, 4H, *ortho*-ArH), 7.33 (m, 2H, *para*-ArH), 7.08 (dd, *J* = 4.9 Hz, *J* = 3.1 Hz, 4H, β-H), 6.96 (d, *J* = 4.3 Hz, 2H, β-H), 6.62 (d, *J* = 4.3 Hz, 2H, β-H), 6.53 (s, 2H, thienyl-H), 6.49 (m, 4H, β-H), 1.38 (s, 18H, *t*-Bu), 1.33 (s, 18H, *t*-Bu), 1.32 (s, 18H, *t*-Bu), 1.26 (s, 18H, *t*-Bu) ppm; ¹³C NMR (100.40 MHz, CDCl₃, 25 °C): δ = 160.4, 159.5, 153.7, 152.7, 150.7, 149.9, 149.8, 149.7, 149.6, 141.7, 141.5, 140.8, 140.6, 140.3, 139.9, 138.7, 138.6, 137.8, 137.6, 136.7, 136.3, 126.9, 126.6, 126.1, 125.7, 125.1, 124.4, 122.7, 122.4, 115.3, 34.9, 34.8, 31.5, and 31.4 ppm. UV/vis (CH₂Cl₂): λ (ε , M⁻¹ cm⁻¹) = 329 (49000), 411 (103000), 458 (63000), 589 (18000), 633 (30000), 682 (22000) nm. Fluorescence (CH₂Cl₂, λ_{ex} = 650 nm): λ_{max} = 754 nm. HRMS (APCI) calcd. for C₁₀₀H₁₀₃N₆O₂S₆ [M+H]⁺ 1611.6461; found 1611.6433.

3. High-Resolution Mass Spectra

Figure S1. Observed (top) and simulated (bottom) high-resolution mass spectra of a) **4**, b) **5**, c) **8b**, d) **9b**, e) **10b**, f) **1a**, g) **1b**, and h) **7**.

4. NMR Spectra

Figure S2. (a) ¹H and (b) ¹³C NMR spectra of 4 at 25 °C in $CDCl_3$. Peaks marked with * arise from residual solvents.

Figure S3. (a) ¹H and (b) ¹³C NMR spectra of 5 at 25 °C in $CDCl_3$. Peaks marked with * arise from residual solvents.

Figure S4. (a) ¹H and (b) ¹³C NMR spectra of **8b** at 25 °C in TFA- d_1 . Peaks marked with * arise from residual solvents.

Figure S5. (a) ¹H and (b) ¹³C NMR spectra of **9b** at 25 °C in $CDCl_3$. Peaks marked with * arise from residual solvents.

Figure S6. (a) ¹H and (b) ¹³C NMR spectra of **10b** at 25 °C in CDCl₃. Peaks marked with * arise from residual solvents.

Figure S7. ¹H NMR spectrum of **1a** at 25 °C in CDCl₃. Peaks marked with * arise from residual solvents.

Figure S8. (a) ¹H and (b) ¹³C NMR spectra of **1b** at 25 °C in CDCl₃. Peaks marked with * arise from residual solvents.

Figure S9. (a) ¹H and (b) ¹³C NMR spectra of 7 at 25 °C in $CDCl_3$. Peaks marked with * arise from residual solvents.

5. X-Ray Crystallographic Details

Figure S10. X-Ray crystal structure of **1a**: (a) top view and (b) side view. Thermal ellipsoids represent 50% probability. Minor disorder component and solvent molecules are omitted for clarity. (c) Detailed structural data of **1a**. Selected bond lengths in Å (numbers in green) and bond angles in deg (numbers in blue) are indicated.

6. Optical Properties

Figure S11. UV/Vis absorption spectra of **1a** (black), **1b** (red), and **7** (blue) in CH₂Cl₂.

Figure S12. Fluorescence spectra of **1b** (red) and **7** (blue) in CH₂Cl₂. $\lambda_{ex} = 650$ nm.

7. Electrochemical Properties

Figure S13. Cyclic voltammograms (black) and differential pulse voltammetry (DPV) curves (red) of octaphyrins a) **1b** and b) **7**. Redox potentials were determined by DPV. Solvent: CH_2Cl_2 ; scan rate: 0.05 V s⁻¹; working electrode: glassy carbon; reference electrode: Ag/Ag⁺ (0.01 M AgNO₃); electrolyte: 0.1 M *n*-Bu₄NPF₆. Peaks marked with * arise from oxygen. Ar = 3,5-(*t*-Bu)₂C₆H₃.

8. DFT Calculations

All calculations were carried out using the *Gaussian 09* program.^[S4] The calculations were performed by the density functional theory (DFT) method with restricted B3LYP (Becke's three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional) level,^[S5,56] employing a basis set 6-31G(d,p) for C, H, N, O, and S. Excitation energies and oscillator strengths for the optimized structures were calculated with the TD-SCF method at the B3LYP/6-31G(d,p) level.

Figure S14. Selected Kohn-Sham orbitals of **1b** and **7** on the optimized structures.

Figure S15. Optimized structural data of (a) **1b** and (b) **7**. The conjugated 36π -electron network (green) and selected bond lengths in Å are indicated. Averaged C–C bond lengths are calculated from red numbers for single bonds and blue numbers for double bonds. C–C bond length alternations (BLAs) are calculated by the following equation: BLA = $r_1 - r_2$.

	state	excitation energy		oscillator	excitation			weight [%]
		[eV]	[nm]	strength				
1b	1	1.51	823	0.0089	НОМО	\rightarrow	LUMO	98.4
	2	1.73	716	0.0124	HOMO-1	\rightarrow	LUMO	21.0
					HOMO	\rightarrow	LUMO+1	78.0
	3	1.93	643	0.2508	HOMO-1	\rightarrow	LUMO	78.4
					НОМО	\rightarrow	LUMO+1	20.7
	4	1.95	636	0.0312	HOMO-1	\rightarrow	LUMO+1	97.3
	5	2.09	592	0.2292	HOMO-2	\rightarrow	LUMO	94.4
	6	2.22	557	0.0203	HOMO-2	\rightarrow	LUMO+1	89.8
	7	2.38	521	0.0327	HOMO-3	\rightarrow	LUMO	84.9
	8	2.46	503	0.0052	HOMO-3	\rightarrow	LUMO+1	82.4
					HOMO	\rightarrow	LUMO+2	12.3
	9	2.64	469	0.3319	НОМО	\rightarrow	LUMO+2	76.5
	10	2.67	464	0.1040	HOMO-4	\rightarrow	LUMO	25.2
					HOMO-1	\rightarrow	LUMO+2	12.8
					НОМО	\rightarrow	LUMO+3	50.4
7	1	1.74	713	0.0238	НОМО	\rightarrow	LUMO	99.1
	2	1.89	657	0.0131	HOMO-1	\rightarrow	LUMO	32.3
					НОМО	\rightarrow	LUMO+1	67.0
	3	2.04	606	0.0438	HOMO-1	\rightarrow	LUMO+1	96.0
	4	2.05	604	0.3361	HOMO-1	\rightarrow	LUMO	66.1
					НОМО	\rightarrow	LUMO+1	32.6
	5	2.33	531	0.0023	HOMO-3	\rightarrow	LUMO	83.6
	6	2.35	528	0.0748	HOMO-2	\rightarrow	LUMO	86.0
	7	2.37	523	0.0453	HOMO-4	\rightarrow	LUMO	63.5
					HOMO-3	\rightarrow	LUMO+1	30.9
	8	2.46	504	0.0429	HOMO-2	\rightarrow	LUMO+1	82.2
	9	2.49	497	0.0029	HOMO-4	\rightarrow	LUMO	31.3
					HOMO-3	\rightarrow	LUMO+1	61.8
	10	2.55	487	0.0064	HOMO-4	\rightarrow	LUMO+1	88.3

Table S1. Selected excitation energies and oscillator strengths of **1b** and **7** calculated by the TD-DFT method.

9. References

[S1] T. Nishinaga, T. Ohmae, K. Aita, M. Takase, M. Iyoda, T. Arai and Y. Kunugi, *Chem. Commun.*, 2013, 49, 5354–5356.

[S2] S. W. Haynes, P. K. Sydor, A. E. Stanley, L. Song and G. L. Challis, *Chem. Commun.*, 2008, 1865–1867.

[S3] P.-Y. Heo and C.-H. Lee, Bull. Korean Chem. Soc., 1996, 17, 515–520.

[S4] Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
[S5] A. D. Becke, *J. Chem. Phys.* 1993, **98**, 1372–1377.

[S6] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1998, 37, 785–789.