Supporting Information

Interactions regulating the head-to-tail directed assembly of biological Janus rods

A.C. Greene,^a M. Bachand,^b A. Gomez,^c M.J. Stevens,^{b,c} and G.D. Bachand^{b*}

^{a.} WMD Threats and Aerosol Science Department, Sandia National Laboratories, Albuquerque, NM 87185 USA.

b. Center for Integrated Nanotechnologies, Sandia National Laboratories, PO Box 5800, MS 1303, Albuquerque, NM 87185 USA.

^{c.} Center for Materials Science & Engineering, Sandia National Laboratories, Albuquerque, NM 87185 USA.

Experimental

Preparation of MTs and Kinesin Motor Proteins

TRITC and HiLyte488 fluorescently-labeled porcine tubulin was purchased from Cytoskeleton, Inc. (Denver, CO). Tubulin was prepared by rehydrating the lyophilized tubulin protein in BRB80 buffer (80 mM PIPES pH 6.9, 1 mM MgCl₂, 1 mM EGTA) supplemented with 1 mM guanosine triphosphate and 10 % glycerol to a concentration of 5 mg mL⁻¹ tubulin. Tubulin was polymerized at 37 °C for 20 min and stabilized by diluting 100-fold into BRB80 supplemented with 10 μ M paclitaxel (BRB80T), resulting in a final concentration of ~0.9 μ M.

A histidine-tagged kinesin-1 heavy chain motor protein from *Drosophila melanogaster* was expressed from the pPK113¹ plasmid in *Escherichia coli* BL21 (DE3) pLysS cells. At an OD 600 nm of ~0.7, protein expression was induced through the addition of 0.5 mM isopropylthio- β -galactoside (IPTG). Cells were harvested through centrifugation at 9,000 x g and then stored at -80 °C until used. Cells were lysed using a lysis buffer (50 mM NaPO₄ pH 8.0, 300 mM NaCl, 40 mM imidazole, 5 mM BME, 10% glycerol and 50 μ M MgATP) supplemented with BugBuster[®], 100 μ M AEBSF and benzonase (all from EMD Millipore, Billerica, MA). Kinesin was then purified using an Ni-NTA gravity column equilibrated in wash buffer (50 mM NaPO₄ pH 7.0, 1 M NaCl, 80 mM imidazole, 5 mM BME, and 50 μ M MgATP) as previously described.^{1,2} Following two washes with wash buffer, kinesin was eluted (50 mM NaPO₄ pH 7.0, 300 mM NaCl, 700 mM imidazole, 5 mM BME, and 50 μ M MgATP) and protein presence was confirmed using polyacrylamide gel electrophoresis (PAGE). Kinesin concentration was measured using a Bradford assay.

Characterization of MT Self-Assembly

TRITC and HyLyte488 labeled tubulin was polymerized as described above. Following stabilization with BRB80T, the indicated concentration NaCl were added to the differentially-labeled populations. The ionic strength (*I*) of BRB80 has been estimated to be 176 mM (130 mM monovalent species)³. NaCl was added to BRB80 at the following concentrations: 0, 50, 100, 150, 200 or 300 mM. The two separate populations were combined and stored at room temperature in the dark. Flow cells for inverted kinesin-MT assays were constructed by adhering a #1 glass coverslip to double-sided tape on a microscope slide.

A solution containing 1.5 mg mL⁻¹ casein, ~5nM kinesin and 1.5 mM adenosine 5'-(β , γ -imido)triphosphate lithium salt hydrate (or AMP-PNP, a non-hydrolyzable form of ATP) was incubated at room temperature in the flow cell for 5 min. MTs were then infused into the flow cell in a motility solution composed in BRB80T containing 0.15 mg mL⁻¹ casein, 1 mM AMP-PNP, 0.02 mg mL⁻¹ glucose oxidase, 0.08 mg mL⁻¹ catalase, 20mM glucose and 1 mM DTT (the last three compounds are anti- fade reagents)² and allowed to bind to the kinesin-coated surface for 5 min. After incubation, the flow cell was washed with the motility solution to remove unbound any unbound microtubules. Characterization of the self-assembled MTs was performed by epifluorescence using an Olympus IX71 microscope and Hamamatsu ORCA 3CCD camera. Still-frame images were taken every hour over the course of eight hours.

Calculating Rates of MT Self-Assembly

As previously shown for actin filaments, the time course of end-to-end assembly between two filaments is consistent with a simple biomolecular reaction (Equation 1).⁴

$$1 R = k^+ [ends]^2$$

To determine the rates of assembly, the relative concentration (percentage) of single-coloured microtubules ("monomers") over time was determined by Equation 2:⁵

$$C_{MT} = \frac{MT_t - MT_m}{MT_t}$$

The number of single-colored (or monomeric) microtubules (denoted as MT_m) and the total number of microtubules (denoted as MT_t) per field of view for five fields of view was determined for all treatments at each time point. Based on the second order kinetics, these data were then plotted as 1 / P_m and fit using linear regression analysis in GraphPad Prism (La Jolla, CA) to derive the slope, k^* .

Results

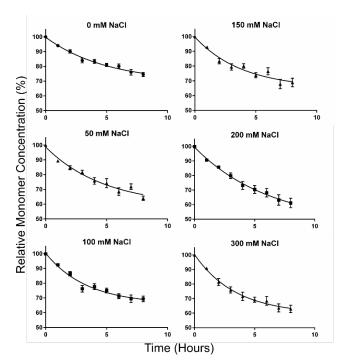


Figure S1. The percentage of monomeric (single-colored) microtubules over time in the presence of added NaCl.

S1 Table. Summary of assembly rates (i.e., slope), standard deviations, and linear regression fits for different added NaCl concentrations.

Concentration NaCl	Assembly Rate*	Standard Deviation	R ²
(mM)	(1/h)		
0	0.0004186	2.93e-005	0.9669
50	0.0006422	5.82e-005	0.9457
100	0.0005802	6.55e-005	0.9182
150	0.0005842	6.50e-005	0.9203
200	0.0008912	3.04e-005	0.9919
300	0.0007821	5.94e-005	0.9611

* Rates reported in the paper were converted to units of s⁻¹.

References

- 1 D. L. Coy, M. Wagenbach and J. Howard, J. Biol. Chem., 1999, **274**, 3667–3671.
- 2 G. D. Bachand, S. B. Rivera, A. K. Boal, J. Gaudioso, J. Liu and B. C. Bunker, *Nano Lett.*, 2004, 4, 817–821.
- 3 N. F. Bouxsein and G. D. Bachand, *Biomacromolecules*, 2014, **15**, 3696–3705.
- 4 D. B. Murphy, R. O. Gray, W. A. Grasser and T. D. Pollard, J. Cell Biol., 1988, **106**, 1947–1954.
- 5 M. Bachand, N. F. Bouxsein, S. Cheng, S. J. von Hoyningen-Huene, M. J. Stevens and G. D. Bachand, *RSC Adv.*, 2014, **4**, 54641–54649.