Electronic Supplementary Material (ESI) for ChemComm.
This journal is © The Royal Society of Chemistry 2017

Supporting Information

Cyclic Ether Synthesis from Diols using Trimethyl Phosphate
Shota Asai, Maho Kato, Yasunari Monguchi, Hironao Sajiki* and Yoshinari Sawama*

Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi,
Gifu 501-1196, Japan,

Contents

1. General information

2. Preparation of diols

3. Typical procedure of cyclic ether synthesis from diols

4. Optimization for usage of base and phosphate

5. Spectroscopic data of products

6. Mechanistic studies

7. 'H and *C NMR spectra of newly synthesized substrate and products
8. HPL.C charts of chiral substrates and products

9. References

S1



1. General information

All reactions were performed in oven-dried glassware under argon. Cyclopentyl methyl ether
(CPME) was supplied by Zeon Corporation and used without further purification. Anhydrous
THF, 1,4-dioxane, toluene were purchased from commercial sources and used without further
purification. Flash column chromatography was performed with Silica Gel 60 N (Kanto Chem-
ical Co., Inc., 63-210pum spherical, neutral). *H and **C NMR spectra were recorded on a JEOL
EX 400, AL400 or ECA 500 spectrometer at room temperature in CDCl; as a solvent and inter-
nal standard (*H NMR: & = 7.26 for CDCl3; *C NMR: & = 77.0 for CDCls) with tetrame-
thylsilane as an further internal standard. IR spectra were recorded by a Brucker FT-IR ALPHA.
ESI high resolution mass spectra (HRMS) were measured by a Shimadzu hybrid IT-TOF mass
spectrometer and a JEOL JMS-T100TD Accu TOF TLC instrument. Optical rotation was meas-
ured by Jasco P-1020 Polarimeter. HPLC analysis was carried out on a Shimadzu FRC-10A in-
strument with auto sampler and multiple wavelength detectors. Substrate (1a) was prepared ac-
cording to reference 1. Substrate (1b) was prepared according to reference 2. Substrate (1j) was
prepared according to reference 3. Substrate (1k) was prepared according to reference 4. Sub-
strate (11) was prepared according to reference 5. Substrate (10) was prepared according to ref-
erence 6. Substrate (1p) was prepared according to reference 7.

2. Preparation of diols
Preparation of 1-(4’-chlorophenyl)butan-1,4-diol (1e)

OH
/©/MQBV Fe,O3 (1 mol%) /©)\/\/OH
cl THF, rt, 48 h Cl

To a suspension of ferric oxide (Fe,Os; 16.0 mg, 0.10 mmol) in THF (30 mL) was added

dropwise 4-chlorophenylmagnesium bromide (10 mmol, 10 mL, 1.0 M in 2-methylTHF) at 0 °C
under argon. After stirring for 48 h at room temperature, the reaction was quenched with satu-
rated NH,4CI ag. (20 mL) and extracted with EtOAc (30 mL x 3). The combined organic layers
were dried over Na,SO, and concentrated in vacuo. The residue was purified by silica-gel col-
umn chromatography (hexane/EtOAc = 1/2 to 1/3) to give 1-(4’-chlorophenyl)butan-1,4-diol in
6% yield (124.6 mg, 0.62 mmol).

'H NMR (500 MHz, CDCly): & 7.33—7.28 (m, 4H), 4.73 (t, J = 6.3 Hz, 1H), 3.74—3.66 (m,

2H), 2.78 (brs, 1H), 2.01 (brs, 1H), 1.86—1.82 (m, 2H), 1.74—1.62 (m, 2H). Spectroscopic data
of H NMR was identical to that of the reference 8.
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Preparation of dodecan-1,4-diol (1g)
0

w LiAIH, (3.0 equiv.) OH
" OH
THF, 0 °Cto rt, 24 h

7 7

To a solution of y-dodecanolactone (2.1 mL, 10 mmol) in THF (30 mL) was added lithium alu-
minum hydride (1.1 g, 30 mmol) at 0 °C under argon. After stirring for 24 h at 0 °C to room
temperature, H,O and 15 % NaOH ag. were added to the reaction mixture at 0 °C. After further
stirring for 2 h, the mixture was filtrated through celite pad with Et,O (400 mL) and the filtrate
was concentrated in vacuo. The residue was purified by silica-gel column chromatography
(hex/EtOAC = 1/1 to EtOAC only) to give dodecan-1,4-diol (2.0 g, 10 mmol, quantitative yield).

Dodecan-1,4-diol (19)
OH

M)\/VOH

7

Colorless solid. M. p. 46—47 °C*H NMR (500 MHz, CDCls) &: 3.72—3.62 (m, 3H), 2.02 (brs,
2H), 1.73—1.62 (m, 3H), 1.51—1.41 (m, 4H), 1.35—1.22 (m, 11H), 0.88 (t, J = 7.0 Hz, 3H).
B3C NMR (125 MHz, CDCl;) 8:71.8, 62.9, 37.6, 34.4, 31.8, 29.7, 29.6, 29.3, 29.1, 25.7, 22.6,
14.1. IR (ATR) cm™: 3195, 2955, 2916, 2869, 2847, 1464, 1434, 1421, 1375, 1345, 1327, 1301,
1286, 1253, 1231, 1171, 1131, 1108, 1073, 1060, 1051, 1038 ESI-HRMS m/z: 225.1814
([IM+Na]"); Calcd for C1,H,50,Na: 225.1825.

Preparation of 1-(4’-methylphenyl)butan-1,4-diol (1d) and
1,1-di(4’-methylphenyl)butan-1,4-diol (1h)

Me(MeO)NH (1.2 equiv.) O
NaOMe (0. 25 equiv.) OH
o\[\;O) p-tolyl-MgBr (4 equiv.) O OH
THF,0°Ctort,18 h

1h

NaBH, (2 equiv.)

MeOH, rt, 6days /@)\/\/
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To a solution of y-butyrolactone 430.5 mg, 5 mmol), N,O-dimethylhydroxylamine hydrochlo-
ride (585.2 mg, 6 mmol) and sodium methoxide (70.2 mg, 1.3 mmol) in THF was added drop-
wise 4-methylphenyl magnesium bromide (20 mmol, 20 mL, 1.0 M in THF) at 0 °C under argon.
After stirring for 18 h at room temperature, 1N HCI aqg. was added to the reaction mixture. After
further stirring for 2 h, the reaction mixture was extracted with EtOAc (30 mL x 3). The com-
bined organic layers were dried over Na,SO, and concentrated in vacuo. The residue was puri-
fied by silica-gel column chromatography (hexane/EtOAc = 2/1 to 1/1) to give the mixture of
1,1-di(4’-methylphenyl)butan-1,4-diol (ca. 0.90 mmol) and
4-hydroxy-1-(4’-methylphenyl)butan-1-one (ca. 1.13 mmol).

To a solution of the obtained mixture in MeOH was added sodium borohydride (85.6 mg, 2.26
mmol) at room temperature. After stirring for 6 days, the reaction was quenched with H,O (5
mL) and extracted with EtOAc (30 mL x 3). The combined organic layers were dried over
Na,SO,4 and concentrated in vacuo. The residue was purified by silica-gel column chromatog-
raphy (hexane/EtOAc = 1/1 to 1/3) to give 1-(4’-methylphenyl)butan-1,4-diol in 21% yield
(191.1 mg, 1.06 mmol) and 1,1-di(4’-methylphenyl)butan-1,4-diol in 28% yield (378.8 mg, 1.40
mmol)

1-(4’-Methylphenyl)butan-1,4-diol (1d)
OH
OH

'"H NMR (500 MHz, CDCls): & 7.25 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 4.71 (t, J =
6.3 Hz, 1H), 3,73—3.65 (m, 2H), 2.34 (s, 3H), 1.96 (brs, 1H), 1.89—1.82 (m, 2H), 1.75—1.61
(m, 2H). Spectroscopic data of "H NMR was identical to that of the reference 9.

1,1-Di(4’-methylphenyl)butan-1,4-diol (1h)

OH

O OH
'H NMR (500 MHz, CDCly): § 7.29 (d, J = 8.3 Hz, 4H), 7.11 (d, J = 8.3 Hz, 4H), 3.67 (td, J =

5.0, 6.0 Hz, 2H), 2.80 (brs, 1H), 2.39 (t, J = 7.5 Hz, 2H), 2.31 (s, 6H), 1.65 (brs, 1H),
1.62—1.56 (m, 2H). Spectroscopic data of "H NMR was identical to that of the reference 10.

Preparation of 2-(2’-hydroxyphenyl)ethanol (Qm) and

S4



2-(2’-hydroxymethylphenyl)ethanol (1n)

CO,H OH

2

OH LiAIH, (3.0-5.0 equiv.) OH

or
THF,0°Ctort, 24 h

CO,H OH

To a solution of 2-hydroxyphenylacetic acid (0.76 g, 5.0 mmol) or homophthalic acid (0.90 g,
5.0 mmol) in THF (25 mL) was added lithium aluminum hydride (0.57 g, 15 or 0.95 g, 25
mmol) at 0 °C under argon. After stirring for 24 h at 0 °C to room temperature, H,O and 15 %

or

NaOH aqg. were added to the reaction mixture at 0 °C. After further stirring for 2 h, the mixture
was filtrated through celite pad with Et,O (400 mL) and the filtrate was concentrated in vacuo.
The residue was purified by silica-gel column chromatography (hex/EtOAc = 3/1 or 1/2) to give
2-(2’-hydroxyphenyl)ethanol (160.3 mg, 1.2 mmol, 24% yield) or
2-(2’-hydroxymethylphenyl)ethanol (438.3 mg, 2.9 mmol, 58% yield), respectively.

2-(2’-Hydroxyphenyl)ethanol (1m)

OH

'H NMR (500 MHz, CDCls): & 7.85 (brs, 1H), 7.16 (t, J = 7.3 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H),
6.93 (d, J = 7.3 Hz, 1H), 6.86 (t, J = 7.5 Hz, 1H), 4.04—3.94 (m, 2H), 2.94—2.85 (m, 2H) 2.48
(brs, 1H). Spectroscopic data of "H NMR was identical to that of the reference 11.

2-(2’-Hydroxymethylphenyl)ethanol (1n)

OH
o

'H NMR (500 MHz, CDCly): § 7.32—7.15 (m, 4H), 4.65 (s, 2H), 3.90 (t, J = 5.5 Hz, 2H), 2.96
(t, J = 5.5 Hz, 2H). Spectroscopic data of "H NMR was identical to that of the reference 12.

Preparation of (S)-1-phenylbutan-1,4-diol [(S)-1a)]
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\\BCI

o) NaHCO; (2.0 equiv.) o 2
)K/\WOH Mel (3.0 equiv.) J\/\WOMG (1.1 equiv.)
Ph DMF,60°C,6h ' I THF,-78 to 10 °C, 36 h
o) o)
OH @) OH

LiAlH4 (2.5 equiv.)
Ph/'\/\[(OMe + (@) " > Ph/k/\/OH
THF,0°C,1h
(0] Ph

To a solution of 4-oxo0-4-phenylbutyric acid (3.56 g, 20.0 mmol) in DMF (30 mL) were added
NaHCO; (3.36 g, 40 mmol) and Mel (3.75 mL, 60 mmol) at room temperature under argon. Af-
ter stirring 6 h at 60 °C, the reaction mixture was quenched with H,O (20 mL) and extracted
with hexane/EtOAc (4/1, 40 mL x 3). The combined organic layers were dried over Na,SO, and
concentrated in vacuo. The residue was purified by silica-gel chromatography (hex/EtOAc =
2/1) to give methyl 4-oxo-4-arylbutyrate in 99% yield (3.81 g, 19.8 mmol).

To a solution of (-)-diisopinocampheyl chloroborane (705.7 mg, 2.2 mmol) in THF (1.5 mL)
was added obtained methyl 4-oxo-4-arylbutyric (384.4 mg, 2.0 mmol) in THF (0.7 mL) at —78
°C under argon. After stirring for 36 h at —78 to —10 °C, a small amount of H,O was added to the
reaction mixture. The mixture was directly purified by silica-gel column chromatography
(hex/EtOACc = 5/1 to 3/1) to give mixture of (S)-methyl 4-hydroxy-4-phenylbutyrate and
(S)-dihydro-5-phenyl-2(3H)-furanone (total 312.1 mg, 1.61 mmol).

To a solution of the mixture (ca. 1.61 mmol) in THF (8 mL) was added lithium aluminum hy-
dride (152.9 mg, 4.03 mmol) at 0 °C under argon. After stirring for 1 h at 0 °C, a small amount
of H,O was added to the reaction mixture. The mixture was directly purified by silica-gel col-
umn chromatography (hex/EtOAc = 1/2 to 1/3) to obtain (S)-1-arylbutan-1,4-diol (187.4 mg,
1.13 mmol) in 57% yield (2 steps) and 97% ee.

(S)-1-Phenylbutan-1,4-diol [(S)-1a)]
OH

@MOH

'H NMR (500 MHz, CDCly): § 7.37—7.33 (m, 3H), 7.30—7.27 (m, 1H), 4.75 (t, J = 6.5 Hz,
1H), 3.74—3.67 (m, 2H), 2.40 (brs, 1H), 1.90—1.86 (m, 2H), 1.77—1.62 (m, 2H). Spectro-
scopic data of *"H NMR was identical to that of the reference 13.

The enantiomeric ratio of (S)-la was determined by HPLC analysis using Daicel Chiralcel
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OD-H column: n-hexane : isopropanol = 95:5, flow rate 0.5 mL/min, A = 210 nm: t; (minor) =
56.0 min, t, (major) = 61.7 min. Absolute configuration was determined by reference 14.

Preparation of (S)-1-arylbutan-1,4-diol

\BCI
Arene (1.2 equiv.) Na,COs3 (2.0 equiv.) e} 2
OO AICl5 (1.5 equiv.) - Mel (2.0 equiv.) OMe (1.1 equiv.)
\]\/\/EO CH,Cl, DMF, 60 °C, 18 h Ar THF, -10 °C, 48 h
0°Ctort,9h
First step Second step Third step
OH O P \ OH
LiAlH, (2.5 equiv.
Ar)\/\[(OMe + O - - Ar/'\/\/OH
THF,0°C,1h
o Ar
Fourth step

To a solution of succinic anhydride (1.00 g, 10.0 mmol) and anisole (1.30 mL, 12.0 mmol) in
CH,CI; (10 mL) was added aluminum trichloride (2.00 g, 15.0 mmol) at 0 °C under argon. After
stirring for 9 h at room temperature, the mixture was quenched with 1N HCI ag. (20 mL) and
extracted with EtOAc (30 mL x 3). The combined organic layers were dried over Na,SO, and
concentrated in vacuo. The residue (3.00 g) was used for next reaction without further purifica-
tion.

To a solution of the residue (3.00 g) in DMF (15 mL) were added Na,COs (1.44 g, 20 mmol)
and Mel (1.25 mL, 20 mmol) at room temperature under argon. After stirring 18 h at 60 °C, the
reaction mixture was quenched with H,O (20 mL) and extracted with hexane/EtOAc (4/1, 30
mL x 3). The combined organic layers were dried over Na,SO, and concentrated in vacuo. The
residue was purified by silica-gel chromatography (hex/EtOAc = 4/1 to 1/1) to give methyl
4-0x0-4-(4’-methoxyphenyl)butyrate in 69% yield (2 steps from first step, 1.54 g, 6.92 mmol).

To a solution of (-)-diisopinocampheyl chloroborane (705.7 mg, 2.20 mmol) in THF (4 mL)
added obtained methyl 4-oxo-4-(4’-methoxyphenyl)butyrate (444.5 mg, 2.00 mmol) at —10 °C
under argon. After stirring for 48 h at —10 °C, a small amount of H,O was added to the reaction
mixture. The mixture was directly purified silica-gel column chromatography (hex/EtOAc = 2/1
to 1/1) to give the mixture of (S)-methyl 4-hydroxy-4-(4’-methoxyphenyl)butyrate and
(S)-dihydro-5-(4’-methoxyphenyl)-2(3H)-furanone (total 244.9 mg, 1.09 mmol).

To a solution of the mixture (244.9 mg, 1.09 mmol) in THF (5.5 mL) was added lithium alu-
minum hydride (103.6 mg, 2.73 mmol) at 0 °C under argon. After stirring for 1 h at 0 °C, a small
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amount of H,O was added to the reaction mixture. The mixture was directly purified by sili-
ca-gel  column  chromatography  (hex/EtOAc = 1/3 to 1/5) to give
(S)-1-(4’-methoxyphenyl)butan-1,4-diol in 44% yield (2 steps from third step, 204.1 mg, 1.04
mmol) and 77% ee.

(S)-1-(4’-Methoxyphenyl)butan-1,4-diol [(S)-1c)]

OH

/@/‘\/\/OH
MeO

'H NMR (500 MHz, CDCls): § 7.28 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 4.69 (dd, J =
5.5, 7.5 Hz, 1H), 3.81 (s, 3H), 3.72—3.66 (m, 2H), 2.36 (brs, 1H), 2.05 (brs, 1H), 1.91—1.80
(m, 2H), 1.74—1.60 (m, 2H). Spectroscopic data of "H NMR was identical to that of the refer-
ence 8.

The enantiomeric ratio of (S)-1c was determined by HPLC analysis using Daicel Chiralcel
AD-H column: n-hexane : isopropanol = 95:5, flow rate 1.0 mL/min, A = 210 nm: t; (major) =
42.4 min, t, (minor) = 45.2 min. [a]
was determined by reference 8.

28
D

= -27.4 (c = 1.20 in benzene). Absolute configuration

To a solution of succinic anhydride (1.00 g, 10.0 mmol) and fluorobenzene (1.12 mL, 12.0
mmol) in CH,Cl, (10 mL) was added aluminum trichloride (2.00 g, 15.0 mmol) at 0 °C under
argon. After stirring for 9 h at room temperature, the mixture was quenched with 1N HCI ag. (20
mL) and extracted with EtOAc (30 mL x 3). The combined organic layers were dried over
Na,SO,4 and concentrated in vacuo. The residue (1.44 g) was used for next reaction without fur-
ther purification.

To a solution of the residue (1.44 g) in DMF (15 mL) were added Na,COs (1.44 g, 20 mmol)
and Mel (1.25 mL, 20 mmol) at room temperature under argon. After stirring 18 h at 60 °C, the
reaction mixture was quenched with H,O (20 mL) and extracted with hexane/EtOAc (4/1, 30
mL x 3). The combined organic layers were dried over Na,SO, and concentrated in vacuo. The
residue was purified by silica-gel chromatography (hex/EtOAc = 5/1 to 3/1) to give methyl
4-0x0-4-(4’-fluorophenyl)butyrate in 39% vyield (2steps from first step, 0.828 g, 3.94 mmol).

To a solution of (-)-diisopinocampheyl chloroborane (1.39 g, 4.30 mmol) in THF (6 mL) added
obtained methyl 4-oxo-4-(4’-fluorophenyl)butyrate (0.828 g, 3.94 mmol) at —10 °C under argon.
After stirring for 48 h at —10 °C, a small amount of H,O was added to the reaction mixture. The
mixture was directly purified silica-gel column chromatography (hex/EtOAc = 3/1 to 1/1) to
give the  mixture of  (S)-methyl  4-hydroxy-4-(4’-fluorophenyl)butyrate  and
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(S)-dihydro-5-(4’-fluorophenyl)-2(3H)-furanone (total 502.1 mg, 2.37 mmol).

To a solution of the mixture (502.1 mg, 2.37 mmol) in THF (12 mL) was added lithium alu-
minum hydride (225.0 mg, 5.93 mmol) at 0 °C under argon. After stirring for 1 h at 0 °C, a small
amount of H,O was added to the reaction mixture. The mixture was directly purified by sili-
ca-gel column chromatography (hex/EtOAc = 1/3 to 1/5) to give (S)-l-arylbutan-1,4-diol (2
steps from third step, 320.5 mg, 1.74 mmol) in 44% yield and 94% ee.

(S)-1-(4’-Fluorophenyl)butan-1,4-diol [(S)-1f]

OH

o
F

'H NMR (500 MHz, CDCly): § 7.34—7.32 (m, 2H), 7.06—7.01 (m, 2H), 4.73 (d, J = 6.5 Hz,
1H), 3.75—3.66 (m, 2H), 2.60 (brs, 1H) 1.93 (brs, 1H), 1.87—1.83 (m, 2H), 1.75—1.61 (m,
2H). Spectroscopic data of "H NMR was identical to that of the reference 15.

The enantiomeric ratio of (S)-1f was determined by HPLC analysis using Daicel Chiralcel
AD-H column: n-hexane : isopropanol = 95:5, flow rate 1.0 mL/min, A = 210 nm: t; (major) =
25.6 min, t, (minor) = 27.2 min. Absolute configuration was determined by reference 14.

Preparation of Racemic 1-(4’-methoxyphenyl)butan-1,4-diol (1c) and
1-(4’-fluorophenyl)butan-1,4-diol (1f)
0 _ _ OH
)WOH LiAlH, (2.5 equiv.) )\/\/OH
Ar THF,0°C,1h Ar
0]
To a solution of 3-(4’-methylbenzoyl)propionic acid (292.5 mg, 1.40 mmol) in THF (7 mL)

was added lithium aluminum hydride (212.5 mg, 5.60 mmol) at 0 °C under argon. After stirring
for 1 h at 0 °C, a small amount of H,O was added to the reaction mixture. The mixture was di-
rectly purified by silica-gel column chromatography (hex/EtOAc = 1/3 to 1/5) to give
1-(4’-methoxyphenyl)butan-1,4-diol (1c; 203.6 mg, 1.04 mmol) in 74% yield.

To a solution of 3-(4’-fluorobenzoyl)propionic acid (815.4 mg, 4.16 mmol) in THF (25 mL)
was added lithium aluminum hydride (759.0 mg, 20.0 mmol) at 0 °C under argon. After stirring
for 1 h at 0 °C to room temperature, H,O and 15 % NaOH ag. were added to the reaction mix-
ture at 0 °C. After further stirring for 1 h, the mixture was filtrated through celite pad with Et,O
(250 mL) and the filtrate was concentrated in vacuo. The residue was purified by silica-gel
column chromatography (hex/EtOAc = 1/2 to 1/5) to give 1-(4’-fluorophenyl)butan-1,4-diol (1f;
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386.8 mg, 2.10 mmol) in 50% yield.

3. Typical procedure of cyclic ether synthesis from diols

R NaH (2 equiv.) R

X>oH PO(OMe), (2.5 equiv.) ™\
> O
[MOH CPME, rt, 24 h [(\/}

n n

To a solution of a diol derivative (0.200 mmol) in CPME (1 mL) was added NaH (0.400 mmol,
60% oil suspension) at room temperature under argon. After stirring for 10 min, trimethyl
phosphate (0.500 mmol) was added. After further stirring for 24 h, the mixture was quenched
with H,O and extracted with Et,0 (20 mL x 3). The combined organic layers were dried over
Na,SO,4 and concentrated in vacuo. The residue was purified by silica-gel column chromatog-
raphy to give a cyclic ether product.

4. Optimization for usage of base and phosphate

NaH (X equiv.)

R~on PO(OMe), (Y equiv) S\
[(\/),OH CPME, temp., time ~ &\42

n
entry (Xeq.) (Yeq.) temperature | time (h) yield?

SM product

1 3.0 3.0 rt 24 3% 75%
2 1.0 3.0 rt 24 33% 51%
3 2.0 1.0 rt 16 65% 34%
4 2.0 2.0 rt 24 11% 71%
5 2.0 2.0 80°C 24 7 68
6 2.0 2.5 rt 24 0 88% (86%)"°
7 2.0 3.0 rt 24 0% 83%

a) The yield was determined by *H NMR using 1,1,2,2-tetrachloroethane as an internal standard.
b) Isolated yield.

5. Spectroscopic data of products
3-Phenyltetrahydrofuran (2a)

O

L

Ph
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When using a substrate (1a: 33.2 mg, 0.200 mmol) in Table 1, entry 1 and Table 2, entry 1 ac-
cording to typical procedure, 3-phenyltetrahydrofuran (2a: 25.6 mg, 0.173 mmol) was obtained
in 86% yield after the purification by silica-gel column chromatography (hex/Et,O = 10/1).

Pale yellow oil. '"H NMR (500 MHz, CDCls) &: 7.34—7.31 (m, 2H), 7.27—7.21 (m, 3H), 4.15 (t,
J =8.0 Hz, 1H), 4.08 (td, J = 4.0, 8.0 Hz, 1H), 3.93 (q, J = 8.0 Hz, 1H), 3.73 (t, J = 8.0 Hz, 1H),
3.41 (quint, J = 8.0 Hz, 1H), 2.40—2.34 (m, 1H), 2.06—1.98 (m, 1H). *C NMR (125 MHz,
CDCl,) &: 142.6, 128.6, 127.2, 126.5, 74.7, 68.5, 45.0, 34.6. Spectroscopic data of "H NMR and
3C NMR were identical to those of the reference 16.

2-Phenyltetrahydrofuran (2b)

0
Ph

When using a substrate (1b: 33.2 mg, 0.200 mmol) in Table 2, entry 2 according to typical pro-
cedure, 2-phenyltetrahydrofuran (2b: 26.8 mg, 0.181 mmol) was obtained in 91% vyield after the
purification by silica-gel column chromatography (pentane/Et,O = 50/1).

Pale yellow oil. "H NMR (500 MHz, CDCl,) &: 7.34—7.31 (m, 4H), 7.27—7.23 (m, 1H), 4.90 (t,
J=7.0Hz, 1H), 4.10 (dd, J = 7.0, 15.0 Hz, 1H), 3.94 (dd, J = 8.0, 14.0 Hz. 1H), 2.36—2.30 (m,
1H), 2.07—1.95 (m, 2H), 1.85—1.77 (m, 1H). *C NMR (125 MHz, CDCl;) &: 143.4, 128.3,
127.1, 125.6, 80.7, 68.7, 34.6, 26.0. Spectroscopic data of *H NMR and *C NMR were identical
to those of the reference 17.

(S)-2-Phenyltetrahydrofuran [(S)-2b]

o
Ph

When using a substrate [(S)-1b: 33.2 mg, 0.200 mmol] in Table 3, entry 1 according to typical
procedure, 2-phenyltetrahydrofuran [(S)-2b: 26.8 mg, 0.161 mmol] was obtained in 81% yield
and 96% ee after the purification by silica-gel column chromatography (pentane/Et,O = 20/1).
The enantiomeric ratio of (S)-2b was determined by HPLC analysis using Daicel Chiralcel
AD-H column: n-hexane : isopropanol = 79.9 : 0.1, flow rate 0.8 mL/min, A = 210 nm: t; (ma-
jor) = 13.6 min, t, (minor) = 15.3 min. Absolute configuration was determined by reference 14.

2-(4’-Methoxyphenyl)tetrahydrofuran (2c)

o

MeO

When using a substrate (1c: 39.2 mg, 0.200 mmol) in Table 2, entry 3 according to typical pro-
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cedure, 2-(4’-methoxyphenyltetrahydrofuran (2c: 27.6 mg, 0.155 mmol) was obtained in 78%
yield after the purification by silica-gel column chromatography (hex/EtOAc = 10/1).

Colorless oil. 'H NMR (500 MHz, CDCl3) &: 7.27—7.25 (m, 2H), 6.89—6.86 (m, 2H), 4.83 (t,
J =75 Hz, 1H), 4.08 (dd, J = 7.5, 14.5 Hz, 1H), 3.94—3.88 (m, 1H), 3.80 (s, 3H), 2.29—2.24
(m, 1H), 2.07—1.95 (m, 2H), 1.83—1.77 (m, 1H). *C NMR (125 MHz, CDCl;) &: 158.8, 135.3,
126.9, 113.6, 80.4, 68.5, 55.3, 34.5, 26.0. Spectroscopic data of '"H NMR and **C NMR were
identical to those of the reference 17.

(S)-2-(4’-Methoxyphenyl)tetrahydrofuran [(S)-2c]

O

MeO

When using a substrate [(S)-1c: 39.2 mg, 0.200 mmol] in Table 3, entry 3 according to typical
procedure, (S)-2-(4’-methoxyphenyDtetrahydrofuran [(S)-2c: 21.8 mg, 0.122 mmol] was ob-
tained in 61% vyield and 71% ee after the purification by silica-gel column chromatography
(pentane/Et,0 = 50/1).

The enantiomeric ratio of (S)-2c was determined by HPLC analysis using Daicel Chiralcel
OD-H column: n-hexane : isopropanol = 90:10, flow rate 1.0 mL/min, A = 210 nm: t; (minor) =
6.2 min, t, (major) = 6.8 min. [a]5 = —21.9 (c = 0.85 in CH5CI). Absolute configuration was
determined by reference 18.

2-(4’-Methylphenyl)tetrahydrofuran (2d)

0

Me

When using a substrate (1d: 36.0 mg, 0.200 mmol) in Table 2, entry 4 according to typical pro-
cedure, 2-(4’-methylphenyDtetrahydrofuran (2d: 21.9 mg, 0.135 mmol) was obtained in 68%
yield after the purification by silica-gel column chromatography (hex/EtOAc = 10/1).

Colorless oil. *"H NMR (500 MHz, CDCly) 8: 7.23 (d, J = 7.8 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H),
4.86 (t, J = 6.5, 1H), 4.11—4.06 (m, 1H), 3.94—3.90 (m, 1H), 2.34 (s, 3H), 2.32—2.26 (m,
1H), 2.06—1.94 (m, 2H), 1.83—1.76(m, 1H). *C NMR (125 MHz, CDCls) &: 140.3, 136.7,
128.9, 125.5, 80.5, 68.6, 34.6, 26.0, 21.1. Spectroscopic data of *H and **C NMR were identical
to those of the reference 17.

2-(4’-Chlorophenyl)tetrahydrofuran (2e)
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Cl

When using a substrate (1e: 40.1 mg, 0.200 mmol) in Table 2, entry 5 according to typical pro-
cedure, 2-(4’-chlorophenyDtetrahydrofuran (2e: 24.9 mg, 0.136 mmol) was obtained in 68%
yield after the purification by silica-gel column chromatography (hex/EtOAc = 10/1).

Colorless oil. '"H NMR (500 MHz, CDCly) &: 7.35—7.25 (m, 4H), 4.86 (t, J = 7.3 Hz, 1H),
4.11—4.06 (m, 1H), 3.95—3.91 (m, 1H), 2.35—2.29 (m, 1H), 2.03-1.98 (m, 2H), 1.78—1.73
(m, 1H). ®C NMR (125 MHz, CDCl3) &: 142.0, 132.7, 128.4, 127.0, 80.0, 68.7, 34.7, 25.9.
Spectroscopic data of *H and **C NMR were identical to those of the reference 17.

2-(4-Fluorophenyl)tetrahydrofuran (2f)

O

F

When using a substrate (1f: 36.8 mg, 0.25 mmol) in Table 2, entry 6 according to typical proce-
dure, 2-(4’-fluorophenyDtetrahydrofuran (2f: 17.6 mg, 0.106 mmol) was obtained in 53% yield
after the purification by silica-gel column chromatography (pentane/Et,O = 10/1).

Colorless oil. '*H NMR (500 MHz, CDClg) §: 7.34—7.28 (m, 2H), 7.03—7.00 (m, 2H), 4.85 (t,
J = 7.0 Hz, 1H), 4.09 (dd, J = 7.0, 15.0 Hz, 1H), 3.97 (dd, J = 7.0, 15.0 Hz, 1H), 2.34—2.28 (m,
1H), 2.04—1.97 (m, 2H), 1.80—1.73 (m, 1H). *C NMR (125 MHz, CDCls) &: 162.0 (d, J =
243.4 Hz), 139.0 (d, J = 3.5 Hz), 127.2 (d, J = 8.3 Hz), 115.0 (d, J = 21.5 Hz), 80.1, 68.6, 34.7,
26.0. Spectroscopic data of *H and **C NMR were identical to that of the reference 19.
(S)-2-(4’-Fluorophenyhtetrahydrofuran [(S)-2f)]

O

F

When using a substrate [(S)-1f: 36.8 mg, 0.200 mmol] in Table 3, entry 2 according to typical
procedure, (S)-2-(4’-fluorophenyl)tetrahydrofuran [(S)-2f: 26.8 mg, 0.134 mmol] was obtained
in 67% yield and 92% ee after the purification by silica-gel column chromatography (pen-
tane/Et,0O = 10/1).

The enantiomeric ratio of (S)-2f was determined by HPLC analysis using Daicel Chiralcel OJ-H
column: n-hexane : isopropanol = 80:20, flow rate 0.5 mL/min, A = 210 nm: t; (minor) = 12.9
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min, t, (major) = 14.7 min. [a]5 = —26.0 (c = 0.59 in CH,CI,). Absolute configuration was de-
termined by reference 14.

2-Octyltetrahydrofuran (2g)

Wl

7
When using a substrate (1g: 40.5 mg, 0.200 mmol) in Table 2, entry 7 according to typical pro-
cedure, 2-octyltetrahydrofuran (2g: 28.9 mg, 0.157 mmol) was obtained in 79% yield after the
purification by silica-gel column chromatography (hex/Et,O = 30/1).
Colorless oil. '"H NMR (500 MHz, CDCl;) &: 3.88—3.87 (m, 1H), 3.80—3.75 (m, 1H),
3.73—3.69 (m, 1H), 2.00—1.93 (m, 1H), 1.92—1.80 (m, 2H), 1.61—1.53 (m, 1H), 1.46—1.36
(m, 3H), 1.34—1.21 (m, 11H), 0.88 (t, J = 7.0 Hz, 3H). *C NMR (125 MHz, CDCl;) &: 79.5,
67.6, 35.7, 31.9, 31.4, 29.8, 29.6, 29.3, 26.4, 25.7, 22.7, 14.1. Spectroscopic data of *H and **C
NMR were identical to those of the reference 20.

2,2-Di(4’-methylphenyl)tetrahydrofuran (2h)
QL

When using a substrate (1h: 54.1 mg, 0.200 mmol) in Table 2, entry 8 according to typical pro-
cedure, 2,2-di(4’-methylphenyl)tetranydrofuran (2h: 38.3 mg, 0.152 mmol) was obtained in
76% vyield after the purification by silica-gel column chromatography (hex/EtOAc = 50/1).
Colorless oil. '"H NMR (500 MHz, CDCls) &: 7.30 (d, J = 8.3 Hz, 4H), 7.09 (d, J = 8.3 Hz, 4H),
4.02 (t, J = 7.0 Hz, 2H), 2.51 (t, J = 7.5 Hz, 2H), 1.96—1.90 (m, 2H). *C NMR (125 MHz,
CDCl,) 5:143.6, 136.1, 128.8, 125.7, 87.8, 67.3, 38.5, 25.4, 21.0. IR (ATR) cm™: 3022, 2974,
2920, 2872, 1900, 1612, 1509, 1454, 1407, 1377, 1312, 1245, 1210, 1182, 1121, 1050, 1020.
ESI-HRMS m/z: 275.1409 ([M+Na]™); Calcd for C;gH,,ONa: 275.1406.

Phthalan (2i)

(e

When using a substrate (1i: 27.6 mg, 0.200 mmol) in Table 2, entry 9 according to typical pro-
cedure, phthalan (2i: 16.1 mg, 0.134 mmol) was obtained in 67% yield after the purification by
silica-gel column chromatography (pentane/Et,O = 30/1).
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Pale yellow oil. '"H NMR (500 MHz, CDCls) &: 7.28—7.23 (m, 4H), 5.12 (s, 4H). *C NMR
(125 MHz, CDCls) &: 139.0, 127.2, 120.9, 73.6. Spectroscopic data of ‘H NMR was identical to
that of the reference 21. Spectroscopic data of **C NMR were identical to those of the reference
22.

5,6-Dimethoxyphthalan (2j)
MeO

1k
MeO
When using a substrate (1j: 39.6 mg, 0.200 mmol) in Table 2, entry 10 according to typical pro-
cedure, 5,6-dimethoxyphthalan (2j: 16.5 mg, 0.092 mmol) was obtained in 46% yield after the
purification by silica-gel column chromatography (hex/EtOAc = 10/1).
Colorless solid. M.p. 106-107 °C. *H NMR (500 MHz, CDCl;) &: 6.77 (s, 2H), 5.08 (s, 4H),
3.88 (s, 6H). *C NMR (125 MHz, CDCls) &: 148.8, 130.4, 104.0, 73.8, 56.1. IR (ATR) cm™:
3010, 2957, 2905, 2854, 2835, 1755, 1659, 1612, 1504, 1465, 1417, 1364, 1328, 1307, 1279,

1249, 1219, 1189, 1174, 1101, 1044. ESI-HRMS m/z: 181..0859 ([M+H]"); Calcd for CyoH;30s3:
181.0859.

5,6-Dichlorophthalan (2k)
Cl
1
Cl
When using a substrate (1k: 41.4 mg, 0.200 mmol) in Table 2, entry 11 according to typical
procedure, 5,6-dichlorophthalan (2k: 19.0 mg, 0.101 mmol) was obtained in 50% yield after the
purification by silica-gel column chromatography (hex/EtOAc = 20/1).
Colorless solid. "H NMR (500 MHz, CDCl5) &: 7.33 (s, 2H), 5.05 (s, 4H). *C NMR (125 MHz,

CDCl5) &: 139.4, 131.3, 122.9, 72.9, 56.1. Spectroscopic data of *H and **C NMR were identical
to those of the reference 4.

2,9-Dimethylphthalan (cis/trans = 64/36) (2I)
O

When using a substrate (11: 33.2 mg, 0.200 mmol, dr = 69/31) in Table 2, entry 12 according to
typical procedure, 2,9-dimethylphthalan (2I: 11.6 mg, 0.078 mmol) was obtained in 39% yield
after the purification by silica-gel column chromatography (hex/Et,O = 10/1).
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Inseperable diastereomer mixture was obtained. Colorless oil. *H NMR (500 MHz, CDCl5) &:
7.30—7.26 (m, 2H), 7.17—7.13 (m, 2H), 5.40 (q, J = 6.0 Hz, 0.72H), 5.23 (g, J = 5.8 Hz,
1.28H), 1.53 (d, J = 5.8 Hz, 3.84H), 1.47 (d, J = 6.0 Hz, 2.16H). *C NMR (125 MHz, CDCl;) &:
143.7, 143.2, 127.4, 127.3, 120.9, 120.8, 78.7, 78.6, 22.3, 22.1. Spectroscopic data of 'H and **C
NMR were identical to those of the reference 23.

2,3-Dihydrobenzofuran (2m)

L

When using a substrate (1m: 27.6 mg, 0.200 mmol) in Table 2, entry 13 according to typical
procedure, 2,3-dihydrobenzofuran (2m: 22.0 mg, 0.180 mmol) was obtained in 90% yield after
the purification by silica-gel column chromatography (pentane/Et,O = 30/1).

Pale yellow oil. '"H NMR (500 MHz, CDCl5) &: 7.20 (d, J = 7.3 Hz, 1H), 7.11 (dd, J = 7.3, 7.5
Hz, 1H), 6.84 (dd, J = 7.3, 7.5 Hz, 1H), 6.79 (dd, J = 7.3, 7.5 Hz, 1H), 4.56 (t, J = 8.5 Hz, 2H),
3.21 (t, J = 8.5 Hz, 2H). *C NMR (125 MHz, CDCl5) &: 160.0, 127.9, 126.8, 124.9, 120.3,
109.3, 71.0, 29.7. Spectroscopic data of *H and *C NMR were identical to those of the refer-
ence 24.

Isochroman (2n)

8

When using a substrate (1n: 30.4 mg, 0.200 mmol) in Table 2, entry 14 according to typical
procedure, isochroman (2n: 11.9 mg, 0.089 mmol) was obtained in 45% yield after the purifica-
tion by silica-gel column chromatography (hex/EtOAc = 50/1).

Pale yellow oil. 'H NMR (500 MHz, CDCls) &: 7.17—7.15 (m, 3H), 6.99—6.97 (m, 1H), 4.78
(s, 2H), 3.98 (t, J = 5.5 Hz, 2H), 2.87 (t, J = 5.5 Hz, 2H). *C NMR (125 MHz, CDCl;) §: 134.9,

133.2, 128.9, 126.3, 126.0, 124.4, 67.9, 65.4, 28.3. Spectroscopic data of *H and *C NMR were
identical to those of the reference 25.

2-Phenyltetrahydropyran (20)

0]

When using a substrate (10: 36.0 mg, 0.200 mmol) in Table 2, entry 15 according to typical
procedure, 2-phenyltetrahydropyran (20: 8.4 mg, 0.053 mmol) was obtained in 26% yield after
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the purification by silica-gel column chromatography (hex/Et,O = 50/1).

Pale yellow oil. '"H NMR (500 MHz, CDCl;) &: 7.36—7.24 (m, 5H), 4.34—4.31 (m, 1H),
4.16—4.13 (m, 1H), 3.65—3.60 (m, 1H), 1.96—1.93 (m, 1H), 1.85—1.82 (m, 1H), 1.73—1.57
(m, 4H). *C NMR (125 MHz, CDCls) &: 143.3, 128.3, 127.3, 125.8, 80.1, 69.0, 34.0, 25.9, 24.0.
Spectroscopic data of *H and *C NMR were identical to those of the reference 19.

6,7-Dihydro-5H-dibenz[c, eJoxepine (2p)

@)

When using a substrate (1p: 42.9 mg, 0.200 mmol) in Table 2, entry 16 according to typical
procedure, 6,7-dihydro-5H-dibenz[c,e]oxepine (2p: 29.9 mg, 0.152 mmol) was obtained in 76%
yield after the purification by silica-gel column chromatography (hex/EtOAc = 10/1).

Colorless solid. '"H NMR (500 MHz, CDCl;) &: 7.58—7.56 (m, 2H), 7.53—7.50 (m, 2H),
7.46—7.41 (m, 4H), 4.37 (s, 4H). *C NMR (125 MHz, CDCl,) &: 141.2, 135.1, 129.7, 128.9,
128.2, 127.5, 67.5. Spectroscopic data of ‘H NMR and **C NMR were identical to those of the
reference 26.

6. Mechanistic studies
Equation 1

To a solution of 2-phenylbutan-1,4-diol (1a; 33.2 mg, 0.200 mmol) in CPME (1 mL) was add-
ed NaH (16.0 mg, 0.400 mmol, 60% oil suspension) at room temperature under argon. After
stirring for 10 min, trimethyl phosphate (57 ul, 0.500 mmol) was added to the reaction mixture.
After further stirring for 6 h or 24 h at room temperature, the mixture was quenched with brine
(5 mL) and extracted with Et,O (20 ml x 3). The combined organic layers were dried over
Na,SO, and concentrated in vacuo. The residue was analyzed by 'H NMR with
1,1,2,2-tetrachloroethane as an internal standard. After 6 h, 2a (13.9 mg, 0.094 mmol, 47%),
trace amount of mono-phosphorylated 2-phenylbutan-1,4-diol (3), cyclic phosphate (4) and di-
phosphorylated 2-phenylbutan-1,4-diol (5), and the recovered starting material (1a; 2.3 mg,
0.014 mmol, 7%) were detected, respectively. After 24 h, 2a (26.1 mg, 0.200 mmol, 88%), trace
amount of 3, 4 and 5 were detected, respectively.

Equation 2
Preparation of mono-phosporylated 2-phenylbutan-1,4-diol (3)
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Etz3N (1.6 equiv.)

oH POCI(OMe), (1.2 equiv.) OPO(OMe),
J/\A DMAP (10 mol%) LA /LA
Ph OH CH,Cly, rt, 1 week OPO(OMe),
1a

To a solution of 2-phenylbutan-1,4-diol (1a: 332.5 mg, 2.0 mmol) in CH,Cl, (10 mL) were
added triethylamine (430 pL, 3.1 mmol), dimethyl chlorophosphate (260 pL, 2.4 mmol) and
N,N-dimethyl-4-aminopyridine (24.5 mg, 0.2 mmol) at room temperature under argon. After
stirring for 1 week at room temperature, the mixture was quenched with H,O (20 mL) and ex-
tracted with EtOAc (20 ml x 3). The combined organic layers were dried over Na,SO, and con-
centrated in vacuo. The residue was purified by silica-gel chromatography (hex/EtOAc = 1/5 to
EtOAc only) to give the regioisomer mixture of mono-phosphorylated 2-phenylbutan-1,4-diol
(3) in 20% yield (108.1 mg, 0.4 mmol).
mono-phosphorylated 2-phenylbutan-1,4-diol (63 : 37 mixture of regioisomers) (3)

OR! R' = H, R2 = PO(OMe),
J/\/\ and
Ph OR?2 R'=PO(OMe),, RZ=H

Pale yellow oil. *"H NMR (500 MHz, CDCly): & 7.36—7.31 (m, 2H), 7.27—7.22 (m, 3H),
4.22—4.17 (m, 1H), 4.08—4.02 (m, 1H), 3.96—3.89 (m, 1H), 3.81—3.60 (m, 6.6H),
3.55—3.50 (m, 0.4H), 3.20—3.14 (m, 0.4H), 3.02—2.97 (m, 0.6H), 2.23—2.16 (m, 0.6H),
2.12—2.05 (m, 0.4H), 2.01—1.93 (m, 0.6H), 1.91—1.84 (m, 0.4H). *C NMR (125 MHz,
CDCl,) 6: 140.9, 140.6, 128.8, 128.7, 128.0, 128.0, 127.1, 127.1, 71.3 (d, J = 5.9 Hz), 61.1, 65.9
(d, J = 6.0 Hz), 60.3, 54.3 (d, J = 5.9 Hz), 54.2 (d, J = 5.9 Hz), 44.6, 42.9 (d, J = 5.9 Hz), 34.6,
32.6 (d, J = 7.1 Hz). P NMR (213 MHz, CDCls, triphenyl phosphine as an external standard;
-6.0 ppm): & 2.0, 1.8. IR (ATR) cm™: 3409, 2956, 1602, 1494, 1453, 1254, 1185, 1015.
ESI-HRMS m/z: 297.0872 ([M+Na]™); Calcd for C;,H150sPNa: 297.0862.

Reaction of 3 (equation 2)

To a solution of 3 (41.1 mg, 0.150 mmol) in CPME (0.75 mL) was added NaH (6.0 mg, 0.150
mmol, 60% oil suspension) at room temperature under argon. After stirring for 6 h or 0.5 h, the
mixture was quenched with brine and extracted with Et,O (20 ml x 3). The combined organic
layers were dried over Na,SO, and concentrated in vacuo. The residue was analyzed by ‘H
NMR with 1,1,2,2-tetrachloroethane as an internal standard. For 6 h, 2a (14.2 mg, 0.096 mmol,
47%), trace amount of cyclic phosphate (4) and recovered starting material (3; 2.3 mg, 0.014
mmol, 7%) were detected. For 0.5 h, 2a (8.9 mg, 0.069 mmol, 40%) and 4 (20.8 mg, 0.086
mmol, 57%) were detected.
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Cyclic phosphate (4)

o)
O\B\/OMe
0
Ph

Colorless oil. '"H NMR (500 MHz, CDCly): § 7.36—7.31 (m, 2H), 7.30—7.27 (m, 1H),
7.20—7.18 (m, 2H), 4.45—4.39 (m, 1H), 4.30—4.08 (m, 3H), 3.87 (d, J = 11.5 Hz, 3H),
3.18—3.12 (m, 1H), 2.36—2.28 (m, 1H), 2.12—2.07 (m, 1H).*C NMR (125 MHz, CDCl,) 5
139.7, 129.0, 127.5, 127.2,70.2 (d, J = 3.5 Hz), 67.2 (d, J = 7.1 Hz), 54.5 (d, J = 6.0 Hz), 46.5,
36.8. *'P NMR (213 MHz, CDCls, triphenyl phosphine as an external standard; -6.0 ppm): & -0.2.
IR (ATR) cm™: 3483, 2956, 2919, 2854, 1602, 1494, 1453, 1264, 1186, 1103, 1052, 1011.
ESI-HRMS m/z: 265.0609 ([M+Na]"); Calcd for Cy;H;50,PNa: 265.0600.

Equation 3

To a solution of 4 (24.2 mg, 0.100 mmol) and MeOH (12 pL, 0.30 mmol) in CPME (0.5 mL)
was added NaH (12.0 mg, 0.300 mmol, 60% oil suspension) at room temperature under argon.
After stirring for 6 h at room temperature, the mixture was quenched with H,O (5 mL) and ex-
tracted with EtOAc (30 ml x 3). The residue was analyzed by '‘H NMR with
1,1,2,2-tetrachloroethane as an internal standard, 2a (9.6 mg, 0.065 mmol, 65%) and 1a (0.8 mg,
0.005 mmol, 5%) were detected.

Equation 4
Prearation of diphosphorylated 2-phenylbutan-1,4-diol (5)
OH NaH (2 equiv.) OPO(OMe),
J/\A POCI(OMe), (2.5 equiv.) J/\/\
Ph OH CPME, rt, 24 h Ph OPO(OMe),
1a 5

To a solution of 1la (498.7 mg, 3.0 mmol) in CPME (15 mL) was added NaH (240.0 mg, 6.0
mmol, 60% oil suspension) at room temperature under argon. After stirring for 10 min, dimethyl
chlorophosphate (812 pL, 7.5 mmol) was added. After further stirring for 24 h at room temper-
ature, the mixture was quenched with H,O (15 mL) and extracted with EtOAc (20 ml x 3). The
combined organic layers were dried over Na,SO,4 and concentrated in vacuo. The residue was
purified by silica-gel chromatography (EtOAc/MeOH = 30/1 to 10/1) to give diphosphorylated
2-phenylbutan-1,4-diol (5) in 14% yield (155.6 mg, 0.41 mmol).

Diphosphorylated 2-phenylbutan-1,4-diol (5)
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OPO(OMe),

Ph/[/\OPO(OMe)z

Colorless oil. '"H NMR (500 MHz, CDCly): & 7.34—7.19 (m, 5H), 4.22—4.12 (m, 2H),
4.05—3.99 (m, 1H), 3.91—3.85 (m, 1H), 3.75—3.70 (m, 6H), 3.68 (d, J = 11.0 Hz, 3H), 3.62 (d,
J =12.0 Hz, 3H), 3.19—3.13 (m, 1H), 2.29—2.22 (m, 1H), 2.01—1.95 (m, 1H)."*C NMR (125
MHz, CDCly) &: 139.5, 128.7, 128.0, 127.3, 71.0 (d, J = 6.0 Hz), 65.3 (d, J = 6.0 Hz), 54.2 (d, J
= 3.8 Hz), 54.2 (d, J = 5.9 Hz), 42.4 (d, J = 7.1 Hz), 32.4 (d, J = 7.3 Hz). *P NMR (213 MHz,
CDCls, triphenyl phosphine as an external standard; -6.0 ppm): & 0.7, 0.4. IR (ATR) cm™: 3473,
2956, 2854, 1495, 1454, 1265, 1185, 1012. ESI-HRMS m/z: 405.0834 ([M+Na]"); Calcd for
C14H2,0gPNa : 405.0839.

Reaction of 5 (Equation 4)

To a solution of 5 (37.8 mg, 0.100 mmol) and MeOH (12 uL, 0.300 mmol) in CPME (0.5 mL)
was added NaH (12.0 mg, 0.300 mmol, 60% oil suspension) at room temperature under argon.
After stirring for 2 h at room temperature, the mixture was quenched with H,O (5 mL) and ex-
tracted with EtOAc (30 ml x 3). The combined organic layers were dried over Na,SO, and con-
centrated in vacuo. The residue was analyzed by *H NMR with 1,1,2,2-tetrachloroethane as an
internal standard, 2a (12.0 mg, 0.081 mmol, 81%) was detected.
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7. 'H and *C NMR spectra of newly synthesized substrate and products
'H NMR of dodecan-1,4-diol (1g)

SA5-18-fr11-25-CDCI3-2s-ECA500
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3C NMR of dodecan-1,4-diol (1g)
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'H NMR of 2-phenyltetrahydrofuran (2b)

SA4-93-f10-24-CDCI3-ECAS00
@)
CDCls, 500 MHz
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C NMR of 2-phenyltetrahydrofuran (2b)
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CDCls, 125 MHz
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'H NMR of 2-(4>-methoxyphenyl)tetrahydrofuran (2c)

SA4-115-fr6-14-CDCI3-ECA500
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BC NMR of 2-(4’-methoxyphenyl)tetrahydrofuran (2c)
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'"H NMR of 2-(4>-methylphenyl)tetrahydrofuran (2d)

SA4-138-fr5-7-CDCI3-ECA500
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BC NMR of 2-(4’-methylphenyl)tetrahydrofuran (2d)

C2-SA4-138-fr5-7-CDCI3-ECA500

CDClj3, 125 MHz
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'H NMR of 2-(4’-chlorophenyl)tetrahydrofuran (2e)

SA4-127-fr5-9-2-CDCI3-ECAS500

2
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'"H NMR of 2-(4’-fluorophenyl)tetrahydrofuran (2f)

SA4-143-fr6-10-CDCI3-ECA500
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3C NMR of 2-(4’-fluorophenyl)tetrahydrofuran (2f)

C-SA4-168-fr5-9-CDCI3-ECA500
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'"H NMR of 2-octyltetrahydrofuran (2g)

SA5-20-fr6-13-CDCI3-15s-ECA500
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BC NMR of 2-octyltetrahydrofuran (2g)

C-SA5-19-fr37-44-CDCI3-2s-ECA500

N
7
CDCl,, 125 MHz

WWWWWMWWWWWWWWWWMWWMWW

T T T T T T T T T T T T T
1900 180.0 170.0 160.0 150.0 1400 1300 1200 110.0 100.0 90.0 80. 70.0 60.0 50.0 40.0

T T T
30.0 20.0 10.0 0 -100  -20.0

X : parts per Million : 13C

S28



'H NMR of 2,2-di(4’-methylphenyl)tetrahydrofuran (2h)

SA4-143-fr6-10-CDCI3-ECA500
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BC NMR of 2,2-di(4’-methylphenyl)tetrahydrofuran (2h)

C-SA4-143-fr6-10-CDCI3-ECA500

CDCl3, 125 MHz
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'H NMR of phthalan (2i)

SA4-87-fr7-13-CDCI3-ECA500
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C NMR of phthalan (2i)

C-SA4-87-fr7-13-2-CDCI3-ECA500
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'H NMR of 5,6-dimethoxyphthalan (2j)

SA4-68-fr19-26-CDCI3-ECA500
MeO
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BC NMR of 5,6-dimethoxyphthalan (2j)
C-SA4-68-fr19-26-CDCI3-ECA500
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'H NMR of 5,6-dichlorophthalan (2k)

SAA-111-frB-13-CDCI3-ECAS00
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C NMR of 5,6-dichlorophthalan (2k)
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'H NMR of 2,9-dimethylphthalan (cis/trans = 64/36) (2I)

SA4-96-fr10-15-CDCI3-ECA500
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B3C NMR of 2,9-dimethylphthalan (cis/trans = 64/36) (2)
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'H NMR of 2,3-dihydrobenzofuran (2m)

SA4-85-fr3-5-CDCI3-ECA500
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CDCls, 500 MHz
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BC NMR of 2,3-dihydrobenzofuran (2m)

C-SA4-85-fr3-5-CDCI3-ECA500
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'H NMR of isochroman (2n)

SA4-99-fr10-15-CDCI3-ECA500
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'H NMR of 2-phenyltetrahydropyran (20)
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'H NMR of 2-phenyltetrahydropyran (20)
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'H NMR of 6,7-dihydro-5H-dibenz[c,e]oxepine (2p)

SA4-70-fr7-10-CDCI3-ECA500

; °
CDCl,, 500 MHz
I + |

C NMR of 6,7-dihydro-5H-dibenz[c,e]oxepine (2p)

C-SA4-70-fr7-10-CDCI3-ECA500

CDCl3, 125 MHz
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'H NMR of mono-phosporylated 2-phenylbutan-1,4-diol (3)

SA4-130-fr34-41-2-CDCI3-ECA500
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3C NMR of mono-phosporylated 2-phenylbutan-1,4-diol (3)
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3IP NMR of mono-phosporylated 2-phenylbutan-1,4-diol (3)

P-SA4-130-fr34-41-CDCI3-ECA500
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A
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CDCl3, 213 MHz
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'H NMR of Cyclic phosphate (4)
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3C NMR of Cyclic phosphate (4)

C-SA4-129-fr5-21-3-fr6-9-CDCI3-ECA500
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P NMR of Cyclic phosphate (4)
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'H NMR of diphosphorylated 2-phenylbutan-1,4-diol (5)

SA4-184-last-refr27-33-fr31-37-CDCI3-2s-ECA500
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3C NMR of diphosphorylated 2-phenylbutan-1,4-diol (5)

C-SA4-184-last-refr27-33-fr31-37-CDCI3-2s-ECA500
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'P NMR of diphosphorylated 2-phenylbutan-1,4-diol (5)

P-SA4-184-last-refr27-33-fr31-37-CDCI3-ECA500
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8. HPL.C charts of chiral substrates and products
(S)-1-Phenylbutan-1,4-diol [(S)-1a]
OH

©MOH
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(S)-1-(4>-Methoxyphenyl)butan-1,4-diol [(S)-1c]

OH

@MOH
MeO
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(S)-1-(4’-Fluorophenyl)butan-1,4-diol [(S)-1f]

OH

/©/k/\/OH
F
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(S)-2-Phenyltetrahydrofuran [(S)-2b]

b

Ph
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(S)-2-(4’-Methoxyphenyl)tetrahydrofuran [(S)-2c]
0]

MeO
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(S)-2-(4’-Fluorophenyl)tetrahydrofuran [(S)-2f)]

0]
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