# **Electronic Supplementary Information (ESI)** for

# Highly active Fe<sub>3</sub>BO<sub>6</sub> as an anode material for sodium-ion batteries

Jianliya Tian<sup>a</sup>, Baofeng Wang<sup>a,b,\*</sup>, Fei Zhao<sup>a</sup>, Xiao Ma<sup>a</sup>, Yong Liu<sup>c</sup>, Hua Kun Liu<sup>b</sup> and Zhenguo Huang<sup>b,\*</sup>

 <sup>a</sup> Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China
<sup>b</sup> Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
<sup>c</sup> School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China

\*Corresponding author: E-mail: <u>wangbaofeng@shiep.edu.cn</u> <u>zhenguo@uow.edu.au</u>

# **Experimental details**

## **Preparation of Fe<sub>3</sub>BO<sub>6</sub>**

The Fe<sub>3</sub>BO<sub>6</sub> nanoparticles were synthesized via a facile solid state method. All reagents were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai) without further treatment. In a typical experiment, FeC<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O and H<sub>3</sub>BO<sub>3</sub> were mixed by ball milling in a molar ratio of 3:1.2 with a proper amount of deionized water as a dispersant. After the grinding and mixing, the obtained rheological phase was transferred into an autoclave and kept at 80 °C for 12 h. The precursor was then calcined at 800 °C for 5 h with a heating rate of 3 °C /min in air. After cooling down to ambient temperature, the product was washed 3 times using boiling water to remove the unreacted boron oxide. In addition, the Fe<sub>3</sub>BO<sub>6</sub>@C sample was prepared by mixing Fe<sub>3</sub>BO<sub>6</sub> with oleic acid and then heating it at 500 °C in N<sub>2</sub>.

### Characterization of the materials

The crystal structure of the samples was characterized by an X-ray diffractometer (XRD, Rigaku RINT 2200). XRD data were gained with Cu K $\alpha_1$  radiation ( $\lambda = 0.15406$  nm) in the  $2\theta$  range of 20–80° with a step size of 0.02° and a scan rate of 2° per minute. The morphologies and structure of the Fe<sub>3</sub>BO<sub>6</sub> nanoparticles were investigated by scanning electron microscopy (SEM, Hitachi S-3500N) and transmission electron microscopy (TEM, JEM-2100F, JEOL, Japan). X-ray photoelectron spectroscopy (XPS) tests were carried out on a Kratos Axis UltraDLD spectrometer (Kratos Analytical - A Shimadzu Group company) with monochromatic Al K $\alpha$  radiation (hv = 1486.6 eV).

#### **Electrochemical measurements**

The Fe<sub>3</sub>BO<sub>6</sub> powders were mixed with sodium carboxymethyl cellulose (CMC, WALOCEL<sup>TM</sup> CRT 2000 PPA 12, Dow Wolff Cellulosic) and acetylene black to form a slurry with a weight ratio of 80:10:10. The working electrode was manufactured by casting the slurry on copper foil substrate, which was dried at 80°C overnight. Disks with an area of 1.54 cm<sup>2</sup> were punched out of the foil, and the

average mass loading of active material on each disk was about 1.0 mg. In CR2016 coin cells, the Fe<sub>3</sub>BO<sub>6</sub> samples and metallic sodium were using as working electrode and counter electrode, respectively. 1 M NaClO<sub>4</sub> (98% Sigma Aldrich) in ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1 by volume) was used as the electrolyte. The cells were assembled in an argon-filled glove box (Mikrouna-China Super 1220/750). The electrochemical properties of the cells were tested using a battery tester (LAND CT2001A Wuhan, China) in the voltage range of 0.01-3.0 V under different current densities. The cyclic voltammetry (CV) tests were carried out on an electrochemical workstation (Autolab PGSTAT 302N) at a scan rate of 0.01mV s<sup>-1</sup> in the voltage range of 0.01-3.0 V. The electrochemical impedance spectroscopy (EIS) analysis was conducted on an Autolab PGSTAT 302N electrochemical workstation from 100 kHz to 0.1 Hz with potentiostatic signal amplitude of 5 mV in the fully charged state. The working potential for EIS tests is stable at open circuit potential (about 1.7 V) after charging to 3.0 V (vs. Na<sup>+</sup>/Na) and resting for 6 h.

Fig. S1



Fig. S1 (a) Low-magnification SEM image of as-prepared Fe<sub>3</sub>BO<sub>6</sub>; (b) SEM image of the FeC<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O precursor.





Fig. S2 XPS spectra of the  $Fe_3BO_6$  sample: (a) survey spectrum, (b) Fe 2p, (c) B 1s, and (d) O 1s.



Fig. S3 Initial three charge-discharge curves of  $Fe_3BO_6$  electrode at 100 mA g<sup>-1</sup>.

#### Table S1

| Cycles           | $R_s/\Omega$ | $R_{ct}/\Omega$ | CPE         |      |
|------------------|--------------|-----------------|-------------|------|
|                  |              |                 | $Y_o/\mu F$ | N    |
| 1 <sup>st</sup>  | 1.98         | 100             | 225         | 0.60 |
| $2^{nd}$         | 2.41         | 94.4            | 213         | 0.63 |
| 30 <sup>th</sup> | 2.67         | 102             | 192         | 0.63 |
| 80 <sup>th</sup> | 3.24         | 125             | 190         | 0.61 |

**Table S1:** Solution resistance  $(R_s)$ , charge transfer resistance  $(R_{ct})$ , and constant phase angle element (*CPE*) derived from the equivalent circuit model of EIS curves.