Supporting Information

Gold-catalyzed Oxidative Couplings of Two Indoles with One Aryldiazo Cyanide under Oxidant-free Conditions

RahulKumar Rajmani Singh, and Rai-Shung Liu*

Contents:

1.	Representative synthetic procedures	S3
2.	Spectral data of key compounds	S8
3.	X-ray crystallographic data of compounds 3q	S27
4.	¹ H and ¹³ C NMR spectras of key compounds	S39

Experimental Section:

General Information

Unless otherwise noted, reactions for the preparation of the substrates were performed in oven-dried glassware under nitrogen atmosphere with freshly distilled solvents. The catalytic reactions were performed under Nitrogen atmosphere. DCE, DCM, Toluene and CH₃CN were distilled from CaH₂ under nitrogen. THF were distilled from Na metal under nitrogen. All other commercial reagents were used without further purification, unless otherwise indicated. ¹H NMR and ¹³C NMR spectra were recorded on a Varian 400 MHz, Bruker 400 and 600 MHz Spectrometers using chloroform-d (CDCl₃) and CD₂Cl₂ as the internal standards. Compounds *1b-1d*, *1f-1o and 1q* have been prepared in literatures.

1a, **1e** and **s2** is commercially available compound.^[r1-r3]

- [r1] (a) S. Xu, X. Huang, X. Hong, B. Xu, Org. Lett. 2012, 14, 4614; (b) J. B. Ernst, A. Rìhling, B. Wibbeling, F. Glorius, Chem. Eur. J. 2016, 22, 4400-4404; c) L. Yu, P. Lia, L. Wang, Chem. Commun. 2013, 49, 2368-2370; d) Z. -L. Xu, H. -X. Li, Z. -G. Ren, W. -Y. Du, W. -C. Xu, J. -P. Lang, Tetrahedron 2011, 67, 5282-5288; e) F. Diness, D. P. Fairlie, Angew. Chem. Int. Ed. 2012, 51, 8012-8016; f) R. F. Alamdari, M. G. Haqiqib, N. Zekria, New J. Chem., 2016, 40, 1287 -1296; g) B. S. Lane, M. A. Brown, D. Sames, J. Am. Chem. Soc. 2005, 127, 8050-8057; h) P. Y. Choy, C. P. Lau, F. Y. Kwong, J. Org. Chem. 2011, 76, 80-84.
- [r2] a) for first step diazo preparation: J. P. Graham, N. Langlade, J. M. Northall, A. J. Roberts, A. J. Whitehead, *Organic Process Research & Development* 2011, *15*, 44-48; b) For second and third step diazo preparation: R. Breslow, C. Yuan, *J. Am. Chem. Soc.* 1958, 80(22), 5991-5994.
- [r3] a) T. Abe, S. Nakamura, R. Yanada, T. Choshi, S. Hibino, M. Ishikura, Org. Lett. 2013, 15, 3622; b) J. Xiang, J. Wang, M. Wang, X. Meng, A. Wu, Org. Biomol. Chem., 2015, 13, 4240; c) D. E. Gillespie, S. F. Brady, A. D. Bettermann, N. P. Cianciotto, M. R. Liles, M. R. Rondon, J. Clardy, R. M. Goodman, J. Handelsman, Appl. Environ. Microbiol. 2002, 68, 4301; d) N. Y. Tomomi, T. Masashi, A. Hiroshi, H. Yuichi, Chem. Pharm. Bull., 2009, 57, 536; e) K. V. Sashidhara, M. Kumar, R. Sonkar, B. S. Singh, A. K. Khanna, G. Bhatia, J. Med. Chem., 2012, 55, 2769.

[r4] a) M. Nambo, M.Yar, J. D. Smith and C. M, Crudden, Org. Lett., 2015, 17, 50;

2] Naturally Occurring bioactive molecule with BIMs moiety^[s3]:

Figure s1. List of BIMs with biological activity.

3] Representative Synthetic Procedures:

(a) Preparation of 1-propyl-1*H*-indole (1b):

Indole (1.0 g, 0.009 mol) was dissolved in anhydrous DMF before cooling to 0 °C. Sodium hydride (60% dispersion in mineral oil, (0.41g, 0.010 mol) was added in small portions over a period of 10-15 min. Once addition was complete, the reaction mixture was stirred at 0 °C for 30 min before *n*-propyl iodide (1.74g, 0.010 mol) was added. The solution was continued to stir it at room temperature until completion. The reaction was monitored by TLC before it was quenched by a dropwise addition of water. The solution was extracted with ether, washed with water, brine and dried over MgSO₄. After filtration, the filtrates was concentrated to afford the crude product which was purified by flash column chromatography on silica gel to afford **3b** (1.29 g, 0.008 mmol) in 95% yield.

(b) Preparation of N-phenyl Indole (11):

Indole (500 mg, 0.0042 mol), iodobenzene (0.87g, 4.3 mmol), copper(I) iodide (82 mg, 0.0004 mol) and cesium carbonate (1.67 g, mmol) were stirred for 16 h at 120 °C in DMF (10 mL). After cooling to room temperature, the reaction mixture was diluted with EtOAc (30 mL) and washed with water (2 x 20 mL). The combined aqueous layer was extracted with EtOAc (2 x 20 mL). The combined organic layer was dried over MgSO₄, filtered and concentrated in vacuum. Purification by silica-gel chromatography afforded the product **11** as colorless oil (790 mg, 4.1 mmol, 96%).

All other derivative **1b-10**, **1q** were prepared according to the above reported procedure and their spectral data have been reported previouslyr^{1].}

Figure s2. List of diazo substrates

To an aqueous solution (40 mL) of ammonium acetate (21.8 g, 282.9 mmol) and sodium cyanide (5.2 g, 103.7 mmol), aqueous ammonia (35% w/w; 29 mL) and ethanol (40 mL) was added benzaldehyde (10 g, 94.3 mmol); the resulting solution was stirred at 25 °C for 5 h. The solution was extracted with diethyl

ether, dried over MgSO₄, filtered and concentrated at 20-30 $^{\circ}$ C under reduced pressure; the crude material was used immediately for the next step. (Caution: Aqueous layer was cooled in ice and treated by sodium hypochlorite solution, NaClO).

To the crude 2-amino-2-phenylacetonitrile was added Et₂O.HCl (80 mL); and the mixture was stirred for 15 min. at room temperature. The pale yellow precipitates were collected, and washed with cold diethyl ether (2 x 10 mL). This solid residue was dissolved in water (100 mL), and treated with diethyl ether (100 mL). The aqueous layer was separated from ether and used for the next reaction. The aqueous solution of 2-amino-2-phenylacetonitrile hydrochloride (100 mL) and diethyl ether (100 mL) was cooled to 0 °C, and to this solution was treated with an aqueous solution (25 mL) of NaNO₂ (7.8 g, 113.1 mmol). To this mixture was added concentrated HCl (0.20 mL); and the reaction mixture was stirred for additional 5 min. The solution was extracted with diethyl ether (50 mL), and the ether extracts were washed with 10% aqueous Na₂CO₃. The extract was dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified on a silica column with 15% dichloromethane/*n*-pentane to afford 2-diazo-2-phenylacetonitrile **2a** as red viscous oil (2 g, 13.98 mmol, 14.8 % overall yield).

All other diazo derivative **2b** to **2h** were prepared according to the above procedure.

(d) Preparation of 2-diazo-3-phenylpropanenitrile compound (2i):

A flask was charged with sodium bisulfite (6.5 g, 62.0 mmol) and water (17 mL). To this solution was added slowly a THF solution (14 mL) of phenylacetaldehyde (5.0 g, 4.0 mmol). The resulting suspension was stirred at room temperature for 40 min before treatment with ammonium hydroxide solution (4.85 mL). The resulting solution was stirred at 60 °C for 1 h and kept on stirring at room temperature for 12 h. The solution was cooled at 0-5 °C and aqueous sodium cyanide (2.42 g, 49.0 mmol) in 14 mL water was slowly added over 5 min. The resulting solution was stirred at room temperature for 18 h and then extracted with ether. The combined organic layer was dried over MgSO₄ and evaporated to afford aniline derivative. The crude material was used immediately for the next step.

The next two steps are similar to the above procedure followed for preparation of **2a-2h**.

4] Standard Catalytic Procedure:

(a) Synthesis of 2,2-bis(1-methyl-1H-indol-3-yl)-2-phenylacetonitrile (3a):

A reaction tube was charged with (chlorotriphenoxyphosphoranyl)gold(I) (38.0 mg, 0.0698 mmol) and silver(I) trifluoromethanesulfonate (AgOTf) (89.0 mg, 0.349 mmol). To the above mixture was added a dry DCM (1.0 mL), and the mixture was stirred at room temperature under an argon atmosphere for 5 min. To this solution was added a dry DCM solution (2 mL) of *N*-methyl Indole **1a** (191 mg, 1.47 mmol) and 2-diazo-2-phenylacetonitrile **2a** (100 mg, 0.070 mmol) with syringe in a period of 25 minute. The mixture was kept stirring at 25 °C for 2 h before it was filtered over a short silica bed. The solvent was concentrated, and the crude product was chromatographed through a silica gel column to afford compound **3a** (178 mg, 0.47 mmol, 68% yield) as light yellow semisolid.

(b) Synthesis of 2,2-bis(1-methyl-1H-indol-3-yl)-2-phenylacetonitrile (5b):

A reaction tube was charged with (chlorotriphenoxyphosphoranyl)gold(I) (38.0 mg, 0.0698 mmol) and silver(I) trifluoromethanesulfonate (AgOTf) (89.0 mg, 0.349 mmol). To the above mixture a dry acetonitrile solution (1.0 mL) was added, and the mixture stirred at room temperature under an argon atmosphere for 5 min. To this solution was added a dry acetonitrile solution (2 mL) of 2-diazo-2-phenylacetonitrile **2a** (100 mg, 0.07 mmol), 1-(4-methoxyphenyl)-1*H*-indole **1n** (155 mg, 0.07 mmol) and 1-propyl-1*H*-indole

1b (133 mg, 0.08 mmol) with a syringe in a period of 5 minute. The mixture was kept stirring at 25 °C for 3 h before it was filtered over a short silica bed. The solution was concentrated, and the crude product was chromatographed through a silica gel column with EA/Hexane (3/97) to afford compound **5b** (180 mg, 0.036 mmol, 52%, $R_f = 0.43$, yellowish semisolid), major byproduct **4n** (43 mg, 0.012 mmol, 18%, $R_f = 0.52$), homo-coupling compounds **3b** (7.0 mg, 0.016 mmol, 4%, $R_f = 0.40$) and **4b'** (2.5 mg, 0.009 mmol, 2%, $R_f = 0.42$).

Table s1. Minor products for double indolylations with two different indoles.

[a] **1** = 0.02 M. [b] Product yields are reported after purification using a silica column.

(c) Reaction of 2-diazo-2-phenylacetonitrile (2a) with other reaction partner.

Scheme S1 : Testing of various other electron rich reaction partner.

Note: Experimental procedure for eq. s1 and eq. s2 same as **3a** and experimental procedure for eq. s4 is same as **5b** and Experimental procedure for eq. s3 follwed from reference r4.

5] Spectral data:

Spectral data for 1-(4-propoxyphenyl)-1*H*-indole (1p).

Red liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 7.4 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.39 ~ 7.36 (m, 2H), 7.26 ~ 7.23 (m, 1H), 7.20 ~ 7.11 (m, 2H), 7.02 ~ 6.99 (m, 2H), 6.64 ~ 662 (m, 1H), 3.99 ~ 3.95 (m, 2H), 1.87 ~ 1.81 (m, 2H), 1.08 ~ 1.04

(m, 3H), ; ¹³C NMR (150 MHz, CDCl₃): δ 157.8, 136.3, 132.6, 128.9, 128.3, 125.9, 122.1, 121.0, 120.0, 115.2, 110.4, 102.8, 69.9, 22.6, 10.5.

Spectral data for 2-diazo-3-phenylpropanenitrile (2i).

Pale yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.41 ~ 7.34 (m, 2H), 7.32 ~ 7.30 (m, 1H), 7.25 ~ 7.23 (m, 2H), 3.55 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 134.8, 129.1, 128.3, 127.9, 113.8, 31.5.

Spectral data for 2,2-bis(1-methyl-1H-indol-3-yl)-2-phenylacetonitrile (3a).

Light yellow Semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.52 ~ 7.51 (m, 2H), 7.47 (d, J = 8.1 Hz, 2H), 7.35 ~ 7.31 (m, 5H), 7.24 ~ 7.22 (m, 2H), 7.05 ~ 7.02 (m, 2H), 6.53 (s, 2H), 3.67 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 139.8, 137.7, 129.2, 128.5, 127.8, 125.8, 122.1, 121.8, 120.8, 119.7, 114.1, 109.4, 44.4, 32.8; ESI-MS calcd. for C₂₆H₂₁N₃: 375.1735; found: 376.1808 [M+H].

Spectral data for ethyl 2-(1-methyl-1H-indol-3-yl)-2-phenylacetate (3a').

Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.47 ~ 7.42 (m, 3H), 7.33 ~ 7.12 (m, 5H), 7.05 ~ 7.04 (m, 2H), 5.24 (s, 1H), 4.09 (q, *J* = 7.2, 5.2 Hz, 2H), 3.74 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 138.9, 137.0, 128.6, 128.5, 128.4, 127.8, 127.1, 121.8, 119.2, 119.1, 112.2, 109.3, 61.1, 48.9, 32.8, 14.2; ESI-MS calcd. for C₁₉H₁₉NO₂: 293.1416; found: 294.1418 [M+H].

Spectral data for 2-phenyl-2,2-bis(1-propyl-1*H*-indol-3-yl)acetonitrile (3b).

Yellow viscous solid; ¹H NMR (600 MHz, CDCl₃): δ 7.51 ~ 7.49 (m, 2H), 7.45 ~ 7.44 (m, 2H), 7.35 ~ 7.30 (m, 5H), 7.20 (t, *J* = 7.3 Hz, 2H), 7.00 (t, *J* = 7.4 Hz, 2H), 6.58 (s, 2H), 3.97 (t, *J* = 7.2 Hz, 4H), 1.81 ~ 1.75 (m, 4H), 0.85 (t, *J* = 7.3, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 139.9, 137.0, 128.5, 128.4, 127.9, 127.8, 125.9, 121.9, 120.9, 120.7, 119.5, 113.9, 109.7, 48.2, 44.8, 23.4, 11.4; ESI-MS calcd. for C₃₀H₂₉N₃: 431.2361; found: 454.2254 [M+Na].

Spectral data for 2,2-bis(1-butyl-1H-indol-3-yl)-2-phenylacetonitrile (3c).

Light yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.51 ~ 7.49 (m, 2H), 7.44 ~ 7.43 (m, 2H), 7.35 ~ 7.29 (m, 5H), 7.21 ~ 7.18 (m, 2H), 7.02 ~ 6.99 (m, 2H), 6.57 (s, 2H), 4.00 (t, *J* = 6.2 Hz, 4H), 1.75 ~ 1.70 (m, 4H), 1.28 ~ 1.18 (m, 4H), 0.87 (t, *J* = 4.8, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 139.8, 137.0, 128.4, 127.8, 127.7, 125.9, 121.9, 121.8, 120.9, 119.5, 113.9, 109.6, 46.2, 44.8, 32.2, 20.1, 13.7; HRMS calcd. for C₃₂H₃₃N₃: 459.2674; found: 482.2560 [M+Na].

Spectral data for 2,2-bis(1-isopropyl-1H-indol-3-yl)-2-phenylacetonitrile (3d).

Light brown semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.51 ~ 7.49 (m, 2H), 7.39 ~ 7.35 (m, 4H), 7.33 ~ 7.29 (m, 3H), 7.19 ~ 7.17 (m, 2H), 6.99 ~ 6.97 (m, 2H), 6.72 (s, 2H), 4.62 ~ 4.56 (m, 2H), 1.42 ~ 1.41 (m, 12H); ¹³C NMR (150 MHz, CDCl₃): δ 139.9, 136.6, 128.4, 127.9, 127.7, 126.0, 124.5, 122.1, 121.7, 120.9, 119.5, 114.1, 109.7, 47.3, 45.2, 22.7; ESI-MS calcd. for C₃₀H₂₉N₃: 431.2361; found: 454.2254 [M+Na].

Spectral data for 2,2-di(1H-indol-3-yl)-2-phenylacetonitrile (3e).

Yellow semisolid; ¹H NMR (600 MHz, CDCl₃): δ 8.01 (s, 2H), 7.51 ~ 7.47 (m, 4H), 7.38 ~ 7.32 (m, 5H), 7.20 (t, *J* = 7.4 Hz, 2H), 7.01 (t, *J* = 7.7 Hz, 2H), 6.65 (s, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 139.4, 136.9, 128.5, 127.9, 127.8, 125.3, 124.9, 122.6, 121.6, 120.7, 120.2, 115.7, 111.3, 44.8; ESI-MS calcd. for C₂₄H₁₇N₃: 347.1422; found: 370.1315 [M+Na].

Spectral data for 2,2-bis(1-allyl-1H-indol-3-yl)-2-phenylacetonitrile (3f).

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.51 ~ 7.50 (m, 2H), 7.45 ~ 7.43 (m, 2H), 7.34 ~ 7.29 (m, 5H), 7.20 ~ 7.18 (m, 2H), 7.03 ~ 7.00 (m, 2H), 6.58 (s, 2H), 5.99 ~ 5.88 (m, 2H), 5.14 (dd, *J* = 10.2, 1.2, 2H), 5.02 (dd, *J* = 16.8, 1.2, 2H), 4.63 ~ 4.61 (m, 4H); ¹³C NMR (150 MHz, CDCl₃): δ 139.6, 137.1, 133.1, 128.5, 128.4, 127.8, 125.6, 122.1, 121.8, 120.9, 119.8, 117.2, 114.4, 109.8, 48.8, 45.1; ESI-MS calcd. for C₃₀H₂₅N₃: 427.2048; found: 450.1941 [M+Na].

Spectral data for 2,2-bis(1,2-dimethyl-1H-indol-3-yl)-2-phenylacetonitrile (3g).

White semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.52 (d, *J* = 7.1 Hz, 2H), 7.37 ~ 7.35 (m, 3H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.01 (t, *J* = 7.4 Hz, 2H), 6.73 (t, *J* = 8.4 Hz, 2H), 6.16 (d, *J* = 8.2 Hz, 2H), 3.68 (s, 6H), 2.13 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 140.4, 136.3, 135.6, 128.9, 128.6, 128.1, 126.5, 123.1, 120.6, 119.6, 119.4, 109.4, 108.7, 45.9, 29.6, 11.6; ESI-MS calcd. for C₂₈H₂₅N₃: 403.2048; found: 426.1941 [M+Na].

Spectral data for 2,2-bis(5-bromo-1-methyl-1*H*-indol-3-yl)-2-phenylacetonitrile (3h).

Yellow semisolid; ¹H NMR (700 MHz, CDCl₃): δ 7.53 (s, 2H), 7.43 (t, *J* = 4.2 Hz, 2H), 7.35 (d, *J* = 4.2 Hz, 3H), 7.31 (d, *J* = 9.1 Hz, 2H), 7.18 (d, *J* = 9.2 Hz, 2H), 6.53 (s, 2H), 3.68 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 139.0, 136.2, 130.4, 128.7, 128.2, 127.6, 126.5, 125.8, 122.8, 121.3, 120.0, 113.5, 110.7, 44.4, 33.2; ESI-MS calcd. for C₂₆H₁₉Br₂N₃: 530.9946; found: 553.9838 [M+H].

Spectral data for 2,2-bis(5-chloro-1-methyl-1*H*-indol-3-yl)-2-phenylacetonitrile (3i).

Yellow semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.45 ~ 7.44 (m, 2H), 7.37 (d, *J* = 1.9 Hz, 2H), 7.36 ~ 7.34 (m, 3H), 7.23 (*J* = 8.8 Hz, 2H), 7.18 ~ 7.17 (m, 2H), 6.53 (s, 2H), 3.68 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 139.0, 136.2, 130.4, 128.7, 128.2, 127.6, 126.5, 125.8, 122.8, 121.3, 120.0, 113.5, 110.7, 44.4, 33.2; HRMS calcd. for C₂₆H₁₉Cl₂N₃: 443.0956; found: 443.0956 [M+H].

Spectral data for 2,2-bis(6-bromo-1-methyl-1*H*-indol-3-yl)-2-phenylacetonitrile (3j).

Brownish jelly; ¹H NMR (700 MHz, CDCl₃): δ 7.54 (s, 2H), 7.43 (t, *J* = 4.2 Hz, 2H), 7.35 (d, *J* = 4.2 Hz, 3H), 7.31 (d, *J* = 9.1 Hz, 2H), 7.18 (d, *J* = 9.2 Hz, 2H), 6.53 (s, 2H), 3.68 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 139.0, 136.2, 130.4, 128.7, 128.2, 127.6, 126.5, 125.8, 122.8, 121.3, 120.0, 113.5, 110.7, 44.4, 33.2; ESI-MS calcd. for C₂₆H₁₉Br₂N₃: 530.9946; found: 553.9838 [M+H].

Spectral data for 2,2-bis(1,6-dimethyl-1*H*-indol-3-yl)-2-phenylacetonitrile (3k).

White semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.51 ~ 7.50 (m, 2H), 7.35 ~ 7.31 (m, 5H), 7.10 (s, 2H), 6.88 ~ 6.86 (m, 2H), 6.47 (s, 2H), 3.64 (s, 6H), 2.47 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 139.9, 138.1, 131.9, 128.7, 128.4, 127.8, 127.7, 123.7, 121.9, 121.4, 120.4, 114.0, 109.4, 44.7, 32.8, 21.8; ESI-MS calcd. for C₂₈H₂₅N₃: 403.2048; found: 404.2052 [M+H].

Spectral data for 2-phenyl-2,2-bis(1-phenyl-1H-indol-3-yl)acetonitrile (3l).

Colorless viscous solid; ¹H NMR (600 MHz, CDCl₃): δ 7.62 ~ 7.59 (m, 3H), 7.54 ~ 7.53 (m, 2H), 7.46 ~ 7.44 (m, 3H), 7.40 ~ 7.28 (m, 11H), 7.24 ~ 7.22 (m, 2H), 7.13 ~7.10 (m, 2H), 6.85 (s, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 139.1, 137.0, 131.2, 129.6, 129.4, 128.7, 128.1, 127.9, 126.8, 124.6, 123.0, 121.4, 121.0, 120.8, 116.8, 116.3, 110.8, 44.8; ESI-MS calcd. for C₃₆H₂₅N₃: 499.2048; found: 522.1931 [M+Na].

Spectral data for 2-phenyl-2,2-bis(1-(p-tolyl)-1H-indol-3-yl)acetonitrile (3m).

White semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.62 (d, *J* = 9.0 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 7.8 Hz, 2H), δ 7.36 ~ 7.20 (m, 13H), 7.09 (t, *J* = 7.8 Hz, 2H), 6.82 (s, 2H), 2.38 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 139.2, 137.1, 136.8, 136.6, 131.1, 130.1, 129.4, 129.2, 128.7, 127.9, 126.3, 124.5, 122.8, 120.9, 120.6, 116.8, 115.9, 110.8, 44.8, 20.9; ESI-MS calcd. for C₃₈H₂₉N₃: 527.2361; found: 550.2254 [M+Na].

Spectral data for 2,2-bis(1-(4-methoxyphenyl)-1*H*-indol-3-yl)-2-phenylacetonitri-

le (3n).

White semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.61 (d, *J* = 7.7 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.36 ~ 7.32 (m, 3H), 7.29 (d, *J* = 8.8 Hz, 4H), 7.20 (t, *J* = 7.3 Hz, 2H), 7.08 (t, *J* = 7.8 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 4H), 6.80 (s, 2H), 3.83 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 158.5, 139.3, 137.5, 132.1, 128.9, 128.6, 128.0, 127.9, 126.2, 126.1, 122.8, 121.5, 120.9, 120.5, 115.8, 114.7, 110.7, 55.6, 44.9; ESI-MS calcd. for C₃₈H₂₉N₃O₂: 559.2260; found: 560.233 [M+H].

Spectral data for 2,2-bis(1-(4-chlorophenyl)-1*H*-indol-3-yl)-2-phenylacetonitrile (30).

Yellow semisolid; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (t, *J* = 6.8 Hz, 4H), 7.48 (d, *J* = 8.0 Hz, 2H), δ 7.43 ~ 7.32 (m, 11H), 7.25 (t, *J* = 8.0 Hz, 2H), 7.12 (t, *J* = 7.6 Hz, 2H), 6.80 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 138.8, 137.6, 136.9, 132.5, 129.8, 128.8, 128.2, 127.8, 126.5, 125.7, 123.4, 121.1, 121.0, 116.8, 110.6, 44.8; ESI-MS calcd. for C₃₆H₂₃Cl₂N₃: 567.1269; found: 590.1167 [M+Na].

Spectral data for 2-(4-chlorophenyl)-2,2-bis(1-methyl-*1H*-indol-3-yl)acetonitrile (3p).

Light yellow solid; ¹H NMR (600 MHz, CDCl₃): δ 7.44 (d, J = 8.2 Hz, 4H), 7.33 ~ 7.29 (m, 4H), 7.26 ~ 7.24 (m, 2H), 7.05 (t, J = 8.0 Hz, 2H), 6.50 (s, 2H), 3.70 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 138.5, 137.7, 133.8, 129.3, 129.2, 128.7, 125.6, 122.3, 121.5, 120.7, 119.9, 113.6, 109.5, 44.3, 32.9; HRMS calcd. for C₂₆H₂₀ClN₃: 409.1346; found: 432.1238 [M+Na].

Spectral data for 2-(4-bromophenyl)-2,2-bis(1-methyl-1*H*-indol-3-yl)acetonitrile (3q).

White solid; ¹H NMR (500 MHz, CDCl₃): δ 7.47 ~ 7.43 (m, 4H), 7.39 ~ 7.36 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.26 ~ 7.23 (m, 2H), 7.05 (t, *J* = 7.5 Hz, 2H), 6.54 (s, 2H), 3.69 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 139.0, 137.7, 131.6, 129.6, 129.3, 125.6, 122.3, 121.9, 121.4, 120.7, 119.9, 113.5, 109.5, 44.4, 32.9, 21.0; ESI-MS calcd. for C₂₆H₂₀BrN₃: 453.0841; found: 476.0738 [M+Na].

Spectral data for 2,2-bis(1-methyl-*1H*-indol-3-yl)-2-(4-(trifluoromethyl)phenyl) acetonitrile (3r).

Brown semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.59 (d, *J* = 7.8 Hz, 2H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.27 ~ 7.24 (m, 2H), 7.06 (t, *J* = 7.6 Hz, 2H), 6.55 (s, 2H), 3.70 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 143.9, 137.8, 130.2, 130.0, 129.3, 128.3, 125.5, 124.9, 122.4, 121.2, 120.6, 119.9, 113.2, 109.6, 44.7, 32.9; HRMS calcd. for C₂₇H₂₀F₃N₃: 443.1609; found: 466.1507 [M+Na].

Spectral data for 2,2-bis(1-methyl-1H-indol-3-yl)-2-(p-tolyl)acetonitrile (3s).

Colorless semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.49 ~ 7.47 (m, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.33 ~ 7.31 (m, 2H), 7.26 ~ 7.23 (m, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.06 ~ 7.03 (m, 2H), 6.55 (s, 2H), 3.69 (s, 6H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃):

δ 137.7, 137.4, 136.9, 129.3, 129.1, 127.7, 125.8, 122.1, 121.9, 120.8, 119.7, 114.3, 109.4, 44.4, 32.9, 21.1; HRMS calcd. for C₂₇H₂₃N₃: 389.1892; found: 412.1784 [M+Na].

Spectral data for 2-(3-chlorophenyl)-2,2-bis(1-methyl-*1H*-indol-3-yl)acetonitrile (3t).

Yellow solid; ¹H NMR (600 MHz, CDCl₃): δ 7.49 ~ 7.40 (m, 4H), 7.32 ~ 7.23 (m, 6H), 7.07 ~ 7.04 (m, 2H), 6.54 (s, 2H), 3.69 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 141.9, 137.7, 134.5, 129.7, 129.3, 128.2, 128.0, 126.1, 125.6, 122.3, 121.3, 120.6, 119.9, 113.4, 109.6, 44.6, 32.9; HRMS calcd. for C₂₆H₂₀ClN₃: 409.1346; found: 432.1238 [M+Na].

Spectral data for 2-(3-bromophenyl)-2,2-bis(1-methyl-*1H*-indol-3-yl)acetonitrile (3u).

White semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.67 (t, *J* = 7.8 Hz, 1H), 7.45 (d, *J* = 8.1 Hz, 4H), 7.32 (d, *J* = 7.9 Hz, 2H), 7.26 ~ 7.20 (m, 3H), 7.07 ~ 7.04 (m, 2H), 6.53 (s, 2H), 3.69 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 142.2, 137.7, 131.1, 130.8, 129.9, 129.3, 126.5, 125.6, 122.7, 122.3, 121.2, 120.6, 119.9, 113.4, 109.6, 44.5, 32.9; HRMS calcd. for C₂₆H₂₀BrN₃: 453.0841; found: 476.0733 [M+Na].

Spectral data for 2-(3-methoxyphenyl)-2,2-bis(1-methyl-*1H*-indol-3-yl)acetonitril -e (3v).

White semisolid; ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.26 ~ 7.21 (m, 4H), 7.08 ~ 7.02 (m, 3H), 6.87 ~ 6.84 (m, 1H), 6.54 (s, 2H), 3.73 (s, 3H), 3.68 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 141.4, 137.7, 129.4, 129.3, 125.8, 122.1, 121.7, 120.8, 120.3, 119.7, 114.0, 113.9, 112.9, 109.4, 55.3, 44.7, 32.9; HRMS calcd. for C₂₇H₂₃N₃O: 405.1841; found: 405.1899 [M+H]. **Spectral data for 2,2-bis(1-methyl-1***H***-indol-3-yl)-3-phenylpropanenitrile (3w).**

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.52 (d, *J* = 8.1 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.21 ~ 7.14 (m, 3H), 7.09 (t, *J* = 8.1 Hz, 2H), 7.02 ~ 6.99 (m, 4H), 6.85 (d, *J* = 7.7 Hz, 2H), 3.87 (s, 2H), 3.67 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 137.8, 135.8, 130.4, 128.4, 127.9, 127.1, 125.5, 121.9, 121.5, 120.4, 119.4, 112.6, 109.6, 43.8, 42.4, 32.9; ESI-MS calcd. for C₂₇H₂₃N₃: 389.1892; found: 390.1895 [M+H]. **Spectral data for 3-phenyl-2,2-bis(1-phenyl-1***H***-indol-3-yl)propanenitrile (3x).**

Colorless viscous solid; ¹H NMR (600 MHz, CDCl₃): δ 7.62 ~ 7.59 (m, 3H), 7.54 ~ 7.53 (m, 2H), 7.46 ~ 7.44 (m, 3H), 7.40 ~ 7.28 (m, 11H), 7.24 ~ 7.22 (m, 2H), 7.13 ~7.10 (m, 2H), 6.85 (s, 2H), 3.46 (s, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 139.1, 137.0, 131.2, 129.6, 129.4, 128.7, 128.1, 127.9, 126.8, 124.6, 123.0, 121.4, 121.0, 120.8, 116.8, 116.3, 110.8, 44.8, 43.5; ESI-MS calcd. for C₃₇H₂₇N₃: 513.2205; found: 536.2105 [M+Na].

Spectral data for 2,2-di(1*H*-indol-3-yl)-3-phenylpropanenitrile (3y).

White semisolid; ¹H NMR (600 MHz, CDCl₃): δ 8.09 (s, 2H), 7.48 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 7.18 ~ 7.14 (m, 5H), 7.09 (t, J = 7.7 Hz, 2H), 6.98 (t, J = 7.2 Hz, 2H), 6.84 (d, J = 7.1 Hz, 2H), 3.89 (s, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 136.9, 135.6, 130.4, 127.7, 127.0, 125.0, 123.2, 122.5, 121.3, 120.2, 119.9, 114.3, 111.5, 43.5, 42.4, 26.5; ESI-MS calcd. for C₂₅H₁₉N₃: 361.1579; found: 362.1575 [M+H].

Spectral data for 2-(1-methyl-1H-indol-3-yl)-2-phenylacetonitrile (4a).

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.45 ~ 7.43 (m, 3H), 7.36 ~ 7.34 (m, 2H), 7.32 ~ 7.24 (m, 3H), 7.10 ~ 7.08 (m, 1H), 7.00 (s, 1H), 5.37 (s, 1H), 3.76 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 137.4, 135.7, 129.9, 128.9, 128.1, 127.9, 127.6, 125.8, 122.4, 121.2, 119.8, 118.8, 109.6, 109.4, 34.4, 32.8. ESI-MS calcd. for C₁₇H₁₄N₂: 246.1157; found: 247.1238 [M+H].

Spectral data for 2-(1-butyl-1H-indol-3-yl)-2-phenylacetonitrile (4c).

Light yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.48 ~ 7.41 (m, 3H), 7.38 ~ 7.29 (m, 4H), 7.24 ~ 7.21 (m, 1H), 7.10 ~ 7.05 (m, 2H), 5.37 (s, 1H), 4.09 (q, *J* = 12.5, 7.4 Hz, 2H), 1.83 ~ 1.78 (m, 2H), 1.34 ~ 1.25 (m, 2H), 0.97 ~ 0.85 (m, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 136.7, 135.7, 128.9, 128.0, 127.7, 126.7, 125.8, 122.2, 119.9, 119.7, 118.9, 109.8, 109.1, 46.3, 34.4, 32.2, 20.1, 13.7.

Spectral data for 2-(1H-indol-3-yl)-2-phenylacetonitrile (4e).

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 8.20 (s, 1H), 7.44 ~ 7.31 (m, 6H), 7.24 ~ 7.01 (m, 4H), 5.38 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 136.6, 135.4, 129.0,

128.1, 127.7, 125.3, 123.2, 122.9, 120.3, 119.8, 118.8, 111.5, 110.1, 34.5. ESI-MS calcd. for $C_{16}H_{12}N_2$: 232.1000; found: 2255.0900 [M+Na].

Spectral data for 2-phenyl-2-(1-(p-tolyl)-1*H*-indol-3-yl)acetonitrile (4m).

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.97 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.55 (s, 1H), 7.36 ~ 7.30 (m, 7H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.17 (t, *J* = 7.4 Hz, 1H), 5.25 (s, 1H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 145.4, 135.4, 134.8, 133.6, 130.0, 129.3, 128.6, 127.9, 127.6, 126.9, 125.4, 124.9, 123.6, 119.5, 118.6, 117.3, 113.9, 34.2, 21.6; ESI-MS calcd. for C₂₃H₁₈N₂: 322.1470; found: 323.1475 [M+H].

Spectral data for 2-(1-(4-methoxyphenyl)-1*H*-indol-3-yl)-2-phenylacetonitrile (4n).

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.51 ~ 7.48 (m, 2H), 7.41 (d, *J* = 8.3 Hz, 1H), 7.38 ~ 7.32 (m, 6H), 7.23 ~ 7.20 (m, 2H), 7.14 ~ 7.11 (m, 1H), 7.03 ~ 7.00 (m, 2H), 5.43 (s, 1H), 3.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 158.6, 137.1, 135.3, 132.0, 129.1, 128.2, 127.8, 127.6, 127.2, 126.2, 123.1, 120.6, 119.7, 118.9, 114.8, 111.3, 110.9, 55.6, 34.5; ESI-MS calcd. for C₂₃H₁₈N₂O: 338.1419; found: 339.1492 [M+H].

Spectral data for 2-(1-(4-mthoxyphenyl)-1*H*-indol-3-yl)-2-phenylacetonitrile (d-4n) with deuterium.

Colorless liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.51 ~ 7.46 (m, 2H), 7.43 ~ 7.28 (m, 6H), 7.24 ~ 7.19 (m, 2H), 7.14 ~ 7.10 (m, 1H), 7.04 ~ 7.00 (m, 2H), 5.42 (s, 0.14H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.6, 137.1, 135.3, 132.0, 129.1, 128.2, 127.8, 127.6, 127.2, 126.1, 123.1, 120.6, 119.7, 119.0, 114.8, 111.3, 110.9, 55.6, 34.5; ESI-MS calcd. for C₂₃H₁₈DN₂O: 339.1482ound: 340.1555 [M+H].

Spectral data for 2-phenyl-2-(1-(4-propoxyphenyl)-1*H*-indol-3-yl)acetonitrile (40)

Light yellow liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.51 ~ 7.45 (m, 3H), 7.43 ~ 7.31 (m, 7H), 7.23 ~ 7.18 (m, 1H), 7.14 ~ 7.10 (m, 1H), 7.03 ~ 6.99 (m, 2H), 5.42 (s, 1H), 3.96 (t, *J* = 6.8 Hz, 2H), 1.88 ~ 1.81 (m, 2H), 1.08 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.2, 137.2, 135.3, 131.8, 129.1, 128.2, 127.8, 127.3, 126.2, 126.0, 123.0, 120.6, 119.7, 118.9, 115.4, 111.2, 110.9, 69.9, 34.5, 22.6, 10.5; ESI-MS calcd. for C₂₅H₂₂N₂O: 366.1732; found: 367.11728 [M+H].

Spectral data for 2-(1-(4-chlorophenyl)-1*H*-indol-3-yl)-2-phenylacetonitrile (4p).

Yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.51 ~ 7.47 (m, 6H), 7.42 ~ 7.37 (m, 4H), 7.34 ~ 7.33 (m, 1H), 7.24 ~ 7.23 (m, 2H), 7.15 (d, *J* = 7.1 Hz, 1H), 5.42 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 137.6, 136.5, 134.9, 132.6, 129.9, 129.1, 128.3, 127.7, 126.6, 126.5, 125.6, 123.5, 121.1, 119.5, 119.3, 112.4, 110.7, 34.4.

Spectral data for 2-(1-(4-bromophenyl)-1*H*-indol-3-yl)-2-phenylacetonitrile (4q).

Brownish liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.51 ~ 7.48 (m, 6H), 7.42 ~ 7.32 (m, 6H), 7.24 ~ 7.23 (m, 1H), 7.16 ~ 7.12 (m, 1H), 5.42 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 137.6, 136.5, 134.9, 132.6, 129.9, 129.1, 128.3, 127.7, 126.6, 126.5, 125.6, 123.5, 121.1, 119.5, 119.3, 112.4, 110.7, 34.4. ESI-MS calcd. for C₂₂H₁₅BrN₂: 386.0419; found: 387.0423 [M+H].

Spectral data for (S)-2-(1-(4-methoxyphenyl)-1H-indol-3-yl)-2-(1-methyl-1H-indo -l-3-yl)-2-phenylacetonitrile (5a).

White semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.56 ~ 7.55 (m, 2H), 7.53 ~ 7.50 (m, 2H), 7.41 (d, J = 8.4 Hz, 1H), 7.36 ~ 7.28 (m, 6H), 7.23 ~ 7.18 (m, 2H), 7.09 ~ 7.03 (m, 2H), 6.95 (d, J = 8.2 Hz, 2H), 6.75 (s, 1H), 6.58 (s, 1H), 3.82 (s, 3H), 3.69 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 158.5, 139.6, 137.7, 137.5, 132.1, 129.3, 128.8, 128.6, 127.9, 127.8, 126.2, 126.1, 125.8, 122.8, 122.2, 121.7, 121.0, 120.8, 120.5, 119.8, 116.0, 114.7, 113.9, 110.6, 109.5, 55.6, 44.8, 32.9; ESI-MS calcd. for C₃₂H₂₅N₃O: 467.1988; found: 490.1890 [M+Na].

Spectral data for (S)-2-(1-(4-methoxyphenyl)-1*H*-indol-3-yl)-2-phenyl-2-(1-propy -l-1*H*-indol-3-yl)acetonitrile (5b).

White semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.56 (d, *J* = 8.4 Hz, 2H), 7.53 ~ 7.48 (m, 1H), 7.41 (d, *J* = 8.1 Hz, 1H), 7.36 ~ 7.28 (m, 7H), 7.20 (t, *J* = 7.3 Hz, 2H), 7.07 (t, *J* = 7.3 Hz, 1H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.96 (d, *J* = 7.3 Hz, 2H), 6.73 (s, 1H), 6.65 (s, 1H), 3.98 (t, *J* = 7.0 Hz, 2H), 3.83 (s, 3H), 1.80 ~ 1.76 (m, 2H), 0.86 (t, *J* = 7.4, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 158.5, 139.6, 137.5, 137.1, 132.1, 128.8, 128.6, 128.5, 127.9, 126.2, 126.1, 125.9, 122.7, 121.9, 121.7, 121.0, 120.8, 120.4,

119.7, 116.1, 114.8, 114.7, 113.5, 110.6, 109.7, 55.6, 48.1, 44.8, 23.4, 11.4; HRMS calcd. for C₃₄H₂₉N₃O: 495.2311; found: 518.2203 [M+Na].

Spectral data for(S)-2-phenyl-2-(1-(4-propoxyphenyl)-1*H*-indol-3-yl)-2-(1-propyl -1*H*-indol-3-yl)acetonitrile (5c).

Brownish semisolid; ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, *J* = 8.0 Hz, 2H), 7.52 ~ 7.47 (m, 2H), 7.41 (d, *J* = 8.8 Hz, 1H), 7.34 ~ 7.26 (m, 6H), 7.19 (t, *J* = 7.6 Hz, 2H), 7.01 ~ 7.00 (m, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.72 (s, 1H), 6.64 (s, 1H), 3.98 (t, *J* = 7.2 Hz, 2H), 3.92 (t, *J* = 7.4 Hz, 2H), 1.85 ~ 1.73 (m, 4H), 1.03 (t, *J* = 7.4, 3H), 0.85 (t, *J* = 7.4, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 158.0, 139.6, 137.5, 137.1, 131.9, 128.8, 128.6, 128.5, 127.9, 126.2, 126.1, 125.9, 122.7, 121.9, 121.7, 121.0, 120.8, 120.4, 119.7, 116.1, 115.3, 113.5, 110.7, 109.7, 69.9, 48.1, 44.8, 23.4, 22.5, 11.4, 10.5; HRMS calcd. for C₃₆H₃₃N₃O: 523.2624; found: 523.2626.

Spectral data for (S)-2-phenyl-2-(1-propyl-1H-indol-3-yl)-2-(1-(p-tolyl)-1H- indol -3-yl)acetonitrile (5d).

White semisolid; ¹H NMR (400 MHz, CDCl₃): δ 7.57 ~ 7.52 (m, 3H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.37 ~ 7.25 (m, 6H), 7.23 ~ 7.18 (m, 4H), 7.07 (t, *J* = 7.2 Hz, 1H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.75 (s, 1H), 6.65 (s, 1H), 3.98 (t, *J* = 7.2 Hz, 2H), 2.38 (s, 3H), 1.81 ~ 1.76 (m, 2H), 0.86 (t, *J* = 7.2, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 139.6, 137.1, 136.7, 136.6, 130.1, 129.4, 129.2, 128.6, 128.5, 127.9, 127.8, 126.4, 125.9, 124.5, 122.8, 122.0, 121.7, 121.1, 120.8, 120.5, 119.7, 113.5, 110.8, 109.7, 48.1, 44.8, 23.4, 21.0, 11.4; HRMS calcd. for C₃₄H₂₉N₃: 479.2361; found: 502.2259.

Spectral data for (S)-2-(1-(4-chlorophenyl)-1*H*-indol-3-yl)- 2-phenyl-2-(1-propyl -1*H*-indol-3-yl)acetonitrile (5e).

Yellow semisolid ¹H NMR (400 MHz, CDCl₃): δ 7.56 ~ 7.50 (m, 3H), 7.49 ~ 7.47 (m, 2H), 7.42 (d, *J* = 6.8 Hz, 2H), 7.37 ~ 7.29 (m, 6H), 7.26 ~ 7.19 (m, 2H), 7.09 (t, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 8.2 Hz, 1H), 6.75 (s, 1H), 6.63 (s, 1H), 3.99 (t, *J* = 7.2 Hz, 2H), 1.83 ~ 1.74 (m, 2H), 0.86 (t, *J* = 7.2, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.3, 137.7, 137.1, 136.9, 132.4, 129.8, 128.6, 128.5, 128.2, 128.0, 127.8, 126.6, 125.8, 125.7, 123.2, 122.1, 121.6, 121.3, 120.9, 120.8, 119.7, 117.3, 113.3, 110.5, 109.8, 48.1, 44.8, 23.4, 11.4; HRMS calcd. for C₃₃H₂₆ClN₃: 499.1815; found: 499.1815.

Spectral data for (S)-2-(1-(4-bromophenyl)-1*H*-indol-3-yl)-2-phenyl-2-(1-propyl

-1*H*-indol-3-yl)acetonitrile (5f).

Light brown semisolid; ¹H NMR (400 MHz, CDCl₃): δ 7.56 ~ 7.50 (m, 3H), 7.49 ~ 7.47 (m, 2H), 7.42 (d, *J* = 6.8 Hz, 2H), 7.37 ~ 7.29 (m, 6H), 7.26 ~ 7.19 (m, 2H), 7.09 (t, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 8.2 Hz, 1H), 6.75 (s, 1H), 6.63 (s, 1H), 3.99 (t, *J* = 7.2 Hz, 2H), 1.83 ~ 1.74 (m, 2H), 0.86 (t, *J* = 7.2, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.3, 137.7, 137.1, 136.9, 132.4, 129.8, 128.6, 128.5, 128.2, 128.0, 127.8, 126.6, 125.8, 125.7, 123.2, 122.1, 121.6, 121.3, 120.9, 120.8, 119.7, 117.3, 113.3, 110.5, 109.8, 48.1, 44.8, 23.4, 11.4; HRMS calcd. for C₃₃H₂₆BrN₃: 543.1310; found: 543.1314.

Spectral data for 3,3'-(1-phenylethane-1,1-diyl)bis(1*H*-indole) (6a).

White semisolid; ¹H NMR (500 MHz, CDCl₃): δ 7.79 (s, 2H), 7.39 (d, J = 7.5 Hz, 2H), 7.31(d, J = 8.5 Hz, 4H), 7.24 (t, J = 7.0 Hz, 2H), 7.18 (t, J = 7.0 Hz, 1H), 7.12 (t, J = 8.0 Hz, 2H), 6.93 (t, J = 7.0 Hz, 2H), 6.59 (d, J = 2.0 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 148.0, 137.1, 128.0, 127.8, 126.5, 125.8, 124.7, 123.3, 122.1, 121.5, 118.9, 111.1, 43.7, 28.7; ESI-MS calcd. for C₂₄H₂₀N₂: 336.1626; found: 337.1630 [M+H].

Spectral data for 3,3'-(1-phenylpropane-2,2-diyl)bis(1*H*-indole) (6b).

White Semisolid; ¹H NMR (400 MHz, CDCl₃): δ 7.88 (s, 2H), 7.36 ~ 7.30 (m, 4H), 7.09 ~ 7.00 (m, 5H), 6.95 (d, *J* = 2.3 Hz, 2H), 6.84 (t, *J* = 7.6 Hz, 2H), 6.58 (d, *J* = 8.0 Hz, 2H), 3.68 (s, 2H), 1.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 137.0, 130.7, 127.0, 126.5, 125.7, 123.6, 121.4, 121.3, 121.1, 118.8, 111.0, 45.7, 39.2, 26.5; ESI-MS calcd. for C₂₅H₂₂N₂: 350.1783; found: 351.1780 [M+H].

Spectral data for 3,3'-(1-phenylpentane-1,1-diyl)bis(1H-indole) (6c).

Yellow Semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.88 (s, 2H), 7.45 ~ 7.44 (m, 2H), 7.32 ~ 7.30 (m, 4H), 7.18 (t, *J* = 6.6 Hz, 2H), 7.11 ~ 7.08 (m, 3H), 6.89 ~ 6.87 (m, 4H), 2.76 ~ 2.73 (m, 2H), 1.31 ~ 1.26 (m, 2H), 1.18 ~ 1.13 (m, 2H), 0.78 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 147.3, 136.9, 128.4, 127.6, 126.8, 125.5, 123.5, 122.5, 122.3, 121.4, 118.8, 110.9, 47.9, 40.6, 28.3, 23.3, 14.0; HRMS calcd. for C₂₇H₂₆N₂: 378.2096; found: 378.2098.

Spectral data for 3,3'-(1-phenylhexane-2,2-diyl)bis(1*H*-indole) (6d).

Yellow Semisolid; ¹H NMR (400 MHz, CDCl₃): δ 7.92 (s, 2H), 7.30 (d, J = 7.2 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.09 ~ 6.99 (m, 7H), 6.77 ~ 6.74 (m, 2H), 6.49 (d, J = 6.8 Hz, 2H), 2.03 (d, J = 2.1 Hz, 2H), 1.22 ~ 1.18 (m, 4H), 0.78 (t, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.6, 136.9, 130.5, 127.0, 126.8, 125.6, 122.5, 121.8, 121.3, 121.1, 118.7, 110.8, 42.7, 42.2, 35.4, 26.5, 23.1, 14.2; HRMS calcd. for C₂₈H₂₈N₂: 392.2252; found: 392.2256.

Spectral data for 3,3'-(phenylmethylene)bis(1*H*-indole) or Turbomycin B (6e).

White Solid; ¹H NMR (600 MHz, CDCl₃): δ 7.76 (s, 2H), 7.39 (d, J = 7.7 Hz, 2H), 7.35 ~ 7.22 (m, 7H), 7.17 (t, J = 7.3 Hz, 2H), 7.01 (t, J = 7.5 Hz, 2H), 6.58 (s, 2H), 5.87 (s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 143.9, 136.6, 128.7, 128.2, 127.0, 126.1, 123.6, 121.9, 119.9, 119.6, 119.2, 111.0, 40.2; ESI-MS calcd. for C₂₃H₁₇N₂: 322.1470; found: 321.1387 [M⁺-H].

Spectral data for 3,3'-(2-phenylethene-1,1-diyl)bis(1*H*-indole) (6f).

Light yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 8.08 (s, 1H), 7.99 (s, 1H), 7.78 (d, J = 6.6 Hz, 1H), 7.38 ~ 7.35 (m, 2H), 7.22 ~ 7.16 (m, 3H), 7.15 ~ 7.14 (m, 3H), 7.11 (t, J = 7.9 Hz, 1H), 7.07 (t, J = 7.7 Hz, 2H), 7.04 ~ 7.00 (m, 2H), 6.97 (d, J = 2.4 Hz, 1H), 6.92 (t, J = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 138.7, 136.8, 136.1, 128.8, 127.8, 126.8, 125.8, 125.7, 125.6, 124.9, 124.6, 122.2, 121.9, 121.2, 120.9, 120.8, 120.1, 119.6, 116.4, 111.3, 110.9; ESI-MS calcd. for C₂₄H₁₈N₂: 334.1470; found: 335.1472 [M+H].

Spectral data for 3,3'-(2-phenylethane-1,1-diyl)bis(1*H*-indole) (6g).

White Semisolid; ¹H NMR (400 MHz, CDCl₃): δ 7.80 (s, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.16 ~ 7.08 (m, 7H), 7.02 (t, *J* = 7.2 Hz, 2H), 6.91 (d, *J* = 2.0 Hz, 2H), 4.79 (t, *J* = 7.6 Hz, 1H), 3.53 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 141.3, 136.6, 129.0, 128.0, 127.0, 125.7, 121.9, 121.7, 119.7, 119.4, 119.1, 111.0, 41.7, 36.2; HRMS calcd. for C₂₄H₂₀N₂: 336.1626; found: 336.1625.

Spectral data for 2-phenyl-2-(1-phenyl-1H-pyrrol-2-yl)acetonitrile (S1).

Yellowish Semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7 .38 ~ 7.36 (m, 3H), 7.26 ~ 7.24 (m, 3H), 7.14 ~ 7.10 (m, 4H), 6.78 ~ 6.77 (m, 1H), 6.33 ~ 6.32 (m, 1H), 6.26 (t, *J* = 3.5 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 138.80, 132.8, 129.3, 128.8, 128.3, 128.1, 127.5, 126.8, 126.6, 124.2, 118.9, 110.5, 108.6, 35.1; ESI-MS calcd. for C₁₈H₁₄N₂: 258.1157; found: 259.1162. [M+H].

Spectral data for 3,3'-(phenylmethylene)bis(1-methyl-1*H*-indole) (S2).

White Semisolid; ¹H NMR (600 MHz, CDCl₃): δ 7.36 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 2H), 7.27 (d, *J* = 7.8 Hz, 2H), 7.21 ~ 7.18 (m, 5H), 7.00 (t, *J* = 7.3 Hz, 2H), 6.49 (s, 2H), 5.82 (s, 1H), 3.67 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 143.5, 137.4, 131.3, 130.4, 128.2, 127.2, 121.5, 119.9, 119.8, 118.7, 117.6, 109.1, 39.5, 32.7; ESI-MS calcd. for C₂₅H₂₂N₂: 350.1783; found: 351.1817.

Spectral data for 2-(4-(dimethylamino)phenyl)-2-(1-(4-methoxyphenyl)- 1*H*-indol

-3-yl)-2-phenylacetonitrile (S3).

Yellow Semisolid; ¹H NMR (400 MHz, CDCl₃): δ 7.44 ~ 7.36 (m, 4H), 7.33 ~ 7.29 (m, 5H), 7.23 ~ 7.17 (m, 3H), 7.06 (t, *J* = 5.6 Hz, 1H), 6.96 (dd, *J* = 8.8, 1.2 Hz, 2H), 6.45 (d, *J* = 8.8 Hz, 2H), 6.54 (s, 1H), 3.84 (s, 3H), 2.94 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 158.7, 149.9, 140.6, 137.7, 132.3, 129.3, 129.1, 128.5, 128.3, 127.8, 126.5, 126.3, 122.9, 122.8, 121.2, 120.5, 117.5, 114.8, 112.3, 110.6, 55.6, 50.6, 40.4, 29.7; ESI-MS calcd. for C₃₁H₂₇N₃O: 457.2154; found: 458.2160 [M+H].

Spectral data for 2-(4-(dimethylamino)phenyl)-2-phenylacetonitrile (S4).

Colorless liquid; ¹H NMR (600 MHz, CDCl₃): δ 7.33 ~ 7.23 (m, 5H), 7.15 (d, *J* = 8.8 Hz, 2H), 6.66 (d, *J* = 8.6 Hz, 2H), 5.04 (s, 1H), 2.92 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 150.2, 136.7, 129.2, 129.0, 128.5, 127.9, 127.6, 120.2, 112.6, 41.7, 40.4 ;

X-ray crystallographic structure and data

X-ray data for compound 3q :

Table 1. Crystal data and structure refinement for ch18209.

Identification code ch18209

Empirical formula C₂₆ H₂₀ Br N₃

Formula weight 454.36

Temperature 296(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P-1

Unit cell dimensions $a = 9.542(5) \text{ Å} \square = 105.75(2)^{\circ}$.

b = 11.051(6) Å $\Box = 108.68(2)^{\circ}$.

 $c = 11.500(7) \text{ Å} \qquad \Box = 95.23(2)^{\circ}.$

Volume 1084.4(10) Å3

Z 2

Density (calculated) 1.392 Mg/m3

Absorption coefficient 1.913 mm-1

F(000) 464

Crystal size 0.29 x 0.04 x 0.01 mm3

Theta range for data collection 1.97 to 25.09°.

Index ranges -10<=h<=11, -13<=k<=13, -13<=l<=13

Reflections collected 9487

Independent reflections 3787 [R(int) = 0.1022]

Completeness to theta = 25.09° 98.2 %

Absorption correction multi-scan

Max. and min. transmission 0.9811 and 0.6070

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3787 / 0 / 267

Goodness-of-fit on F2 0.923

Final R indices [I>2sigma(I)] R1 = 0.0685, wR2 = 0.1448

R indices (all data) R1 = 0.2308, wR2 = 0.2086

x y z U(eq)

Largest diff. peak and hole 0.261 and -0.451 e.Å-3

Table 2. Atomic coordinates ($x \ 104$) and equivalent isotropic displacement parameters (Å2x 103)

for ch18209. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(1) 8089	9(9)	3898	(7)	2915	5(8)	58(2)	
C(2) 6937	(10)	4511	(7)	2695	5(7)	60(2)	
C(3) 6910)(8)	5435	(6)	2093	8(7)	48(2)	
C(4) 8087	'(8)	5758	(6)	1695	5(7)	42(2)	
C(5) 9259	9(8)	5092	(7)	1941	.(8)	64(2)	
C(6) 9253	8(9)	4167	(8)	2525	5(9)	77(3)	
C(7) 8036	5(8)	6757	(7)	973(7)	42(2)	
C(8) 7002	2(9)	7673	(7)	1262	2(8)	48(2)	
C(9)7149	9(10)	8493	(7)	2533	8(9)	50(2)	
C(10)	8194	(10)	8749	(8)	3766	5(10)	64(2)	
C(11)	7986	5(13)	9584	(8)	4806	5(10)	90(3)	
C(12)	6701	(13)	1012	27(9)	4569	9(11)	90(3)	
C(13)	5617	7(11)	9902	2(7)	3354	(11)	78(3)	
C(14)	5856	5(11)	9063	5(7)	2304	(11)	59(3)	
C(15)	3542	2(10)	8990	(8)	380(9)	93(3)	
C(16)	5686	5(10)	7786	5(7)	382(8)	56(2)	

- C(17) 7594(7) 6098(7) -478(7) 37(2)
- C(18) 7581(8) 6670(7) -1445(7) 39(2)
- C(19) 8010(8) 7911(7) -1414(8) 53(2)
- C(20) 7888(9) 8140(9) -2542(10)63(2)
- C(21) 7354(10) 7158(10) -3708(10)72(3)
- C(22) 6918(8) 5914(8) -3778(8) 56(2)
- $C(23) \qquad 7062(8) \quad 5683(7) \quad -2633(8) \quad 41(2)$
- C(24) 6263(9) 3282(7) -3365(7) 65(2)
- C(25) 7105(7) 4806(7) -1096(8) 43(2)
- C(26) 9604(10) 7547(7) 1459(8) 48(2)
- N(1)4974(9) 8619(6) 1003(9) 66(2)
- N(2)6766(6) 4549(6) -2403(6) 46(2)
- N(3)10757(8) 8138(7) 1805(7) 72(2)
- Br(1) 8047(1) 2627(1) 3692(1) 110(1)
- Table 3. Bond lengths [Å] and angles [°] for ch18209.
- C(1)-C(2) 1.335(10)
- C(1)-C(6) 1.362(10)
- C(1)-Br(1) 1.863(7)
- C(2)-C(3) 1.379(9)
- C(2)-H(2) 0.9300
- C(3)-C(4) 1.394(9)
- C(3)-H(3) 0.9300
- C(4)-C(5) 1.391(9)

C(4)-C(7)	1.547(9)
C(5)-C(6)	1.367(9)
C(5)-H(5)	0.9300
C(6)-H(6)	0.9300
C(7)-C(26)	1.508(11)
C(7)-C(17)	1.526(9)
C(7)-C(8)	1.522(9)
C(8)-C(16)	1.378(9)
C(8)-C(9)	1.450(10)
C(9)-C(10)	1.382(10)
C(9)-C(14)	1.419(10)
C(10)-C(11)	1.381(10)
C(10)-H(10)	0.9300
C(11)-C(12)	1.395(13)
C(11)-H(11)	0.9300
C(12)-C(13)	1.387(12)
C(12)-H(12)	0.9300
C(13)-C(14)	1.406(11)
C(13)-H(13)	0.9300
C(14)-N(1)	1.381(10)
C(15)-N(1)	1.478(10)
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600

C(16)-N(1) 1.374(8)

C(16)-H(16)	0.93	00
C(17)-C(25)	1.37	0(9)
C(17)-C(18)	1.41	7(9)
C(18)-C(19)	1.38	3(9)
C(18)-C(23)	1.40	0(9)
C(19)-C(20)	1.35	9(9)
C(19)-H(19)	0.93	00
C(20)-C(21)	1.38	1(10)
C(20)-H(20)	0.93	00
C(21)-C(22)	1.37	3(10)
C(21)-H(21)	0.93	00
C(22)-C(23)	1.37	5(9)
C(22)-H(22)	0.93	00
C(23)-N(2)	1.37	3(8)
C(24)-N(2)	1.45	3(8)
C(24)-H(24A)		0.9600
C(24)-H(24B)		0.9600
C(24)-H(24C)		0.9600
C(25)-N(2)	1.37	2(8)
C(25)-H(25)	0.93	00
C(26)-N(3)	1.11	5(8)
C(2)-C(1)-C(6	j)	120.1(7)
C(2)-C(1)-Br(1)	119.4(6)
C(6)-C(1)-Br(1)	120.5(6)

C(1)-C(2)-C(3) 121.1(7)

- C(1)-C(2)-H(2) 119.4
- C(3)-C(2)-H(2) 119.4
- C(2)-C(3)-C(4) 120.9(7)
- C(2)-C(3)-H(3) 119.6
- C(4)-C(3)-H(3) 119.6
- C(5)-C(4)-C(3) 115.9(7)
- C(5)-C(4)-C(7) 122.8(6)
- C(3)-C(4)-C(7) 121.2(7)
- C(6)-C(5)-C(4) 122.2(7)
- C(6)-C(5)-H(5) 118.9
- C(4)-C(5)-H(5) 118.9
- C(1)-C(6)-C(5) 119.8(7)
- C(1)-C(6)-H(6) 120.1
- C(5)-C(6)-H(6) 120.1
- C(26)-C(7)-C(17) 107.3(6)
- C(26)-C(7)-C(8) 107.3(6)
- C(17)-C(7)-C(8) 111.7(6)
- C(26)-C(7)-C(4) 107.9(6)
- C(17)-C(7)-C(4) 110.8(5)
- C(8)-C(7)-C(4) 111.6(6)
- C(16)-C(8)-C(9) 107.7(7)
- C(16)-C(8)-C(7) 126.1(7)
- C(9)-C(8)-C(7) 125.9(8)
- C(10)-C(9)-C(14) 121.6(9)
- C(10)-C(9)-C(8) 134.0(9)

- C(14)-C(9)-C(8) 104.4(8)
- C(11)-C(10)-C(9) 119.6(9)
- C(11)-C(10)-H(10) 120.2
- C(9)-C(10)-H(10) 120.2
- C(10)-C(11)-C(12) 118.2(11)
- C(10)-C(11)-H(11) 120.9
- C(12)-C(11)-H(11) 120.9
- C(13)-C(12)-C(11) 124.6(10)
- C(13)-C(12)-H(12) 117.7
- C(11)-C(12)-H(12) 117.7
- C(12)-C(13)-C(14) 116.5(10)
- C(12)-C(13)-H(13) 121.8
- C(14)-C(13)-H(13) 121.8
- N(1)-C(14)-C(13) 130.3(9)
- N(1)-C(14)-C(9) 110.1(8)
- C(13)-C(14)-C(9) 119.5(10)
- N(1)-C(15)-H(15A)109.5
- N(1)-C(15)-H(15B)109.5
- H(15A)-C(15)-H(15B) 109.5
- N(1)-C(15)-H(15C)109.5
- H(15A)-C(15)-H(15C) 109.5
- H(15B)-C(15)-H(15C) 109.5
- N(1)-C(16)-C(8) 110.2(7)
- N(1)-C(16)-H(16) 124.9
- C(8)-C(16)-H(16) 124.9

- C(25)-C(17)-C(18) 106.7(7)
- C(25)-C(17)-C(7) 125.2(7)
- C(18)-C(17)-C(7) 128.1(6)
- C(19)-C(18)-C(23) 119.0(7)
- C(19)-C(18)-C(17) 133.7(8)
- C(23)-C(18)-C(17) 107.2(6)
- C(20)-C(19)-C(18) 119.0(8)
- C(20)-C(19)-H(19) 120.5
- C(18)-C(19)-H(19) 120.5
- C(19)-C(20)-C(21) 121.2(8)
- C(19)-C(20)-H(20) 119.4
- C(21)-C(20)-H(20) 119.4
- C(20)-C(21)-C(22) 121.5(8)
- C(20)-C(21)-H(21) 119.3
- C(22)-C(21)-H(21) 119.3
- C(23)-C(22)-C(21) 117.2(8)
- C(23)-C(22)-H(22) 121.4
- C(21)-C(22)-H(22) 121.4
- N(2)-C(23)-C(22) 130.0(8)
- N(2)-C(23)-C(18) 107.9(6)
- C(22)-C(23)-C(18) 122.1(7)
- N(2)-C(24)-H(24A)109.5
- N(2)-C(24)-H(24B)109.5
- H(24A)-C(24)-H(24B) 109.5
- N(2)-C(24)-H(24C)109.5

H(24A)-C(24)-H(24C) 109.5

- H(24B)-C(24)-H(24C) 109.5
- N(2)-C(25)-C(17) 109.7(6)
- N(2)-C(25)-H(25) 125.1
- C(17)-C(25)-H(25) 125.1
- N(3)-C(26)-C(7) 179.1(9)
- C(16)-N(1)-C(14) 107.6(7)
- C(16)-N(1)-C(15) 125.9(9)
- C(14)-N(1)-C(15) 126.5(8)
- C(25)-N(2)-C(23) 108.4(6)
- C(25)-N(2)-C(24) 125.6(6)
- C(23)-N(2)-C(24) 126.0(7)

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters (Å2x 103)for ch18209.Theanisotropic

displacement factor exponent takes the form: $-2\Box 2[h2a*2U11 + ... + 2hka*b*U12]$

U11 U22 U33 U23 U13 U12

C(1) 49(6)	64(5)	84(7)	49(5)	30(5)	23(5)							
C(2) 67(7)	54(5)	73(7)	27(5)	43(5)	1(5)							
C(3)31(5)	56(5)	59(6)	13(4)	23(4)	18(4)							
C(4) 36(5)	49(4)	43(5)	11(4)	22(4)	3(4)							
C(5) 31(5)	89(6)	101(7)	51(6	j)	40(5)	26(5)	
-----------	------	------------	------	------	------	------	-------	----------	-------	-------	--------	--
C(6) 58(6	j)	94(7)	136(9)	88(7)	57(6	j)	48(5)	
C(7) 35(5	j)	44(4)	51(6)	15(4)	19(5)	12(4)	
C(8) 56(6	i)	43(5)	55(6)	16(5)	35(5)	13(5)	
C(9) 55(7	')	40(5)	62(7)	8(5)	37(6	j)	-1(5))		
C(10)	64(7	')	63(6)	57(7)	10(5)	25(6)	-10(5)	
C(11)	134((10)	55(5)	85(5)	-7(4))77(7)	-19(5)	
C(12)	134((10)	55(5)	85(5)	-7(4))77(7)	-19(5)	
C(13)	89(8	5)	43(5)	136(10)	24(6	j)	89(8)	16(5)	
C(14)	69(7	')	44(5)	86(8)	15(6	j)	61(7)	8(5)	
C(15)	77(7	')	106(7)	140(9)	61(7)	63(7)	70(6)	
C(16)	67(7	')	50(5)	63(6)	16(5)	40(6)	21(5)	
C(17)	34(5))	40(5)	40(5)	9(4)	20(4	.)	15(4)	
C(18)	36(5)	44(5)	51(6)	27(5)	22(4)	19(4)	
C(19)	57(6	j)	51(5)	70(6)	31(5)	35(5)	20(4)	
C(20)	59(6	j)	74(7)	79(7)	52(6	j)	29(6)	20(5)	
C(21)	67(7	')	97(8)	76(8)	60(7)	30(6)	23(6)	
C(22)	51(6	j)	87(6)	46(6)	32(5)	27(5)	18(5)	
C(23)	33(5)	42(5)	52(6)	14(5)	19(5)	10(4)	
C(24)	65(6	i)	56(5)	60(6)	0(5)	22(5)	2(5)		
C(25)	29(5)	49(5)	59(6)	21(4	.)	25(5)	11(4)	
C(26)	48(6	i)	52(5)	53(6)	21(5)	27(5)	13(5)	
N(1)68(6	j)	54(4)	93(7)	20(5)	52(6	j)	19(4)	
N(2)46(4)	51(4)	42(5)	9(4)	21(4)	13(3)		
N(3)43(5)	80(5)	83(6)	22(4	.)	20(5)	-10(4	4)	

Table 5.Hydrogen coordinates (x 104) and isotropic displacement parameters(Å2x 103)

for ch18209.

x y z U(eq)

H(2)6140)	4311	l	2952	2	72	
H(3)6095	5	5849)	1950)	57	
H(5)1007	74	5282	2	1701	l	77	
H(6)1004	42	3723	3	2655	5	93	
H(10)	9032	2	8362	2	3894	1	77
H(11)	8683	3	9778	3	5641	1	108
H(12)	6562	2	1067	79	5276	5	108
H(13)	4777	7	1028	37	324()	93
H(15A)	3259)	8670)	-543	140	
H(15B)	3669)	9907	7	656	140	
H(15C)	2766	5	8633	3	624	140	
H(16)	5331	l	7359)	-505	67	
H(19)	8376	5	8579)	-634	63	
H(20)	8169)	8973	3	-252	28	76
H(21)	7288	3	7344	ļ	-446	64	86
H(22)	6542	2	5256	5	-456	5	68
H(24A)	5238	3	3194	ļ	-391	9	98
H(24B)	6324	1	2642	2	-293	8	98
H(24C)	6895	5	3172	2	-387	4	98
H(25)	7016	5	4195	5	-691	51	

Current Data Parameters NAME RKS-4-208 EXPNO 2 PROCNO 1		וווקע			136.298 132.600 128.891 128.290 125.931 122.976	120.007 115.247 110.362 102.775	77.212 77.000 76.788 69.868			22.585	10.534
F2 Acquisition Parameter Date_ 20170106 Time 15.18 INSTRUM spect PROBHD 5 rmm QNP 1H/1 PULPROG zgpg TD 32768 SOLVENT CDC13 NS 1024 DS 0 SWH 45045.047 Hz FIDRES 1.374666 Hz AQ 0.3637748 se RG 4096 DW 11.100 us DE 6.50 us TE 296.2 K D1 3.50000000 se d11 0.0300000 se DELTA 3.4000010 se MCKEST 0.000000 se	s c ec ec c c c c c c c c c c c c c c c				(
Emerge CHANNEL fl fl emerge NUC1 13C 13C 13C P1 4.80 us 12C 12C PL1 0.00 dB SF01 150.4843515 MH	ec Iz										
CHANNEL É2 Caracteries CPDPRG2 waltz16 NUC2 1H PCPD2 92.00 us PL2 120.00 dE PL12 9.00 dE PL13 14.00 dE SF02 598.4029920 MH	ec 3 3 3 1 2					1р					
F2 Processing parameters SI 65536 SF 150.4678043 MH WDW EM SSB 0 LB 3.00 Hz GB 0 PC 1.00	iz z									1	
1D NMR plot parameters CX 20.00 cm CY 4.00 cm F1P 200.000 pr F1 30093.56 Hz	n n 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>							
F2P 0.000 pr F2 0.00 Hz PPMCM 10.00000 pr HZCM 1504.67798 Hz	om z F om/cm E z/cm E		180	160	140 120 40	100	80	60	40	20	

BRUKER		138. 137. 128. 128.	127.	112			77.3	61.0	48.9	32.7	14.1
Current Data Parameters NAME 20170120 EXPNO 2 PROCNO 1 F2 Leguisition Bacameters	ang sa				****		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Date_ 20170120 Time 18.59 INSTRUM spect PROBHD 5 mm DUL 13C-1 PULPROC zgpg30 TD 65536 SOLVENT CDC13 NS 1500 DS 0 SWH 22727.273 FIDRES 0.346791 AQ 1.4418420 Sec 7 DW 22.000 DE 6.00 DE 6.00 DI 2.0000000 sec DI1 2.0000000 sec DLTA 1.89999998 DED 1	H O N Ja'		1								
CHANNEL f1 13C PT							1	~			,,
PL13 18.10 dB SF02 400.1516010 MHz F2 - Processing parameters * SI 32768 \$ \$ SF 100.6178021 MHz \$ WDW EM \$ \$ SSB 0 \$ \$ \$ LB 3.00 Hz \$ \$ GB 0 \$ \$ \$ PC 1.00 \$ \$ \$		I									
RKS-4-228-F1A											
190 180 17	′0 160 150	140 130	120	110	100	90	80 70	60	50	40 30	20 F

NH NC. 3e H

6 53

4

TTTTTTTTTTT

0

2

-1.54806

 F2
 - Processing parameters

 SI
 32768

 SF
 598.5000245 MHz

 MDW
 no

 SSB
 0

 LB
 0.00 Hz

 GB
 0

 PC
 1.00
 598.5000245 MHz
 1D NMR plot parameters

 CX
 20.00 cm

 CY
 6.00 cm

 F1P
 10.000 ppm

 F1
 5985.00 Hz

 F2P
 -0.500 ppm

 F2
 -299.25 Hz

 PMMM
 0.52500 ppm/cm

 HZCM
 314.21249 Hz/cm

Current Data Parameters NAME RKS-4-87-2-F3

F2 - Acquisition Parameters Date_ 20160526 Time 14.49

spect 5 mm QNP 1H/1

1

zg 32768

CDC13 16 0 12019.230 Hz 0.366798 Hz 1.3631988 sec 512 41.600 usec

6.50 usec

297.4 K 2.00000000 sec

0.00000000 sec

0.01500000 sec ====== CHANNEL f1 ======= HANNEL 11 ------1H 10.00 usec 0.00 dB 598.5035910 MHz

EXPNO

INSTRUM

PROBHD PULPROG

TD SOLVENT NS DS SWH FIDRES

AQ RG DW DE

TE D1

MCREST

MCWRK

NUC1 P1 PL1 SF01

udd

-1.543

3.675

exp1 PROTON

RKS-4-147-P3			138.968 136.447 136.447 130.312	128.236	113.427 113.381 111.139	77.181 77.888 76.817	44.361	
exp2 CARBON SAMPLE date Sep 23 2016 solvent cdc13	PR satm wet	ESATURATION ode n n						
file /home/peng/vn~ mrsys/data/RKS-4-1~ 47-P3-C.fid ACQUISITION sw 46296.3 at 1.468 np 135926 fb 17000 bs 8 d1 3.500 nt 5000	temp gain spin hst pw90 alfa il in dp	SPECIAL 25.0 30 not used 0.008 14.000 10.000 FLAGS n n y	Br Br	8r 				
ct 600 TRANSMITTER tn tn C13 sfrq 175.972 tof 4438.8 tpwr 59 pw 7.000	hs lb fn sp wp	nn PROCESSING 3.00 202144 DISPLAY -0.3 35189.9	/ 3h					an a
DECOUPLER dn H1 dof 0 dm nny decwave w dpwr 39 dmf 10582	rfl rfp lp wc sc vs th ai	15583.0 13548.2 -53.7 36.9 PLOT 220 0 173325 5 ph						na natur na a dana da antara da antara da antara da
		۲۰۰۰۲ 200 18				80		20 ppm

RKS-4-142-P1

exp6 PROTON

		_								1																
	SAMPLE	P	RESATURATION																							
date	Sep 23 2016	sati	node n																							
solven	c cdc13	wet	n																							
file /	nome/peng/vn~		SPECIAL																							
mrsys/	lata/RKS-4-1~	tem	p 25.0																							
	42-P1-H.fid	gai	n 12					$\langle $																		
ACQ	JISITION	spi	n not used					li 1																		
SW	11904.8	hst	0.008																							
at	2.753	pw9	6.500						1/- 7																	
np	65536	alf	a 10.000				(*))	\searrow																		
fb	4000		FLAGS				\leq	1 6																		
bs	8	11	n				ĺ	V	-IN	1																
d1	2.000	in	n																							
nt	16	đp	У					\rangle	<pre>% ></pre>	1																
ct	16	hs	nn					/	\leq																	
TRA	NSMITTER	-	PROCESSING				Mag	3n	OMe																	
tn	H1	fn	not used				MeO																			
sfrq	699.749		DISPLAY																							
tof	349.9	sp	-0.1																							
tpwr	62	wp	6997.2																							
pw	3.250	rfl	2108.4				1																			
DE	COUPLER	rfp	0																							
dn	C13	rp	-60.6																							
dof	0	lp	.0																							
dim.	nnn		PLOT																							
decwav	e W40_Cold	wc	200																							
dpwr	40	SC	0																							
dmf	38462	VS	196							1																
		th	4							1																
		ai	cdc ph							, LA													1			
										Uu																
				· · · · · · · · · · · · · · · · · · ·			- 				, <u>, , , , , , , , , , , , , , , , , , </u>	 .	-													
			- 10			I.	_	-	1	1	-			-	1											
			1	.0 9)	8	7	6	5	4	3			2	2	2 1	2 1	2 1	2 1	2 1	2 1 P	2 1 P	2 1 p	2 1 pr	2 1 pr	2 1 pp
							TA THE PARTY AT			Ť																
							00004400000			.20																
							NPNNNNNN			9																

RKS-4-142-	-P1				- 158.456 - 139.211 - 137.462 - 132.070		122.798	114.682	77.183		44.825		
exp2 CARB SAME date Seg solvent file ACQUIS: sw at np fb bs dl nt	BON PLE p 23 2016 cdcl3 exp 17100 46296.3 1.468 135926 17000 8 3.500 5000	PRJ satma wet temp gain spin hst pw90 alfa il	ESATURATION ode n special 25.0 30 not used 0.008 14.000 10.000 FLAGS n	MeO	Sn) 							
tn transm	450 ITTER C13	dp hs	n Y nn										
sfrq	175.972	1	PROCESSING										
tof	4438.8	15	3.00										
DW	7.000		DISPLAY										
DECOU	PLER	sp	0.3				1						
dn	H1	wp	35189.9										
dof	0	rfl	15583.0							1			
đm	nny	rfp	13548.2						1				
decwave	w	rp	-53.7		Ĩ	11	11 14 11 1						
dpwr	39	lp	36.9						1				
dmf	10582		PLOT								1		
		WC	200			ب استخدانه استهد سید س	معاليا ومعالية والمستنا المستنا المستن		And the second sec	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	manny have a now	*****	*****
		SC	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
		VS	58407		i i i i fi i i i				T. C. L. L. L.		. i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i		area.
		th	200	180	160	140	120	100	80	60	40	20	ppm
		ai	ph										10000000000000000000000000000000000000

•

190 180	170 16	60 150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm
GB 0 0.10																
DE 6.50 TE 299.3 299.3 D1 D1 3.5000000 DELTA 3.6000010 MCREST MCREST 0 sec MCWRK 0.01500000	CI		Sp				un and a second state of the second state of t									
PROCNO 1 F2 - Acquisition Paramet Date_20160701 20160701 Time 2.0160701 TIME 20160701 TIME 2.51 INSTRUM spect PODBHD 5 mm QNP 1H/1 PULPROC 22768 SOLVENT CDC13 NS 1022 DS 1022 DS 45045.04 SH 45045.04 FIDRES 1.374666 AQ 0.3667406 RQ 4096																
Current Data Parameters NAME RKS-4-117-F3 EXPNO 3			138.500	125.575	122.275				A 77.212	~ 76.787			44.292			

Current Data Parameters NAME RKS-4-191-P2 EXPNO 1 PROCNO 1	mqq	$\begin{array}{c} 7.52507\\ 7.51158\\ 7.51158\\ 7.30706\\ 7.29333\\ 7.29333\\ 7.29333\\ 7.29930\\ 7.19930\\ 7.19930\\ 7.19782\\ 7.19782\\ 7.19782\\ 7.109375\\ 7.09069\\ 6.99302\\ 6.99302\\ 6.85330\end{array}$	3.87363	
F2 Acquisition Parameters Date20161207 Time 11.24 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG zg TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 12019.230 Hz FIDRES 0.366798 Hz AQ 1.3631988 sec RG 512 DW 41.600 usec DE 6.50 usec TE 299.8 K D1 2.0000000 sec MCKEST 0.0000000 sec MCWRK 0.0150000 sec		NC N N N N N N N N N N N N N N N N N N		
Employee CHANNEL f1 f1 <thf1< th=""> <thf1< th=""> <thf1< th=""></thf1<></thf1<></thf1<>				
F2 Processing parameters SI 32768 SF 598.4000256 MDW no SSB 0 LB 0.00 GB 0 PC 1.00				
1D NMR plot parameters CX 20.00 cm CY 10.00 cm F1P 10.000 ppm F1 5984 00 H7				
F2P -0.500 ppm F2 -299.20 Hz PPMCM 0.52500 ppm/cm HZCM 314.16000 Hz/cm	Integral	2.0505 2.0193 2.1316 4.1088 2.0000	<u> </u>	
	ppm		4	2 0

Current Data Parameters NAME RKS-4-196-P EXPNO 1 PROCNO 1	mqq	8.09350 7.49175 7.49175 7.34819 7.34876 7.18286 7.18286 7.118286 7.11856 7.11856 7.11856 6.9493 6.9493 6.84978 6.84978	3.89803	1.5328
F2 - Acquisition Parameters Date_ 20161214 Time 14.10 INSTRUM spect PROBHD 5 mm QNP PH/1 PULPROG TD 32768 SOLVENT CDC13 NS 32 DS 0 SWH 12019.230 Hz FIDRES 0.366798 Hz AQ 1.3631988 sec RG 512 DW 41.600 usec DE 6.50 usec TE 296.1 K D1 2.0000000 sec MCREST 0.0000000 sec MCWRK 0.01500000 sec				
Image: CHANNEL f1 f1 NUC1 1H P1 10.00 usec PL1 0.00 dB SF01 598.4029920 MHz		H H		
F2 - Processing parameters SI 32768 SF 598.4000263 MDW no SSB 0 LB 0.00 GB 0 PC 1.00				
1D NMR plot parameters CX 20.00 cm CY 6.00 cm F1P 10.000 ppm F1 5984.00 Hz				
F2P -0.500 ppm F2 -299.20 Hz PPMCM 0.52500 ppm/cm HZCM 314.16000 Hz/cm	Integral	2.0493 2.0112 5.0139 2.0000 2.0000	2.3533	
	ppm	⁶ 93	4	2 0

H, C13

Current Data Parameters	ppm	7.49123 7.49123 7.48361 7.47207 7.47207 7.41340 7.41340 7.41340 7.41340 7.41340 7.33374 7.33374 7.333074	L7.15279 L7.15137 		1.55165	
EXPNO 1 PROCNO 1					Ŷ	
FROUND 1 F2 - Acquisition Parameters Date20170106 Fime 9.45 FINSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG zg TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 12019.230 HZ 0.366798 AQ 1.3631988 sec RG 512 DM 41.600 usec DE 6.50 usec PE 296.1 K D1 2.00000000 sec MCREST 0.0000000 sec MCREST 0.0000000 sec MCREST 0.000000 sec MCREST 0.000 dB SFO1 598.4029920 MHz F2 - Processing parameters SI 32768 SF 598.400244 MHz NDW no SSB 0 CX 20.00 cm SSB 0 CX 20.00 cm CY 6.00 cm <	egral .	0465 1354 1354 1354	4p			
	Int	101140	i-			
	רדדדדדדרד] מממ		6	4	2	
	ppm	6	ž 109	•	0	ů.

NH080NM80HN

KS-4-184-P /dept:

1.670 678 . Э BRUKÉR Current Data Parameters 20170102 4 PROCNO 1 F2 - Acquisition Parameters 20170102 18.11 INSTRUM spect PROBHD 5 mm DUL 13C-1 PULPROG zg30 32768 CDC13 SOLVENT 11 0 6410.256 Hz H₃C FIDRES 0.195625 Hz 2.5559540 sec 2050 78.000 usec ΝΗ 6.00 usec HN 300.0 K 2.00000000 sec 1 6b ====== CHANNEL f1 ======= 1H 10.00 usec -2.40 dB 400.1528010 MHz F2 - Processing parameters 16384 400.1500193 MHz EM ο.

NAME

EXPNO

Date

Time

TD

NS

DS

AQ

RG DW

DE

TE

D1 TDO

NUC1

P1

PL1

SI

SF01

SWH

SF WDW SSB 0.00 Hz LB 0 GB PC 1.00 RKS-4-209-f1 3 2 5 1 ppm 9 8 7 6 4 3.13 5.21 2.04 2.10 2.08 2.00 4.11 127

Current Dat	a Parameters
NAME	RKS-4-211-F1
EXPNO	1
PROCNO	1
F2 - Acquis	ition Parameters
Date_	20170105
Time	11.36
INSTRUM	spect
PROBHD 5	QNP 1H/1
PULPROG	2g
TD	32768
SOLVENT	CDC13
NS	32
NS DS SWH FIDRES AQ RG DW DE TE D1 MCREST MCWBK	0 12019.230 Hz 0.366798 Hz 1.3631988 sec 512 41.600 usec 6.50 usec 296.3 K 3.00000000 sec 0.01500000 sec
P1 PL1 SF01	ANNEL f1 ====== 1H 10.00 usec 0.00 dB 598.4029920 MHz
F2 - Proces	sing parameters
SI	32768
SF	598.4000244 MHz
WDW	no
SSB	0
LB	0.00 Hz
GB	0
PC	1.00
1D NMR plot CX CY F1P F1 F2P F2 PPMCM	20.00 cm 10.00 cm 10.000 ppm 5984.00 Hz -0.500 ppm -299.20 Hz 0.52500 ppm/cm

HZCM

314.16000 Hz/cm

4

6

129

Integral

ppm

.

udd

8

2

Ò

udd

Current Dat NAME EXPNO PROCNO	ta Parameters RKS-4-193-P1 1 1	
F2 - Acquis Date_ Time INSTRUM PROBHD 5	sition Paramet 20161207 12.01 spect mm QNP 1H/1	ers
PULPROG TD SOLVENT NS DS	zg 32768 CDC13 32 0	
SWH	12019.230	Hz
FIDRES	0.366798	Hz
AQ RG	1.3631988 128	sec
DW	41.600	usec
DE	6.50	usec
TE	298.4	K
D1	2.00000000	sec
MCREST	0.00000000	sec
MCWRK	0.01500000	sec
====== C	HANNEL fl ====	=====
===== C NUC1	HANNEL fl ==== 1H	
===== C NUC1 P1	HANNEL f1 ==== 1H 10.00	usec
====== C NUC1 P1 PL1	HANNEL f1 ==== 1H 10.00 0.00	usec dB
PI PL1 SF01	HANNEL f1 ===: 1H 10.00 0.00 598.4038896	usec dB MHz
===== C NUC1 P1 PL1 SF01 F2 - Proce	HANNEL f1 ===: 1H 10.00 0.00 598.4038896 essing paramete	usec dB MHz ers
PI PL1 SF01 F2 - Proce	HANNEL f1 ===: 1H 10.00 598.4038896 ssing paramete 32768	usec dB MHz ers
===== C NUC1 P1 PL1 SF01 F2 - Proce SI SF	HANNEL f1 ==== 1H 10.00 598.4038896 ssing paramet: 32768 598.4000256	usec dB MHz ers MHz
===== C NUC1 P1 PL1 SF01 F2 - Proce SI SF WDW	HANNEL f1 ==== 1H 10.00 598.4038896 ssing paramet: 32768 598.4000256 no	usec dB MHz ers MHz
C NUC1 P1 PL1 SF01 F2 - Proce SI SF WDW SSB	HANNEL f1 ==== 1H 10.00 598.4038896 sssing paramet: 32768 598.4000256 no 0	usec dB MHz ers MHz
C NUC1 P1 PL1 SF01 F2 - Proce SI SF WDW SSB LB	HANNEL f1 ==== 1H 10.00 598.4038896 sssing paramet. 32768 598.4000256 598.4000256 no 0.00	usec dB MHz ers MHz HZ
C NUC1 P1 PL1 SF01 F2 - Proce SI SF WDW SSB LB GB GB DC	HANNEL f1 ==== 1H 10.00 598.4038896 ssing parameta 32768 598.4000256 no 0 0.00 0.00 0	usec dB MHz ers MHz Hz
C NUC1 P1 PL1 SF01 F2 - Proce SI SF WDW SSB LB GB PC	HANNEL f1 ==== 1H 10.00 598.4038896 sssing parameta 32768 598.4000256 no 0 0.000 0.000 1.00	usec dB MHz ers MHz Hz
C NUC1 P1 PL1 SF01 F2 - Proce SI SF WDW SSE LB GB PC 1D NMR plc	HANNEL f1 ==== 1H 10.00 598.4038896 sssing paramet. 32768 598.4000256 598.4000256 no 0 0.00 0 1.00 bt parameters	usec dB MHz ers MHz Hz
C NUC1 Pl PL1 SF01 F2 - Proce SI SF WDW SSB LB GB PC 1D NMR plc CX	HANNEL f1 ==== 1H 10.00 0.00 598.4038896 ssing paramete 32768 598.4000256 no 0.00	usec dB MHz ers MHz Hz Hz
C NUC1 P1 PL1 SF01 F2 - Proce SI SF WDW SSB LB GB PC 1D NMR plc CX CY	HANNEL f1 ==== 1H 10.00 0.00 598.4038896 sssing parameter 32768 598.4000256 no 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0.00 0 0.00	usec dB MHz ers MHz Hz cm cm
C NUC1 P1 PL1 SF01 F2 - Proce SF WDW SSE LB GB PC 1D NMR plc CX CY F1P	HANNEL f1 ==== 1H 10.00 0.00 598.4038896 sssing parameter 32768 598.400256 no 0 0.00 0.00 0.00 0 1.00 bt parameters 20.00 4.00 10.000 0	usec dB MHz ers MHz Hz cm cm cm ppm
C NUC1 P1 PL1 SF01 F2 - Proce SI SF WDW SSB LB GB PC 1D NMR plc CX CY F1P F1 P2P	HANNEL f1 ==== 1H 10.00 0.00 598.4038896 598.400256 598.4000256 0.000 0.00 0.00 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	usec dB MHz ers MHz Hz Hz cm cm cm ppm Hz DDT
SF NUC1 P1 PL1 SF01 F2 - Proce SI SF WDW SSB LB GB PC 1D NMR plc CX CY F1P F1 F2P F2 F2P F2	HANNEL f1 ==== 1H 10.00 598.4038896 598.4038896 598.4000256 598.4000256 00.00 0.000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	usec dB MHz ers MHz Hz Hz cm cm cm ppm Hz ppm Hz ppm
C NUC1 P1 P1 PL1 SF01 F2 - Proce SI SF WDW SSE LB GB PC 1D NMR plc CX CY F1P F1 F1 F2P F2 PDMCM	HANNEL f1 ==== 1H 10.00 0.00 598.4038896 ssing paramete 32768 598.4000256 no 0.00	usec dB MHz ers MHz Hz Hz cm cm cm cm m ppm Hz ppm Hz ppm (cm cm cm cm cm cm cm cm cm cm cm cm cm c
C NUC1 P1 PL1 SF01 F2 - Proce SI SF WDW SSB LB GB PC 1D NMR plc CX CY F1P F1 F1 F2P F2P F2P F2P F2P F2P F2P F2P F2P F2MCM	HANNEL f1 ==== 1H 10.00 0.00 598.4038896 sssing parameta 32768 598.4000256 no 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000000	useC dB MHz ers MHz Hz cm cm cm ppm Hz ppm Hz ppm/cm
SF01 F2 - Proces SF WDW SSB LB GB PC 1D NMR plc CX CY F1P F1 F2P F2P F2 PPMCM HZCM	HANNEL f1 ==== 1H 10.00 0.00 598.4038896 sssing parametr 32768 598.400256 no 0.00 0.00 0.00 1.00 5984.00 -0.500 -299.20 0.52500 314.16000	usec dB MHz ers MHz Hz Hz cm cm cm ppm Hz ppm Hz ppm/cm Hz/cm

4

6

133

2 0

Integral

1.25326

	····		
RK	s-4-197-P	I	
GB PC	0		
LB	0.00 Hz		
SSB	0		
SF	400.15001/2 MHZ EM -		
SI	16384		
F2 - Proce	ssing parameters		
SFO1	400.1528010 MHz		
PL1	-2.40 dB		
P1	10.00 usec		
NUC1	1H		
	UNNET £1		
TDO	1		
D1	2.00000000 sec		
TE	300.0 K		
DE	6.00 usec		
NG	78.000 usec		
AQ	2.5559540 Sec		
FIDRES	0.195625 HZ		
SWH	6410.256 HZ		
DS	6410 256 H-		
NS	12		
SOLVENT	CDC13		
TD	32768		
PULPROG	zg30		
PROBHD 5	mm DUL 13C-1		
INSTRUM	spect		
Time	17.46		
Date	20161230		
F2 - Acqui	sition Parameters		
PROCNO	1		
EXPNO	12		
NH11D	20101250		

137

1.00

6

2.15 2.12 7.26 2.40 2.35

4

2.06

Т

3

2

...

ppm

Current Data Parameters NAME RKS-5-06-F2-1 EXPNO 1 PROCNO 1	шđđ	7.37628 7.37628 7.37626 7.3708561 7.36561 7.36328 7.25505 7.114386 7.114386 7.114386 7.114386 7.112787 7.112787 7.112787 7.112787 7.112787 7.110793 6.77713 6.77713 6.77713 6.77713	1.54716	
F2 - Acquisition Parameters Date_ 20170316 Time 10.16 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG PULPROG zg TD 32768 SOLVENT CDC13 NS 32 DS 0 SWH 8389.262 FIDRES 0.256020 AQ 1.9530228 CG 256 DM 59.600 DE 6.50 DE 6.50 DI 2.00000000 MCREST 0.0000000 MCREST 0.0150000				
Personal CHANNEL fl fl		S1		
F2 - Processing parameters SI 32768 SF 598.4000262 MHz WDM no SSB 0 LB 0.00 Hz GB 0 PC 1.00				
1D NMR plot parameters CX 20.00 cm CY 4.00 cm F1P 10.000 ppm F1 5984.00 Hz F2P -0.500 ppm F2 -299.20 Hz PPMCM 0.52500 ppm/cm HZCM 314.16000 Hz/cm				
	Integral	3.2689 3.1692 1.0192 1.0192 1.0252		10

139

ppm

