Supporting Information for

Very simple method for preparation of Au/TiO_2 plasmonic photocatalysts working under irradiation of visible light in the range of 600-700 nm

Atsuhiro Tanaka, Keiji Hashimoto, Hiroshi Kominami*

Experimental Section

Au colloid particles: Colloidal Au nanoparticles were prepared using the method reported by Frens.¹ To 750 cm³ of an aqueous tetrachloroauric acid (HAuCl₄) solution (0.49 mmol dm⁻³), 100 cm³ of an aqueous solution containing sodium citrate (39 mmol dm⁻³) was added. The solution was heated and boiled for 1 h. After the color of the solution had changed from deep blue to deep red, the solution was boiled for a further 30 min. After cooling the solution to room temperature, Amberlite MB-1 (ORGANO, 60 cm³) was added to remove excess sodium citrate. After 1-h treatment, MB-1 was removed from the solution using a glass filter.

Colloid photodeposition with a hole scavenger (CPH)²: TiO₂ powder (Degussa P25) calcined at 1273 K was used in most of the experiments as a supporting material for Au particles and is shown hereafter simply as TiO₂. TiO₂ powder was suspended in 20 cm³ of an aqueous solution of colloidal Au nanoparticles in a test tube, and the test tube was sealed with a rubber septum under argon (Ar). An aqueous solution (20 cm³) of oxalic acid (50 µmol) was injected into the sealed test tube. The mixture was photoirradiated at $\lambda > 300$ nm by a 400-W high-pressure mercury arc (Eiko-sha, Osaka, Japan) under Ar with magnetic stirring in a water bath continuously kept at 298 K. The resultant powder was washed repeatedly with distilled water and then dried at 310 K overnight under air. The content of Au was fixed at 1.0 wt%. The amounts of Au loaded on TiO2 were determined by atomic absorption spectrometry after dissolving Au fixed on TiO₂ with aqua regia. Colloidal Au nanoparticles were almost quantitatively loaded on TiO₂ when CPH was used. The morphology of Au particles and Au/TiO2 was observed under a JEOL JEM-3010 transmission electron microscope (TEM) operated at 300 kV in the Joint Research Center of Kindai University.

Post-Calcination process: Dried Au/TiO₂ powder was calcined at various temperatures (473, 773, 973 K) for 1 h in a box furnace. When the Au/TiO₂ samples obtained by calcination at various temperatures (X) were used, the temperature is shown in parentheses after Au/TiO₂; for example, Au/TiO₂ calcined at 973 K and uncalcined Au/TiO₂ are designated as Au/TiO₂(973) and Au/TiO₂(uncal.), respectively. No change in the TiO₂ phase was observed (Figure S1).

Photocatalytic reaction: Dried Au/TiO₂ powder (50 mg) was suspended in distilled water (5 cm³) in a test tube. The aqueous mixture was bubbled with oxygen (O₂) and the test tube was sealed with a rubber septum. Benzyl alcohol was injected into the suspension and then the suspension was irradiated with visible light from a Xe lamp with Y46 and R60 cut-off filters at 298 K. Spectra and light intensity of the Xe lamp with cut-off filters were determined by using a USR-45D spectroradiometer (Ushio, Tokyo). The amounts of benzyl alcohol and benzaldehyde in the liquid phase were determined with a Shimadzu GC-14B gas chromatograph equipped with a DB-1 capillary column (30 m, 0.25 mm). The reaction solution (1 cm³) was added to diethyl ether/water (2/1 v/v, 3 cm³). Toluene was used as

internal standard (injection amount: 100 μ L; toluene/2-propanol, 50 μ L/5 mL). After the mixture had been stirred for 10 min, benzyl alcohol and benzaldehyde in the ethereal phase were analyzed. The amounts of benzyl alcohol and benzaldehyde were determined from the ratios of the peak areas of alcohol and aldehyde to the peak area of toluene.

References

1) Frens, G. Nat. Phys. Sci. 1973, 241, 20-22.

2) Tanaka, A.; Ogino, A.; Iwaki, M.; Hashimoto, K.; Ohnuma, A.; Amano, F.; Ohtani, B.; Kominami, H. *Langmuir* **2012**, *28*, 13105-13111.

able SI	Photocatalyst systems for various reactions under irradiation of visible light.					
Туре	Photocatalyst	Working mechanism	Working wavelength	Ref. ²⁾		
1	N-TiO ₂ , S-TiO ₂	anion doping	$\lambda < 500 \ nm$	2		
	SrTiO ₃ :Rh	cation doping	$\lambda < 540 \ nm$			
2	WO ₃		λ < 450 nm	3		
	BiVO_4	hand con	$\lambda < 500 \ nm$			
	$(Ga_{1-x}Zn_x)(N_{1-x}O_x)$	band-gap	$\lambda < 500 \ nm$			
	$(CuGa)_{1-x}ZnS_2$		λ < 550 nm			
3	C_3N_4	band-gap	$\lambda < 540 \ nm$	4		
4	Cu ²⁺ /TiO ₂	IFCT ¹⁾	$\lambda < 450 \ nm$	5a		
	Rh ³⁺ /TiO ₂		$\lambda < 450 \text{ nm}$	5b		
5	organically modified TiO ₂	sensitization	λ < 500 nm	6		
6	Au/TiO ₂	Au plasmonic	$450 < \lambda < 600 \ nm$	7-13		

Table S1 Photocatalyst systems for various reactions under irradiation of visible light.

¹⁾ IFCT: interfacial charge transfer
²⁾ Reference of manuscript

Entry	Photocatalyst	Cut filter	Time / h	Conv. / %	Sel. / %
1	Au/TiO ₂ (uncal.)	Y46	5	76	> 99
2	Au/TiO ₂ (uncal.)	Y46	10	> 99	> 99
3	Au/TiO ₂ (uncal.)	R60	5	12	> 99
4	Au/TiO ₂ (uncal.)	R60	10	25	> 99
5	Au/TiO ₂ (973)	Y46	5	75	> 99
6	Au/TiO ₂ (973)	Y46	10	> 99	> 99
7	Au/TiO ₂ (973)	R60	5	46	> 99
8	Au/TiO ₂ (973)	R60	10	91	> 99
9	Au/TiO ₂ (uncal.)	dark	10	trace	-
10	Au/TiO ₂ (973)	dark	10	trace	-
11	TiO ₂	Y46	10	trace	-
12	TiO ₂	R60	10	trace	-
13	non	Y46	10	trace	-
14	non	R60	10	trace	-

Table S2Oxidation of benzyl alcohol in aqueous suspensions of various samples under irradiationfrom the Xe lamp with Y46 and R60 cut-off filters in the presence of O2

Benzyl alcohol: 50 µmol, Photocatalyst: 50 mg, Water: 5 cm³, O₂: 1 atm

[Method for calculation of the material balance]

 $Material \ balance = \frac{\text{summation of benzyl alcohol and benzaldehyde}}{\text{Initial amount of benzyl alcohol}}$

[Method for calculation of the rate of incident photons]

Light intensity: A [W cm⁻²] (W = J s⁻¹), (1.0 eV = 1.602×10^{-19} J) Irradiation area: B [cm²] Center wavelength: C [nm] (1240/C [eV]) Avogadro's constant: 6.022×10^{23} [mol⁻¹]

The rate of incident photons [mol s⁻¹]

Figure S1 XRD patterns of various samples. (a) JCPDS No. 76-0317, (b) Au/TiO₂(uncal.) and (c) Au/TiO₂(973).

Figure S2 Absorption spectra of Au/TiO₂(973) (a) before and (b) after photocatalytic reaction.