One-pot Synthesis of $\boldsymbol{\alpha}$-Aminophosphonates via Cascade

Sequence of Allylamine Isomerization/Hydrophosphonylation

Liu-Liang Mao, ${ }^{+, a}$ Chen-Chen Li, ${ }^{+, a}$ Qiang Yang, ${ }^{a}$ Ming-Xing Cheng, ${ }^{a}$ Shang-Dong Yang ${ }^{a, b_{*}}$
${ }^{\text {a }}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
${ }^{\mathrm{b}}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.

Contents:

1. General information 2
2. Optimization reaction conditions 2
3. The experimental procedure 4
4. The preparation of the substrate $\mathbf{1 a}-\boldsymbol{d}, \mathbf{2 a}-\boldsymbol{d}$ and $\mathbf{1 a - N} \boldsymbol{d}$ 4
5. Preliminary mechanistic studies 8
6. Procedure for desulfonylation and Hydrolysis reaction of 6aa 11
7. Synthesis of hFPPS 9a 12
8. References 14
9. Characterization data of products 14
10. Copies of NMR spectra 25

1. General information.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker advance III400 spectrometer $(400 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) in CDCl_{3} with TMS as internal standard. Chemical shifts (δ) were measured in ppm relative to TMS $\delta=0$ for ${ }^{1} \mathrm{H}$, or to chloroform $\delta=77.0$ for ${ }^{13} \mathrm{C}$ as internal standard. ${ }^{31} \mathrm{P}$ NMR spectra and ${ }^{19} \mathrm{~F}$ NMR were recorded on the same instrument. Data are reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constants, J are reported in hertz. High-resolution mass spectral analysis (HRMS) data were measured on a Bruker ApexII mass spectrometer by means of the ESI technique, a Bruker maXis 4G mass spectrometer by means of the ESI-TOF technique or the Orbitrap Elite mass spectrometer by means of the ESI technique. The starting materials were purchased from Aldrich, Acros Organics, J\&K Chemicals Adamas-beta or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicalsbook". Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm). Substituted allylamines were prepared according to the literature procedure. ${ }^{[S 1]}$

2. Optimization reaction conditions

2-1. Optimization reaction conditions of Rh-Catalyzed Allylamine

Isomerization/Hydrophosphonylation. ${ }^{[a]}$

Table S1. Reaction Conditions Screening

| 16 | dioxane $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2} \mathrm{AgBF}_{4}$ | 16 | 66 |
| :--- | :--- | :--- | :--- | :--- |
| 17 | dioxane $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2} \mathrm{AgClO}_{4}$ | 16 | 54 |
| 18 | dioxane $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2} \mathrm{AgCl}^{2}$ | 16 | 95 |
| 19 | dioxane $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2} \mathrm{Na}_{2} \mathrm{CO}_{3}$ | 16 | 84 |
| 20 | dioxane $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2} \mathrm{~K}_{2} \mathrm{CO}_{3}\right.$ | 16 | 80 |
| 21 | dioxane $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2} \mathrm{NaHCO}_{3}\right.$ | 16 | 94 |

[a] The reaction was carried out with [M] $2.5 \mathrm{~mol} \%$, additive $20 \mathrm{~mol} \%$, $\mathbf{1 a}(0.20 \mathrm{mmol})$, and $\mathbf{2 a}$ (1.5 equiv.) in solvent $(1.0 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ under argon, unless otherwise noted. [b] Yield of isolated product.

Note: we tried to add some kinds of ligands in this reaction system (entries 7-10; Table S1). However, we find that ligand did not play an important role in this reaction.

2-2. Optimization reaction conditions of Ni-Catalyzed Allylamine Isomerization/Hydrophosphonylation. ${ }^{[\text {a] [S2] }}$

Table S2. Reaction Conditions Screening

13	DMF	NiCl_{2}	$\mathrm{K}_{3} \mathrm{PO}_{4}$	PPh_{3}	86
14	DMF	NiCl_{2}	$\mathbf{K}_{3} \mathbf{P O}_{4}$		90
15	DMF	$\mathrm{Ni}\left(\mathrm{PCy}_{3}\right)_{2} \mathrm{Cl}_{2}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$		70
16	DMF	$\mathrm{Ni}(\mathrm{COD})_{2}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$		44
17	DMF	Ni (dppe) Cl_{2}	$\mathrm{K}_{3} \mathrm{PO}_{4}$		78
18	DMF	NiBr_{2}	$\mathrm{K}_{3} \mathrm{PO}_{4}$		87
19	DMF	$\mathrm{Ni}(\mathrm{OAc})_{2}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$		83
20	DMF	$\mathrm{Ni}(\mathrm{OTf})_{2}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$		65
21	DMF	$\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$		88
22	DMF	$\mathrm{Ni}(\mathrm{acac})_{2}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$		69
$23^{[\mathrm{cc}]}$	DMF	NiCl_{2}	$\mathrm{K}_{3} \mathrm{PO}_{4}$		0
$24^{[d]}$	DMF	NiCl_{2}	$\mathrm{K}_{3} \mathrm{PO}_{4}$		70
$25^{[\mathrm{e}]}$	DMF	NiCl_{2}	$\mathrm{K}_{3} \mathrm{PO}_{4}$		68
$26^{[f]}$	DMF	NiCl_{2}	$\mathrm{K}_{3} \mathrm{PO}_{4}$		60
$26^{[8]}$	DMF	NiCl_{2}	$\mathrm{K}_{3} \mathrm{PO}_{4}$		85
27	DMF	$\mathrm{Ni}\left(R\right.$-Binap) Cl_{2}	$\mathrm{K}_{3} \mathrm{PO}_{4}$		84 (race)
28	DMF	NiCl_{2}	$\mathrm{K}_{3} \mathrm{PO}_{4}$	R-Binap	40 (race)

[a] The reaction was carried out with catalyst $5 \mathrm{~mol} \%$, Base $120 \mathrm{~mol} \%$, $\mathbf{4 a}(0.20 \mathrm{mmol})$, and $\mathbf{5 a}$ (1.5 equiv.) in solvent $(1.0 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ under argon, unless otherwise noted. [b] Yield of isolated product. [c] Under air. [d] at 40 ${ }^{\circ} \mathrm{C}$. [e] at $80^{\circ} \mathrm{C}$. [f] catalyst $2 \mathrm{~mol} \%$. [g] catalyst $10 \mathrm{~mol} \%$.

3. The experimental procedure

3.1 Rh-Catalyzed Allylamine Isomerization/Hydrophosphonylation.

In a Schlenk tube, N-allylaniline (0.20 mmol), $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.5 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%)$, $\mathrm{HP}(\mathrm{O}) \mathrm{Ph}_{2}(0.30 \mathrm{mmol})$ were added and charged with Ar three times. Then anhydrous Dioxane $(1.0 \mathrm{~mL})$ was added. The mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 16 hours (monitored by TLC). After substrate was consumed, the reaction was cooled to room temperature and concentrated in vacuo, and the resulting residue was purified by column chromatography to give 3aa in 97% yield ($\mathrm{PE}: \mathrm{EA}=3: 1$, then PE: $i-\mathrm{PrOH}=20: 1$).

3.2 Ni-Catalyzed Allylamine Isomerization/Hydrophosphonylation.

In a Schlenk tube, N -allyl-4-methylbenzenesulfonamide (0.20 mmol), $\mathrm{NiCl}_{2}(5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ ($120 \mathrm{~mol} \%$), diethyl phosphonate (0.30 mmol) were added and charged with Ar three times. Then, anhydrous DMF (1.0 mL) were added. The mixture was allowed to stir at $60{ }^{\circ} \mathrm{C}$ for 10 hours (monitored by TLC). After substrate was consumed, the reaction was cooled to room temperature, $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and 10 mL DCM was added, then the organic layer was separated and aqueous layer was extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 2)$, The combined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then concentrated in vacuo, and the resulting residue was purified by
column chromatography to give 6 aa in 90% yield ($\mathrm{PE}: \mathrm{EA}=3: 1$, then $\mathrm{PE}: i-\mathrm{PrOH}=20: 1$).

4. The preparation of the substrate 1a- $d, 2 \mathrm{a}-d$ and $1 \mathrm{a}-\mathrm{N} d$

4-1 synthesis of 1a-d. ${ }^{[S 3]}$

Sheme S1. Synthesis of 1a-d

1,1-Dideuterioallyl alcohol:

Under an argon atmosphere , $\mathrm{LiAlD}_{4}(0.5 \mathrm{~g}, 11.9 \mathrm{mmol})$ and anhydrous ether $(20 \mathrm{~mL})$ were added into a 50 mL flame-dried flask fitted with magnetic stirrer bar at $-10{ }^{\circ} \mathrm{C}$. Then, a solution of acryloyl chloride ($1.5 \mathrm{~mL}, 17.8 \mathrm{mmol}$) in ether was added dropwise over 10 min , The resulting mixture was warmed to room temperature slowly and stirred for 10 h . The mixture was cooled to $-10{ }^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was slowly added over a 5 min period. After stirring for another 15 min , 15% aqueous NaOH solution $(1.0 \mathrm{~mL})$ and then $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ were added. The resulting slurry was stirred for 1 h and then filtered. The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed carefuly on a rotary evaporator (atmospheric pressure, $37{ }^{\circ} \mathrm{C}$) to afford a colorless liquid, which was used in the next step without further purification. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 6.01(1 \mathrm{H}$, dd), $5.20(2 \mathrm{H}, \mathrm{m})$.

1,1-Dideuterioallyl tosyl ester:

A 50 mL Schlenk flask was charged with 1,1-dideuterioallyl alcohol ($0.5 \mathrm{~g}, 8.2 \mathrm{mmol}$, crude product from previous step), tosyl chloride ($1.6 \mathrm{~g}, 8.3 \mathrm{mmol}$) and anhydrous ether (10 mL). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and powdered $\mathrm{NaOH}(0.9 \mathrm{~g}, 22.5 \mathrm{mmol})$ was added in portions under N_{2}. The reaction was then warmed to room temperature and stirred for 12 h . The precipitate was filtered and the filtrate concentrated in vacuo. The resulting oil was subjected to column chromatography (silica gel, 90:10 hexane/EtOAc) to the yield pure product ($1.5 \mathrm{~g}, 88 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 7.80(2 \mathrm{H}, \mathrm{d}), 7.33(2 \mathrm{H}, \mathrm{d}), 5.81(1 \mathrm{H}, \mathrm{dd}), 5.28(1 \mathrm{H}, \mathrm{d}), 5.16(1 \mathrm{H}, \mathrm{d}), 2.46$ (3 H, s).

N-1-(1,1-Dideuterioallyl)-allylaniline (1a-d)

To a 25 mL Schlenk flask under Ar atmosphere were successively charged, the PhNH_{2} (4.0 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.1 equiv) and dry $\mathrm{MeCN}(2.0 \mathrm{~mL})$. Then, the resulting mixture was heated for 10 min at 60 oC in a preheated oil bath before dropwise addition of 1,1-Dideuterioallyl tosyl ester (1.0 equiv) diluted in dry $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The resulting mixture was stirred for 20 h at $60^{\circ} \mathrm{C}$, The water was added to quench the reaction, 10 mL EtOAc was added, then the organic layer was separated and aqueous layer was extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 2)$, The conbined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then concentrated in vacuo, and the resulting residue was purified by column chromatography to give $\mathbf{1 a - d}$ in 58% yield. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ $7.18(\mathrm{dd}, \mathrm{J}=16.7,9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.74-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.93(\mathrm{dt}, \mathrm{J}=20.7$,

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of $1 \mathbf{a}-\boldsymbol{d}$

4-2 synthesis of 2a-d

An oven dried flask (50 mL) was charged with diphenylphosphine oxide ($404 \mathrm{mg}, 2 \mathrm{mmol}$) and dried THF (15 mL) at $-78{ }^{\circ} \mathrm{C}$. Then, $\mathrm{n}-\mathrm{BuLi}$ (2.5 equiv) was added over 5 min , the resulting mixture was warmed to $-50{ }^{\circ} \mathrm{C}$ slowly and stirred for 1 h . The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{D}_{2} \mathrm{O}$ (10 equiv) was slowly added slowly and the mixture was stirred for 1 h and then filtered. The filtrate was dried over MgSO_{4}. The solvent was removed on a rotary evaporator to afford $\mathbf{2 a - d}$ in 100% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $8.69(\mathrm{~s}, 0.08 \mathrm{H}), 7.77-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~m}, 2 \mathrm{H}), 7.54$ - 7.43 (m, 4H), $7.28(\mathrm{~s}, 0.08 \mathrm{H})$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of $2 \mathbf{a}-\boldsymbol{d}$

4-3 synthesis of 1a-N d

N-allylaniline (200 uL) was stirred in $\mathrm{D}_{2} \mathrm{O}(4.0 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$ for 14 h , and then the solution was extracted with dry ether $(20 \mathrm{~mL} \times 3)$. The combine organic extracts were dried and evaporated to give 1a-N \boldsymbol{d} (>99\% D).

5. Preliminary mechanistic studies

5.1 Radicals Trapping Experiments using BHT

In a Schlenk tube, N -allylaniline $(0.20 \mathrm{mmol}),[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}(2.5 \mathrm{~mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%)$, $\mathrm{HP}(\mathrm{O}) \mathrm{Ph}_{2}(0.30 \mathrm{mmol})$ and BHT (2.0 equiv) were added and charged with Ar three times. Then, anhydrous Dioxane (1.0 mL) were added. The mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 16 hours (monitored by TLC). After substrate was consumed, the reaction was cooled to room temperature and concentrated in vacuo, and the resulting residue was purified by column chromatography to give 3aa in 97\% yield (Scheme S2).

Scheme S2. Radicals Trapping Experiments using BHT

5.2 Deuterium labeling experiment of Rh-Catalyzed Allylamine Isomerization/Hydrophosphonylation.

In a Schlenk tube, N-allylaniline (deuterated N-allylaniline) $(0.20 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(2.5$ $\mathrm{mol} \%), \mathrm{Ag}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%), \mathrm{HP}(\mathrm{O}) \mathrm{Ph}_{2}$ (deuterated $\left.\mathrm{HP}(\mathrm{O}) \mathrm{Ph}_{2}\right)(0.30 \mathrm{mmol})$ or $\mathrm{D}_{2} \mathrm{O}$ (3.0 equiv) were added and charged with Ar three times. Then, anhydrous Dioxane (1.0 mL) was added. The mixture was allowed to stir at $60{ }^{\circ} \mathrm{C}$ for 16 hours (monitored by TLC). After substrate was consumed, the reaction was cooled to room temperature and concentrated in vacuo, and the resulting residue was purified by column chromatography to give deuterated product. (Scheme S3). The products were under ${ }^{1} \mathrm{H}$-NMR analysis.

Scheme S3. Deuterium labeling experiment

(

(

Note: compare the standard ${ }^{1} \mathrm{H}$ NMR with the ${ }^{1} \mathrm{H}$ NMR of $\mathrm{N}-\mathrm{H}$ deuterated product.
5.3 Experimental procedure for the kinetic isotope effect (KIE) study of Rh-Catalyzed Allylamine Isomerization/Hydrophosphonylation ${ }^{[54]}$.

Scheme S4. The kinetic isotope effect (KIE) study
In two different Schlenk tube, 1a $(0.30 \mathrm{mmol})$ or $\mathbf{1 a - d}(0.30 \mathrm{mmol}),[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(2.5 \mathrm{~mol} \%)$, $\mathrm{Ag}_{2} \mathrm{CO}_{3}(20 \mathrm{~mol} \%), \mathrm{HP}(\mathrm{O}) \mathrm{Ph}_{2} \mathbf{2 a}(0.45 \mathrm{mmol})$ were added and charged with Ar three times. Then, anhydrous dioxane (2.0 mL) was added. The mixture was allowed to stir at $60{ }^{\circ} \mathrm{C}$, The conversions of the reaction were measured carefully after designated time by ${ }^{1} \mathrm{H}$ NMR using 4-Iodotoluene (10 mg) as an internal standard.

Figure S3 Reaction conversions over time between $1 \mathrm{a}(1 \mathrm{a}-\mathrm{d})$ and diphenylphosphine oxide

$$
\mathrm{K}_{\mathbf{H}} / \mathrm{K}_{\mathbf{D}}=0.56 / 0.3467=1.62
$$

6. Procedure for desulfonylation and Hydrolysis reaction of 6aa ${ }^{\text {[S }}$

A suspension of α-aminophosphonate 6aa ($349 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{HCl}(10 \mathrm{M}$ aq., 4 mL) was heated at reflux overnight. The resulting solution was concentrated under vacuum, the residue was dissolved in hot EtOH (2 mL), and an excess of propylene oxide was added to this solution. The mixture was stirred for 3 h at room temperature, and the resulting white solid was collected by filtration to give α-aminophosphonic acid 7a ($80 \mathrm{mg}, 58 \%$) (Scheme S5).

Scheme S5. Procedure for desulfonylation and Hydrolysis reaction of 6aa
(1-aminopropyl)phosphonic acid (7a) (58\%) White solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{D}_{\mathbf{2}} \mathbf{O}$) $\delta 3.1$ $3.12(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\left.\mathbf{M H z}, \mathbf{D}_{\mathbf{2}} \mathbf{O}\right) \delta 50.8(\mathrm{~d}, J=143.2 \mathrm{~Hz}), 21.82,10.2(\mathrm{~d}, J=9.4 \mathrm{~Hz}) .{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{D}_{2} \mathbf{O}\right) \delta$ 13.48. MS : m/z (M+H): 140.0621.

7. Synthesis of Allosteric Inhibitors of hFPPS 9a
 [S6]

Scheme S6. Synthesis of Allosteric Inhibitors of hFPPS 9a

6-Bromothieno[2,3-d]pyrimidin-4(3H)-one (2).

Thieno[2,3-d]pyrimidin-4(3H)-one (1) $(0.78 \mathrm{~g}, 5 \mathrm{mmol})$ was mixed with acetic acid (12 mL), and bromine ($0.52 \mathrm{~mL}, 1.6 \mathrm{~g}, 10 \mathrm{mmol}$) was added slowly before the mixture was heated at $80^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was then cooled to rt and filtered to remove insoluble components. The liquid fraction was diluted with ice and neutralised using a saturated aq NaHCO_{3} solution. The precipitated material was isolated by filtration and washed with water ($3 \times 30 \mathrm{~mL}$). Drying gave $1.03 \mathrm{~g}(4.4 \mathrm{mmol}, 88 \%)$ of $\mathbf{2}$ as a light brown solid, ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}\right) \delta 12.63(\mathrm{~s}, 1 \mathrm{H})$, $8.17(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, DMSO) $\delta 165.4,156.5,146.9,126.0,125.0$, 110.7. MS : m/z : 229.91 .

6-Bromo-4-chlorothieno[2,3-d]pyrimidine (3)

Compound $2(0.93 \mathrm{~g}, 4 \mathrm{mmol})$ was mixed with $\mathrm{POCl}_{3}(3 \mathrm{~mL})$ and heated at $120{ }^{\circ} \mathrm{C}$ for 10 h . Then the mixture was quenched into 5 M aq $\mathrm{NaOH}(30 \mathrm{~mL})$ and ice. The pH was adjusted to 7 using a saturated aq NaHCO_{3} solution. The formed precipitate was isolated by filtration and washed with water ($3 \times 15 \mathrm{~mL}$). Drying gave $0.9 \mathrm{~g}(3.6 \mathrm{mmol}, 90 \%)$ of $\mathbf{3}$ as a brown solid. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, DMSO) $\delta 9.05-8.70(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{D M S O}\right) \delta 169.3$, 153.6, 152.9, 130.6, 123.2, 118.9. MS : m/z : 247.88.
N-allyl-6-bromothieno[2,3-d]pyrimidin-4-amine (4)
Compound 3 ($0.5 \mathrm{~g}, 2.0 \mathrm{mmol}$) was mixed with the Allylamine (3.5 equiv.) and $i-\mathrm{PrOH}(5 \mathrm{~mL}$) and heated at $80{ }^{\circ} \mathrm{C}$ for 24 h , under nitrogen atmosphere. Then the mixture was cooled to rt , concentrated in vacuo, diluted with water (30 mL) and diethyl ether (30 mL). After phase separation, the water phase was extracted with more diethyl ether $(2 \times 30 \mathrm{~mL})$. The combined organic phases were washed with saturated aq NaCl solution $(2 \times 30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting residue was purified by column chromatography to give $0.48 \mathrm{~g}(1.79 \mathrm{mmol}, 89 \%)$ of $\mathbf{4}$ as a white soild $(\mathrm{PE}: \mathrm{EA}=10: 1) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 6.08-5.80(\mathrm{~m}$, 1H), 5.28 - $4.96(\mathrm{~m}, 2 \mathrm{H}), 4.28$ - 3.96 (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ D M S O) ~} \delta 166.8,155.9$, 154.6, 135.4, 123.0, 117.3, 116.1, 110.0, 42.7. MS : m/z : 268.90.
N-allyl-6-(p-tolyl)thieno[2,3-d]pyrimidin-4-amine (8a)

Compound 4 (270 mg) was mixed with (4- methylphenyl)boronic acid (1.2 equiv), fine powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{eq}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ and 1,4-dioxane/water ($1 / 1 \mathrm{by}$ vol. \%, 4 mL). The reaction was then stirred at $80^{\circ} \mathrm{C}$ for 20 h under nitrogen atmosphere. The solvent was removed and the product was diluted with water $(30 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, the water phase was extracted with more $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic phases were washed with saturated aq NaCl solution (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. And the resulting residue was purified by column chromatography to give $259 \mathrm{mg}(0.92 \mathrm{mmol}, 92 \%)$ of 8a as a light yellow solid (PE:EA = 8: 1). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{D M S O}$) $\delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.11$ $(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~m}, 1 \mathrm{H})$, $5.19(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, DMSO) δ $165.2,156.8,154.2,138.8,138.6,135.6,130.9,130.3,125.9,118.0,116.1,115.0,42.8,21.2$ MS : m/z: 281.05.

Diethyl (1-((6-(p-tolyl)thieno[2,3-d]pyrimidin-4-yl)amino)propyl)phosphonate (9a)

In a Schlenk tube, Compound 8a $(0.20 \mathrm{mmol}), \mathrm{NiCl}_{2}(5 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(120 \mathrm{~mol} \%)$, diethyl phosphonate $(0.30 \mathrm{mmol})$ were added and charged with Ar three times. Then, anhydrous DMF (1.0 mL) were added. The mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 10 hours (monitored by TLC). After substrate was consumed, the reaction was cooled to room temperature, $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and 10 mL DCM was added, then the organic layer was separated and aqueous layer was extracted with DCM ($10 \mathrm{~mL} \times 2$), The conbined organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then concentrated in vacuo, and the resulting residue was purified by column chromatography to give $36 \mathrm{mg}(0.086 \mathrm{mmol}, 43 \%)$ of $\mathbf{9 a}$ as a white solid ($\mathrm{PE}: \mathrm{EA}=4: 1$, then $\mathrm{PE}: i-\mathrm{PrOH}=25: 1$). ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.23(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.35-3.87(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.20-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.97-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$ ${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 166.1,156.6,156.5,153.4,141.2,138.7,130.8,129.7,126.2$, $118.0,112.2,63.0(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 62.3(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 47.6(\mathrm{~d}, J=155.3 \mathrm{~Hz}), 23.4,21.2,16.4(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}), 10.6(\mathrm{~d}, J=13.1 \mathrm{~Hz}) .{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 24.98 . \mathbf{M S}: \mathbf{m} / \mathbf{z}(\mathbf{M}+\mathbf{H}):$ 420.1671 .

8. Reference:

[S1] (a) W. Martnez, G. Militao, T. Silva, R. Silva and P. Menezes, RSC Adv., 2014, 4, 14715; (b) G. Hoang, Z. Yang, S. Smith, R. Pal, J. Miska, D. Perezz, L. Pelter, X. Zeng and J. Takacs, Org. Lett., 2015, 17, 940; (c) J. Johnson, J. Luo, X. Zhang, Y. Chen, M. Morton, E. Echeverría, F. Torres and J. Zhang, ACS Catal., 2015, 5, 5283; (d) S. Sullivan, E. Doni, T. Tuttle and J. Murphy, Angew. Chem. Int. Ed. 2014, 53, 474; (e) H. Wang, Y. Wang, D. Liang, L. Liu, J. Zhang and Q. Zhu, Angew. Chem. Int. Ed. 2011, 50, 5678; (f) H. Clavier, A. Lepronier, N. Mintsa, D. Gatineau, H. Pellissier, L. Giordano, A. Tenaglia and G. Buono, Adv. Synth. Catal. 2013, 355, 403; (g) S. Robin and G. Rousseau, Eur. J. Org. Chem. 2000, 3007; (h) X. Zhang, B. Cao, S. Yu and X. Zhang, Angew. Chem. Int. Ed. 2010, 49, 4047.
[S2] E. Standley, S. Smith, P. Müller and T. Jamison, Organometallics, 2014, 33, 2012.
[S3] (a) I. Dubovyk, I. D. G. Watson and A. K. Yudin, J. Org. Chem., 2013, 78, 1559; (b) D. S. Tsang, S. Yang, F.-A. Alphonse and A. K. Yudin, Chem. Eur. J. 2008, 14, 886; (c) E. Forcellini, R. Hemelaere, J. Desroches and J.-F. Paquin, J. Fluorine Chem. 2015, 180, 216.
[S4] E. M. Simmons and J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 3066.
[S5] J. Vicario, P. Ortiz and F. Palacios, Eur. J. Org. Chem. 2013, 7095.
[S6] (a) S. Bugge, S. Kaspersen, S. Larsen, U. Nonstad, G. Bjǒrkǒy, E. Sundby and B. Hoff, Eur. J. Med. Chem. 2014, 75, 354; (b) S. Bugge, S. Kaspersen, E. Sundby and B. Hoff, Tetrahedron, 2012, 68, 9226; (c) S. Bugge, I. Moen , K. Sylte, E. Sundby and B. Hoff, Eur. J. Med. Chem. 2015, 94, 175; (d) J. Schutter, J. Park, C. Leung, P. Gormley, Y. Lin, Z. Hu, A. Berghuis, J. Poirier and Y. Tsantrizos, J. Med. Chem., 2014, 57, 5764.

9. Characterization data of products

Diphenyl(1-(phenylamino)propyl)phosphine oxide (3aa) (97\%) White solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$) $\delta 7.92-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.37(\mathrm{~m}$, $4 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, J=8.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.33-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H})$, $0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 147.1,147.1,131.9,131.8$, $131.8,131.7,131.6,131.2,131.2,131.1,129.1,128.6(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}), 117.78,113.18,53.6(\mathrm{~d}, J=80.1 \mathrm{~Hz}), 23.3(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 10.9(\mathrm{~d}, J=9.8$ $\mathrm{Hz}) .{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) δ 31.71. HRMS calc. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}$, 358.1331; found, 358.1334 .

(1-(benzylamino)propyl)diphenylphosphine oxide (3ab) (55\%) White solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 7.93(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.35(\mathrm{~m}, 6 \mathrm{H})$, $7.34-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 139.6,133.2,132.4(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 131.7,131.6,131.5,131.4$, $131.2,131.1,128.5,128.4,128.3,128.2,128.1,127.0,57.9(\mathrm{~d}, J=81.9 \mathrm{~Hz}), 52.6$ (d, $J=7.9 \mathrm{~Hz}), 22.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 11.0(\mathrm{~d}, J=9.7 \mathrm{~Hz}) .{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 30.82. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}, 372.1488$; found, 372.1491.

(1-(benzyl(methyl)amino)propyl)diphenylphosphine oxide (3ac) (80\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.86(\mathrm{dd}, J=27.0,19.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.59(\mathrm{~m}$, $2 \mathrm{H}), 7.58-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.72-6.45(\mathrm{~m}, 3 \mathrm{H}), 4.67-4.38(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}$, $1 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 150.5(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, $132.8,132.0(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.1$, $130.9,130.8,130.7,130.6,128.9,128.7(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 128.1,127.9,116.7,112.4$,
$60.5(\mathrm{~d}, J=76.6 \mathrm{~Hz}), 33.0,19.5(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 11.5(\mathrm{~d}, J=12.8 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 31.99$. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}, 384.1488$; found, 384.1485.

Diphenyl(1-(((R)-1-phenylethyl)amino)propyl)phosphine oxide (3ad) (65\%) (d. r. $=1.0: 1.2$) White solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.00-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.57-$ $7.31(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.92(\mathrm{~m}, 1 \mathrm{H}), 3.88$ $(\mathrm{q}, J=6.4 \mathrm{~Hz}, 0.44 \mathrm{H}), 3.34(\mathrm{q}, J=6.5 \mathrm{~Hz}, 0.52 \mathrm{H}), 3.23(\mathrm{dd}, J=11.2,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.81(\mathrm{~m}, 0.61 \mathrm{H}), 1.69-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.33(\mathrm{~m}$, $0.64 \mathrm{H}), 1.24(\mathrm{~m}, 1.54 \mathrm{H}), 1.10(\mathrm{~m}, 1.55 \mathrm{H}), 0.99-0.69(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 144.8,144.2,133.3,132.6,132.4,131.5,131.4,131.3,131.2,131.1,131.0$, $130.9,128.4,128.3,128.2,128.1,128.0,127.2,127.0,126.9,56.5,56.4,56.3,55.5$, 55.2, 55.0, 54.3, 53.4, 24.6, 24.0, 23.8, 23.7, 11.0, 10.9, 10.3, 10.2. ${ }^{31} \mathbf{P}$ NMR (162 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 32.82,30.33$. (d. r. $=1: 1.2$). HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}$, 386.1644; found, 386.1647.

(1-((4-methoxyphenyl)amino)propyl)diphenylphosphine oxide (3ae) (92\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.87$ (m, 2H), $7.83-7.73$ (m, 2H), $7.55-7.37$ $(\mathrm{m}, 4 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.15$ $(\mathrm{m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H})$, $0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 152.1,141.2(\mathrm{~d}, J=7.8 \mathrm{~Hz})$, $132.0(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=16.5 \mathrm{~Hz}), 131.2,131.1,131.0,130.9,128.6$, $128.4,128.3,128.1,55.50,54.9(\mathrm{~d}, J=80.3 \mathrm{~Hz}), 23.2(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 10.9(\mathrm{~d}, J=9.7$ Hz). ${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 31.61. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}$, 388.1437; found, 388.1435.

Methyl 4-((1-(diphenylphosphoryl)propyl)amino)benzoate (3af) (84\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.94-7.82(\mathrm{~m}, \mathbf{2 H}), 7.80-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.62$ $-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.32$ $(\mathrm{s}, 1 \mathrm{H}), 4.48-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.67(\mathrm{~m}, 1 \mathrm{H})$, $0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 166.94,151.5(\mathrm{~d}, J=5.5 \mathrm{~Hz})$, 132.00, 131.97, 131.80, 131.77, 131.53, 131.38, 131.24, 131.03, 130.98, 130.94, $130.89,130.5(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 128.73,128.62,128.3(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 118.4,111.7$, $53.2(\mathrm{~d}, J=78.9 \mathrm{~Hz}), 51.3,23.1(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 10.8(\mathrm{~d}, J=10.4 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta$ 31.66. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}, 416.1386$; found,
416.1382.

(1-((4-bromophenyl)amino)propyl)diphenylphosphine oxide (3ag) (98\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.60-$ $7.45(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{dd}, J=10.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.44$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{dd}, J=10.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.06(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.80$ $\left.(\mathrm{m}, 1 \mathrm{H}), 1.76-1.57(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z , ~ C D C l ~} \mathbf{H}_{3}\right)$ $\delta 146.4(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 132.0,131.9,131.8,131.7,131.1,131.0,130.8,130.7,128.7$ $(\mathrm{d}, J=11.3 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 114.6,109.1,53.9(\mathrm{~d}, J=79.5 \mathrm{~Hz}), 23.2(\mathrm{~d}, J$ $=4.3 \mathrm{~Hz}), 10.9(\mathrm{~d}, J=10.1 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR ($\left.\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 31.59 . \mathbf{H R M S}$ calc. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrNOP}[\mathrm{M}+\mathrm{Na}]^{+}, 436.0436$; found, 436.0432.

(1-(naphthalen-1-ylamino)propyl)diphenylphosphine oxide (3ah) (99\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.88(\mathrm{dd}, J=19.2,9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.68(\mathrm{~m}$, 4H), $7.52-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=21.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-1.95(\mathrm{~m}, 1 \mathrm{H})$, $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.89(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 142.1(\mathrm{~d}, J=7.3$ $\mathrm{Hz}), 134.28,131.8(\mathrm{~d}, J=18.7 \mathrm{~Hz}), 131.2,131.1,131.0,130.8(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 128.6$, $128.5,128.4,128.3,128.2,126.1,125.7,124.7,123.3,119.8,117.7,104.8,53.3$ (d, J $=79.8 \mathrm{~Hz}), 23.1(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 10.9(\mathrm{~d}, J=9.2 \mathrm{~Hz}) .{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 32.07. HRMS calc. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}, 408.1488$; found, 408.1485.

Diphenyl(1-(pyridin-2-ylamino)propyl)phosphine oxide (3ai) (84\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.01(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.40(\mathrm{~m}$, $3 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.54-6.32(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.43$ $-5.29(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m} 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $157.8(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 147.1,136.7,132.5,132.1,131.6(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 131.4(\mathrm{~d}, J=$ 2.6 Hz), 131.2, 131.1, 131.0, 130.9, 130.8, 128.6, 128.4, 128.0 (d, $J=11.5 \mathrm{~Hz})$, 112.72, 109.09, $49.4(\mathrm{~d}, J=80.2 \mathrm{~Hz}), 22.7(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 10.6(\mathrm{~d}, J=11.1 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 33.65$. HRMS calc. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{Na}]^{+}$, 359.1284; found, 359.1289.

diphenyl(1-(quinolin-2-ylamino)propyl)phosphine oxide (3aj) (50\%) White solid; ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 7.92(\mathrm{dd}, J=17.6,9.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.67(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=14.6,7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 156.0(\mathrm{~d}, J=4.4$ $\mathrm{Hz}), 147.5,136.7,132.7,132.0,131.8,131.6(\mathrm{~d}, J=30.0 \mathrm{~Hz}), 131.2,131.1,131.0$, $130.9,129.1,128.6(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 127.3,126.3,123.6$, $121.9,112.7,49.1(\mathrm{~d}, J=79.8 \mathrm{~Hz}), 22.7(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 10.8(\mathrm{~d}, J=11.0 \mathrm{~Hz}){ }^{31} \mathbf{P}$ NMR ($\left.162 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 34.46$. HRMS calc. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OP}[\mathrm{M}+\mathrm{H}]^{+}, 387.1621$; found, 387.1626.

Diphenyl(1-(phenylamino)butyl)phosphine oxide (3ak) (92\%) White solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$) $\delta 7.96-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.39(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=8.1,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.68-6.57(\mathrm{~m}$, $1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.16(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 147.1(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 131.92,131.8(\mathrm{~d}, J=2.8$ $\mathrm{Hz}), 131.6(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 131.3,131.2,131.1,131.0,130.8,129.0,128.6,128.5$, $128.3,128.1,117.7,113.0,52.4(\mathrm{~d}, J=80.5 \mathrm{~Hz}), 32.4(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 19.5(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}), 13.81 .{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 31.52. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NOP}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 372.1488$; found, 372.1490.

diphenyl(1-(phenylamino)pentyl)phosphine oxide (3al) (60\%) White solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 7.94-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.44(\mathrm{~m}$, $3 \mathrm{H}), 7.40(\mathrm{~m} \mathrm{1H}), 7.32(\mathrm{~m} \mathrm{2H}), 7.12-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.78(\mathrm{~m}$, $1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.09(\mathrm{~m}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right) \delta 147.1(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 132.0,131.9(\mathrm{~d}, J=2.8 \mathrm{~Hz})$, $131.7(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.4,131.3,131.2,131.1,131.0,130.9,129.1,128.7,128.6$, $128.4,128.2,117.8,113.2,52.6(\mathrm{~d}, J=80.0 \mathrm{~Hz}), 29.9(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 28.3(\mathrm{~d}, J=9.6$ $\mathrm{Hz}), 22.5,13.7 .{ }^{\mathbf{3 1}} \mathbf{P}$ NMR (162 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) δ 31.69. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NOP}$ $[\mathrm{M}+\mathrm{Na}]^{+}, 386.1644$; found, 386.1647 .

Diphenyl(1-(phenylamino)hexyl)phosphine oxide (3am) (57\%) White solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.43(\mathrm{~m}$, $3 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.12-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.73$ $-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.01(\mathrm{~m}, 4 \mathrm{H}), 0.79-$ $0.66(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 147.1(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 132.0,131.9$, 131.7, 131.3 (d, $J=8.9 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 131.1,130.9,129.1,128.7,128.5$, $128.3,128.2,117.8,113.2,52.7(\mathrm{~d}, J=80.0 \mathrm{~Hz}), 31.5,30.2(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 25.8$ (d, J $=9.6 \mathrm{~Hz}), 22.2,13.8 .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 31.61$. HRMS calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}, 400.1801$; found, 400.1797 .

Diphenyl(4-phenyl-1-(phenylamino)butyl)phosphine oxide (3an) (99\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.86-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.45$ (dd, $J=21.9,6.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~m}$, $3 \mathrm{H}), 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.51$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.67-3.96(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.78(\mathrm{~m}, 2 \mathrm{H})$, $1.66(\mathrm{dd}, J=29.5,8.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{3}} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 147.0(\mathrm{~d}, J=6.2 \mathrm{~Hz})$, $141.43,131.7$ (d, $J=18.1 \mathrm{~Hz}), 131.40,131.27,131.2(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=9.0$ $\mathrm{Hz}), 130.5(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 129.00,128.5(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 128.25,128.13$, $128.1(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}), 125.52,117.63,113.02,52.3(\mathrm{~d}, J=80.0 \mathrm{~Hz}), 35.26,29.5(\mathrm{~d}, J=4.4 \mathrm{~Hz})$, $27.6(\mathrm{~d}, J=9.7 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 32.16. HRMS calc. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}, 448.1801$; found, 448.1807.

(1-((4-bromophenyl)amino)-4-phenylbutyl)diphenylphosphine oxide (3ao) (99\%) White solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.87-7.76$ (m, 2H), 7.72 (dd, $J=10.6$, $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=10.1,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.96$ (d, J $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=19.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{dd}, J=18.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61$ $(\mathrm{dd}, J=14.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 146.2(\mathrm{~d}, J=5.9 \mathrm{~Hz}$), $141.3,131.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 131.7,131.5,131.3,131.1,131.0$, $130.9,130.4(\mathrm{~d}, J=13.2 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 128.4,128.3,128.1,125.6,114.5$, $109.0,52.5(\mathrm{~d}, J=79.4 \mathrm{~Hz}), 35.3,29.3(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 27.6(\mathrm{~d}, J=9.9 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR $\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 31.68$. HRMS calc. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{BrNOP}[\mathrm{M}+\mathrm{Na}]^{+}, 526.0906$;
found, 526.0912.

Diphenyl(5-phenyl-1-(phenylamino)pentyl)phosphine oxide (3ap) (61\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.91-7.81(\mathrm{~m}, \mathbf{2 H}), 7.79-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.56$ - 7.39 (m, 4H), $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, $J=17.2,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.37-$ $4.17(\mathrm{~m}, 1 \mathrm{H}), 4.08-3.87(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-$ $\left.1.60(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}\right)$ $\delta 147.1(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 142.3,132.0,131.8,131.4(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=9.0$ Hz), 129.2, 128.8, 128.6, 128.4, 128.3, 128.2, 128.1, 125.6, 118.0, 113.3, 52.6 (d, $J=$ 79.9 Hz), $35.5,31.2,30.1(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 25.9(\mathrm{~d}, J=9.5 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta$ 31.62. HRMS calc. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}, 462.1957$; found, 462.1965 .

Diphenyl(1-phenylpiperidin-2-yl)phosphine oxide(3aq) (82\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.87(\mathrm{~m} 2 \mathrm{H}), 7.67(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{dd}$, $J=16.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=8.7,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.12-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.25$ $(\mathrm{m}, 1 \mathrm{H}), 2.02-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.49(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $150.4(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 133.0,132.1(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}), 131.1,131.0,130.9,130.8,128.9,128.7$, 128.6, 128.1, 127.9, 118.0, 115.8, $56.5(\mathrm{~d}, J=77.2 \mathrm{~Hz}), 45.9,23.9(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 23.5,21.0(\mathrm{~d}, J=1.6 \mathrm{~Hz}) .{ }^{31} \mathbf{P} \mathbf{N M R}$ ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 33.63$. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}, 384.1488$; found, 384.1483.

Diphenyl(1-phenylpyrrolidin-2-yl)phosphine oxide(3ar) (70\%) White solid; ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 7.97-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=17.1,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ (m, 4H), $7.35-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (dd, $J=18.7,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.78(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 147.6,132.0,131.9,131.7(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 131.7,131.5(\mathrm{~d}, J=8.4$ $\mathrm{Hz}), 131.0(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 128.6,128.4,128.3,128.1(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 116.7,113.1$, 60.3 (d, $J=86.6 \mathrm{~Hz}$), 50.7, 27.6, 24.0. ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 27.50$. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}, 370.1331$; found, 370.1335 .

(1-(2,6-diisopropylphenyl)pyrrolidin-2-yl)diphenylphosphine oxide (3as) (55\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{dd}, J=$ $14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.81-6.64(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.49$ $(\mathrm{m}, 2 \mathrm{H}), 3.21-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.19(\mathrm{~m}, 3 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3H). ${ }^{13} \mathbf{C}$ NMR ($101 ~ M H z$, CDCl $_{3}$) $\delta 150.6,146.4,143.4,131.1,131.0,130.9,130.5$, $130.4,128.4,128.3,127.9,127.8,126.6,124.4,123.4,62.7,61.8,56.9,28.1,28.0$, 27.3, 26.7, 26.1, 25.7, 23.6, 21.6. ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR (162 $\left.\mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 28.39$. HRMS calc. for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}, 454.2270$; found, 454.2274.

Diphenyl(1-(phenylamino)heptyl)phosphine oxide (3ax) (63\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.43(\mathrm{~m}$, 3H), $7.43-7.36$ (m, 1H), 7.32 (m, 2H), $7.12-7.00$ (m, 2H), 6.62 (dd, $J=17.9,10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=16.4,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=68.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 2.00$ $-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.10(\mathrm{~m} 6 \mathrm{H}), 0.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 147.1(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 131.8,131.7(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=9.0 \mathrm{~Hz})$, 131.2 (d, $J=8.9 \mathrm{~Hz}$), 131.0, 129.1, 128.6 (d, $J=11.2 \mathrm{~Hz}$), 128.3 (d, $J=11.3 \mathrm{~Hz}$), 117.7, 113.1, 52.6 (d, $J=80.1 \mathrm{~Hz}$), 31.4, $30.2(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 29.0,26.1(\mathrm{~d}, J=9.6$ $\mathrm{Hz}), 22.4,13.9 .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) δ 31.76. HRMS calc. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NOP}$ [M+Na] ${ }^{+}$, 414.1957; found, 414.1963.

Bis(4-methoxyphenyl)(1-(phenylamino)propyl)phosphine oxide (3ba) (94\%) White solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.77(\mathrm{dd}, J=10.2,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{dd}$, $J=10.2,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85$ (d, $J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-4.03(\mathrm{~m}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.43(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{dt}, J=9.3$, $7.0 \mathrm{~Hz}, \mathbf{3 H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 162.2(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 162.10(\mathrm{~d}, J=2.8$ $\mathrm{Hz}), 147.2,147.1,133.1,133.0,132.9,132.8,129.1,123.2(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 122.2$ (d, $J=8.8 \mathrm{~Hz}), 117.6,114.1,114.0,113.9,113.8,113.1,55.1,55.1,53.7(\mathrm{~d}, J=81.3 \mathrm{~Hz})$, 23.3 (d, $J=4.2 \mathrm{~Hz}$), 10.9 (d, $J=9.7 \mathrm{~Hz}$). ${ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 31.89$. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}, 418.1543$; found, 418.1540.

(1-(phenylamino)propyl)bis(4-(trifluoromethyl)phenyl)phosphine oxide (3ca) (52%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 8.02$ (dd, $J=19.0,9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.91(\mathrm{dd}, J=19.0,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.09(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{dd}, J=16.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.45$ $-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.23-3.99(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 146.8(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 135.8(\mathrm{~d}, J=$ $21.2 \mathrm{~Hz}), 134.9(\mathrm{~d}, J=26.6 \mathrm{~Hz}), 134.3,134.0,133.7$, 131.8, 131.7, 131.6, 129.3, 125.7, 125.6, 125.4, 125.3, 124.7, 122.0, 118.7, 113.6, 54.2 (d, $J=80.8 \mathrm{~Hz}$), 23.3 (d, J $=4.4 \mathrm{~Hz}), 10.8(\mathrm{~d}, J=10.3 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 29.51 .{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{~ N M R}$ ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-63.31, -63.41. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}$, 494.1079; found, 494.1082.

(1-(phenylamino)propyl)di-o-tolylphosphine oxide (3da) (40\%) White solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H})$, $7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.10(\mathrm{dd}, J=11.1,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-$ $6.63(\mathrm{~m}, 3 \mathrm{H}), 4.59(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.39(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-1.75$ $(\mathrm{m}, 1 \mathrm{H}), 1.71-1.55(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 146.7 (d, $J=8.3 \mathrm{~Hz}$), 142.5 (d, $J=7.7 \mathrm{~Hz}$), 140.9, 132.9 (d, $J=9.4 \mathrm{~Hz}$), 132.0, 131.9 , 131.7 (d, $J=2.6 \mathrm{~Hz}), 131.6,131.5(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 131.4,130.9,130.0(\mathrm{~d}, J=5.6 \mathrm{~Hz})$, $129.4,129.2,125.8(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 125.5(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 117.9,117.6,113.8$, 113.1, $50.8(\mathrm{~d}, J=78.5 \mathrm{~Hz}), 23.3(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 21.2(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 21.0(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}), 10.8(\mathrm{~d}, J=8.6 \mathrm{~Hz}) .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 35.59$. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}, 386.1644$; found, 386.1641.

Bis(2-isopropylphenyl)(1-(phenylamino)propyl)phosphine oxide (3ea) (56\%) White solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.08-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.47$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-6.98(\mathrm{~m}, 1 \mathrm{H})$, $6.72(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{dd}, J=10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.43$ $-3.20(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{dd}, J=6.7,4.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.93$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 153.9(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 151.8(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 146.8(\mathrm{~d}, J=8.8 \mathrm{~Hz})$,
132.5, 132.4, $132.1(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 131.2,130.8,130.5(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}), 130.2,129.9,129.4,127.5,127.4,126.7(\mathrm{~d}, ~ J=10.4 \mathrm{~Hz}), 126.0,125.9$, 125.5 (d, $J=11.7 \mathrm{~Hz}), 117.6,113.1,51.2(\mathrm{~d}, J=79.1 \mathrm{~Hz}), 30.9(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 24.3$, $23.8,23.4,23.3,23.2,22.8,10.6(\mathrm{~d}, J=8.5 \mathrm{~Hz}) .{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 35.66. HRMS calc. for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NOP}[\mathrm{M}+\mathrm{Na}]^{+}, 442.2270$; found, 442.2266 .

diethyl (1-(4-methylphenylsulfonamido)propyl)phosphonate (6aa) (91\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), $6.16-5.82(\mathrm{~m}, 1 \mathrm{H}), 4.15-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.66$ $(\mathrm{m}, 1 \mathrm{H}), 1.62-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~m}, 6 \mathrm{H}), 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 143.0,138.7,129.3,126.9,63.1,63.1,62.3,62.2,51.5(\mathrm{~d}, J=147.2$ $\mathrm{Hz}), 23.6,23.6,21.4,16.3,16.3,16.2,10.3,10.2 .{ }^{31} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 23.54. MS : m/z (M+H): 350.1766.

dimethyl (1-(4-methylphenylsulfonamido)propyl)phosphonate (6ab) (70\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.17(\mathrm{~m}, 2 \mathrm{H})$, $5.48(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 7 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.48$ $(\mathrm{m}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{(1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.3,138.4,129.5$, $127.0,53.6,53.5,52.9(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 51.2(\mathrm{~d}, J=157.3 \mathrm{~Hz}), 23.8,23.8,21.5,10.2$ (d, $J=10.1 \mathrm{~Hz}$). ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 26.03. MS : m/z (M+H): 322.1411.

dibutyl (1-(4-methylphenylsulfonamido)propyl)phosphonate (6ac) (67\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.81(\mathrm{dd}, J=9.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.82(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.34(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.73(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 143.0,138.7,129.4,126.9,66.8(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 66.0(\mathrm{~d}, J=7.3$ $\mathrm{Hz}), 51.6(\mathrm{~d}, J=157.4 \mathrm{~Hz}), 32.5(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 32.4(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 23.81(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 21.40,18.6(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 13.5(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 10.2(\mathrm{~d}, J=9.6 \mathrm{~Hz}) .{ }^{31} \mathbf{P} \mathbf{N M R}$ ($\left.\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta \mathbf{2 3 . 5 6}$. MS : m/z (M+H): 406.2437.

dibenzyl (1-(4-methylphenylsulfonamido)propyl)phosphonate (6ad) (86\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 6 \mathrm{H})$,
7.24 (m, 4H), 7.18 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.87$ (dd, $J=9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-4.72(\mathrm{~m}$, $4 \mathrm{H}), 3.85-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.47(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 143.1,138.5,136.1,136.0,135.8,129.4$, 128.6, 128.51, 128.5, 128.4, 128.1, 128.0, 127.0, 68.4 (d, $J=7.3 \mathrm{~Hz}$), 67.8 (d, $J=7.1$ $\mathrm{Hz}), 51.9(\mathrm{~d}, J=157.4 \mathrm{~Hz}), 23.8,21.4,10.2(\mathrm{~d}, J=10.5 \mathrm{~Hz}) .{ }^{31} \mathbf{P} \mathbf{N M R}(\mathbf{1 6 2} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta$ 24.67. MS : m/z (M+H): 474.2138.

\boldsymbol{N}-(1-(diphenylphosphoryl)propyl)-4-methylbenzenesulfonamide (6ae) (65\%) White solid; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.97-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.40(\mathrm{~m}$, $7 \mathrm{H}), 7.30(\mathrm{t}, J=14.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (s, 3H), $1.62(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ $142.34,139.26,131.95,131.92,131.73,131.60,131.57,131.3$ (d, $J=9.1 \mathrm{~Hz}), 131.1$, $130.9(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 130.8,130.2,129.1,128.7(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=11.8$ $\mathrm{Hz}), 126.64,53.9(\mathrm{~d}, J=79.4 \mathrm{~Hz}), 23.0(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 21.39,10.8(\mathrm{~d}, J=9.1 \mathrm{~Hz})$.
${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 32.11. MS : m/z (M+H): 414.1887.

diethyl (1-(methylsulfonamido)propyl)phosphonate (6af) (90\%) White solid; ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 5.17$ (d, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.31-4.06$ (m, 4H), 3.78 - 3.56 $(\mathrm{m}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 62.8(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 62.6(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 52.0$ (d, $J=157.8 \mathrm{~Hz}$), 42.3, 24.01, 23.98, 16.49, 16.45, 16.43, 16.40, 10.4 (d, $J=11.7 \mathrm{~Hz}$). ${ }^{\mathbf{3 1}} \mathbf{P} \mathbf{N M R}\left(\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 23.91 . \mathbf{M S}: \mathbf{m} / \mathbf{z}(\mathbf{M}+\mathbf{H}): 274.1386$.

diethyl (1-((diphenylphosphoryl)amino)propyl)phosphonate (6ag) (87\%) White solid; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.01-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.36(\mathrm{~m}, 6 \mathrm{H}), 4.23$ - $4.00(\mathrm{~m}, 4 \mathrm{H}), 3.55-3.25(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H})$, $1.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 133.6,132.4(\mathrm{~d}, J=9.9 \mathrm{~Hz})$, $132.3,131.9,131.8,131.7,131.0,128.4(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 128.3(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 62.3(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}), 62.2(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 49.8,48.3,25.6,16.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 16.3(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 10.2(\mathrm{~d}, J=8.8 \mathrm{~Hz}) .{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 26.22,26.04,24.00,23.82$. MS : m/z (M+H): 396.2126.

6ah
diethyl (1-((S)-1,1-dimethylethylsulfinamido)propyl)phosphonate (6ah) (82\%) (d. r. $=1.0$: 1.0) colourless liquid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 4.30-4.03(\mathrm{~m}, 8 \mathrm{H})$, $3.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~m} \mathrm{3H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 1.39$ $-1.29(\mathrm{~m}, 12 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H}), 1.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.01(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 63.0,62.9,62.3(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 62.2,62.1(\mathrm{~d}, J=2.1 \mathrm{~Hz})$, $56.6,56.5,56.4,54.9,53.3(\mathrm{~d}, J=150.7 \mathrm{~Hz}), 24.6(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 24.3,22.5,22.4$, $16.4,16.3(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 16.2(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 16.2,10.6(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 10.5(\mathrm{~d}, J=$ 10.9 Hz). ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 25.43,24.56$, (d. r. $=1.0: 1.0$). $\mathbf{M S}: \mathbf{m} / \mathbf{z}$ (M+H): 300.1921.

Diethyl (1-(((1S,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methylsulfonamido)propyl)phosphonate (6ai) (74\%) (d. r. = $1.0: 0.8$) colourless liquid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.03$ (dd, $\left.J=9.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.50(\mathrm{dd}, J=9.6,2.7 \mathrm{~Hz}, 0.80 \mathrm{H})$, $4.28-4.05(\mathrm{~m}, 7.4 \mathrm{H}), 3.95(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1.85 \mathrm{H}), 3.60(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.18-2.97(\mathrm{~m}, 0.83 \mathrm{H}), 2.47-2.28(\mathrm{~m}, 1.84 \mathrm{H}), 2.21-1.99(\mathrm{~m}, 2.82 \mathrm{H}), 1.98$ $-1.79(\mathrm{~m}, 7.30 \mathrm{H}), 1.78-1.53(\mathrm{~m}, 4.57 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 1.96 \mathrm{H}), 1.35(\mathrm{~m}, 1.97 \mathrm{H})$, $1.10(\mathrm{~m}, 11 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2.49 \mathrm{H}) .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 24.37,23.87$, (d. r. $=1.0: 0.8$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 5.98(\mathrm{dd}, J=9.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.08(\mathrm{~m}, 4 \mathrm{H})$, $3.96(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=$ $19.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~m}$, $1 \mathrm{H}), 1.34(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 216.4,62.4(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 59.73,53.13,52.96,51.61,48.72,42.9(\mathrm{~d}$, $J=13.7 \mathrm{~Hz}), 27.5,27.0,24.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 20.05,19.51,16.4(\mathrm{dd}, J=5.7,2.6 \mathrm{~Hz})$, $10.5(\mathrm{~d}, J=11.8 \mathrm{~Hz}) .{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 24.38$, (d. r. > $20: 1$). MS : m/z (M+H): 410.1945 .

Diethyl (1-(4-methylphenylsulfonamido)hex-2-en-1-yl)phosphonate (6aj) (18\%) White solid; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 5.46 (dd, $J=9.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-3.92(\mathrm{~m}, 4 \mathrm{H}), 3.72-3.52(\mathrm{~m}, 1 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~m}, 7 \mathrm{H}), 1.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 5 \mathrm{H})$, $0.80(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 143.21,138.57,129.42$, $127.03,63.1(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 62.4(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 51.2,49.6,31.3,30.6(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, $25.2(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 22.2,21.4,16.3(\mathrm{dd}, J=9.1,5.7 \mathrm{~Hz}), 13.83 .{ }^{31} \mathbf{P}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta$ 23.73. MS : m/z (M+H): 392.1817.

10. Copies of NMR spectra

	¢f	ヘึก
	ภn	สึ
V 戌	V	V

$\lim _{\infty}^{\infty}$

3an

V VV
N||/|l|

3ax

Nin

coses)

$\underbrace{\substack{\mathrm{H}}}_{\substack{\mathrm{O}=\mathrm{P}(\mathrm{OEt})_{2} \\ \text { 6aa }}}$

\perp

1 新

1	1	1	1	1	1	1	1	1	1	1	1
	45	40	35	30	25	20	15	10	5	0	ppm

- 216.42

․ㅜ웅․․․․․		
ตัธัั	¢¢	
V	$1 /$	11 VV

 9a

 180

 7a

