Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Orienting spins in dually doped monolayer MoS₂: From one-sided to double-sided doping

J. Vähäkangas,^a P. Lantto,^a J. Vaara,^a M. Huttula,^b and W. Cao^{*,b}

^aNMR Research Unit, University of Oulu, FIN-90014, Finland ^bNano and Molecular Systems Unit, University of Oulu, FIN-90014, Finland. E-mail:wei.cao@oulu.fi

Contents

List of Figures

S1	Spin densities for the doubly-doped MoS_2 systems	3
S2	Spin band structures for typical doubly-doped MoS_2 systems	4
S3	Total density of states of the doubly-doped MoS_2 systems	5
S4	Spin band structures for the Cr homo-doped MoS_2 systems	6
S5	Spin band structures for the Cr, Co and V hetero-doped MoS_2 systems \ldots	7
S6	Total (TDOS) and partial (PDOS) density of states of Cr homo-doped ${\rm MoS}_2$	
	systems	8
S7	Total (TDOS) and partial (PDOS) density of states of Cr, Co and V hetero-	
	doped MoS_2 systems $\ldots \ldots \ldots$	9
S8	Partial density of states (PDOS) of Cr, Co, V, and Mo atoms in $TM(0)$ -MoS ₂ -	
	$TM(1)$ systems \ldots	10

List of Tables

S1	Hubbard table	11
S2	Hubbard table2	12

Fig. S1 Spin densities of (a) $Cr(0)-MoS_2-Cr(4)$, (b) $Cr(0)-MoS_2-Cr(5)$, (c) $Cr(0)-MoS_2-Co(1)$, (d) $MoS_2-Cr(0)Co(2)$, (e) $V(0)-MoS_2-Co(1)$, (f) $V(0)-MoS_2-Co(3)$, (g) $V(0)-MoS_2-Co(4)$, and (h) $V(0)-MoS_2-Co(5)$. The left configuration corresponds to the antiferromagnetic and the one on the right to the ferromagnetic state, respectively. The majority (minority) spin density component is shown in red (blue) with the isosurface value of 0.005 (-0.005) $e/Å^3$. The 5 × 5 supercell size was used.

Fig. S2 Spin band structures of (a) Cr(0)-MoS₂-Cr(1), (b) Cr(0)Cr(2)-MoS₂, (c) Cr(0)-MoS₂-Cr(3), (d) Cr(0)-MoS₂-Co(1), and (e) Cr(0)Co(2)-MoS₂ systems. In (f), the band structure of spin-unpolarized MoS₂ is given as a reference. Red (blue) bands correspond to spin-up (spin-down) states.

Fig. S3 Total density of states (TDOS) for the dual substitutional TM dopant atoms in the monolayer-MoS₂ systems in (a)-(k). In (l), TDOS for the pure MoS_2 is given as a reference.

Fig.S4 Spin band structures of (a) $Cr(0)-MoS_2-Cr(1)$, (b) $Cr(0)Cr(2)-MoS_2$, (c) $Cr(0)-MoS_2-Cr(3)$, (d) $Cr(0)-MoS_2-Cr(4)$, and (e) $Cr(0)-MoS_2-Cr(5)$. In (f), the band structure of undoped MoS_2 is given as a reference.

Fig. S5 As Fig. S3, but for (a) $Cr(0)-MoS_2-Co(1)$, (b) $Cr(0)Co(2)-MoS_2$, (c) $V(0)-MoS_2-Co(1)$, (d) $V(0)-MoS_2-Co(4)$, and (e) $V(0)-MoS_2-Co(5)$.

Fig. S6 Partial density of states (PDOS) for (a) $Cr(0)-MoS_2-Cr(1)$, (b) $Cr(0)Cr(2)-MoS_2$, (c) $Cr(0)-MoS_2-Cr(3)$, (d) $Cr(0)-MoS_2-Cr(4)$, and (e) $Cr(0)-MoS_2-Cr(5)$ systems.

Fig. S7 Partial density of states (PDOS) for (a) $Cr(0)-MoS_2-Co(1)$, (b) $Cr(0)Co(2)-MoS_2$, (c) $V(0)-MoS_2-Co(1)$, (d) $V(0)-MoS_2-Co(3)$, (e) $V(0)-MoS_2-Co(4)$, and (f) $V(0)-MoS_2-Co(5)$ systems.

Fig. S8 Partial density of states (PDOS) for dopant atoms and nearest three Mo atoms in (a) $Cr(0)-MoS_2-Cr(1)$, (b) $Cr(0)-MoS_2-Co(1)$, and (c) $V(0)-MoS_2-Co(1)$ systems in their AFM, FM, and AFM ground states, respectively.

Table S1 Hubbard U parameters for the dual substitutional TM dopant atoms in the monolayer-MoS₂ systems at uniform concentration $\theta = 2/75$. For each system, the assigned U value, from linear response determination, is tabulated for the TM atoms *i* and *j* at both possible magnetic configurations (AFM/FM). Due to the calculation of the exchange energy value ($J = E_{AFM} - E_{FM}$) of these systems, we used the AFM-FM-averaged (bolded) values in the all electronic structure property calculations.

System	AFM i	FM i	aver. i	AFM j	FM j	aver. j
Cr(0)-MoS ₂ -Cr(1)	3.25	3.26	3.26	3.25	3.26	3.26
$Cr(0)Cr(2)-MoS_2$	3.11	3.08	3.10	3.11	3.10	3.11
Cr(0)-MoS ₂ -Cr(3)	3.32	3.32	3.32	3.29	3.25	3.27
Cr(0)-MoS ₂ -Cr(4)	3.48	3.34	3.41	3.26	3.26	3.26
Cr(0)-MoS ₂ -Cr(5)	3.30	3.29	3.30	3.30	3.29	3.30
$Cr(0)-MoS_2-Co(1)$	3.02	3.15	3.09	5.25	5.85	5.55
$Cr(0)Co(2)-MoS_2$	3.24	3.25	3.25	5.64	5.63	5.64
V(0)-MoS ₂ -Co(1)	4.22	4.19	4.21	5.25	5.74	5.50
V(0)-MoS ₂ -Co(3)	4.01	3.94	3.98	5.68	6.12	5.90
V(0)-MoS ₂ -Co(4)	3.99	3.96	3.98	5.96	6.05	6.01
V(0)-MoS ₂ -Co(5)	3.98	3.98	3.98	6.13	6.12	6.13

Table S2 Relative energies of the ground state and the first excited state for two strongly correlated heteronuclear dimer molecules VMo and CrMo. For both systems, the ground state is S = 5/2 and the first excited state is S = 1/2, and $d\sigma \rightarrow d\delta$ is the first excitation that takes place. Here, spin-orbit splitting is not considered. The assigned U values, from the linear response U determination, are communicated in the main text.

Molecule	Method	$\Delta E \ (eV)$	$\Delta E \ (\mathrm{cm}^{-1})$
VCr	DFT	-	-
	DFT+U	0.6995	5666
	$CASPT2^{1}$	0.7005	5674
VMo	DFT	-0.0717	-581
	$\mathrm{DFT}\mathrm{+U}$	0.8912	7218
	$CASPT2^{1}$	0.6063	4911

¹ Ruiperez, F.; Ugalde, J. M.; Infante, I. *Inorg. Chem.* **2011**, 50, 9219–9229.