Supporting information

Porous MoO₂ Nanowires as Stable and High-Rate Negative Electrode for Electrochemical Capacitors

DezhouZheng,^a HaobinFeng,^a Xiyue Zhang,^a Xinjun He,^a Minghao Yu,^a Xihong Lu,^{*a,b} and

Yexiang Tong*a

^aMOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University Guangzhou 510275, People's Republic of China. E-mail: <u>luxh6@mail.sysu.edu.cn</u> <u>chedhx@mail.sysu.edu.cn</u> ^bSchool of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, P.R. China

Experimental Section

Preparation of MoO₃ and MoO₂ nanowires: MoO₃ nanowires were grown on a carbon cloth substrate by a seed-assisted hydrothermal approach. Firstly, Na₂MoO₄·2H₂O (2.5 g) was dissolved in the solution containing HCl (5 mL, 37 wt %) and DI water (20 mL). And then, the carbon cloth (70 mg), which were moistened in advanced, were immerged into the above solution for 5 min and blow-dried with the help of air blower. Immediately, the dry carbon cloth was further heated in the oven with the constant temperature of 300 °C for another 5 min, which formed MoO₃ nanoparticles on it. (NH₄)₆Mo₇O₂₄ (0.5 g), was dissolved in the mixture of concentrated HNO₃ (3 mL, 65 wt %) and DI water (17 mL) to form the precursor solution. Subsequently, the prepared carbon cloth were immerged into the resultant precursor solution, and transferred to a Teflon-lined stainless steel autoclave (25 mL volume). The autoclave was heated in a drying oven with a heating speed of 10 °C min-1 to 180 °C, kept for 10 min and then allowed to cooled down to ambient temperature. Afterward, the carbon cloth were thoroughly washed with DI water and dried, which formed the sample of MoO₃ nanowires. Finally, to obtain the MoO₂ nanowires, the as-prepared MoO₃ nanowires were annealed at 400 °C in H₂ for 1 h.

Characterization: The morphology and structure of the samples were characterized by field-

emission scanning electron microscopy (FE-SEM, JSM-6330F), Transmission electron microscopy (TEM, JEM2010-HR, 200 KV), XPS (XPS, ESCALab250, Thermo VG), X-ray diffraction (XRD, Bruker, D8 ADVANCE) with Cu K*a* radiation, and Raman spectroscopy (Renishaw inVia). The cyclic voltammetry (CV) and galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurements were conducted using an electrochemical workstation (CHI 660D). The electrochemical studies of the individual electrode were performed in a three-electrode cell, with a Pt counter electrode and a Ag/AgCl reference electrode. The electrolyte is 5 M LiCl aqueous solution.

Fig. S1 SEM images of the carbon cloth.

Fig. S2 (a, b)The SEM images (c) TEM image and (d) HRTEM image of the MoO₃ nanowires.

Fig. S3 CV curve of the carbon cloth at 100 mV s-1.

Fig. S4 The Nyquist plots of both the MoO_3 and MoO_2 electrodes.