Supporting Information

Kinetic Resolution *via* Supramolecular Iminium Catalysis: Multiactivation Enables the Asymmetric Synthesis of β -Aryl Substituted Aldehydes and Densely Functionalized Cyclohexanes

Zhi-Long Jia,^a Yao Wang, *^b Guo-Qiang Xu,^a and Peng-Fei Xu*^a

^{a.} State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (P.R. China).

^{b.} School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 (China)

Table of Contents

1. General Information	S2
2. Preparation of Substrates	S3
3. General Procedure	S6
4. Analytical and Spectral Data	S6
5. X-ray Crystallography of Product 6d	
NMR Spectra	
HPLC Spectra	S58

1. General Information

Chemicals were either purchased from commercial suppliers or purified by standards techniques. Ultra dry 1,2-dichloroethane(DCE) was purchased from commercial suppliers. Toluene, dichloromethane (DCM), tetrahydrofuran (THF), and acetonitrile were dried through aluminia using a Pure-Solv PS-MD-5 Solvent Purification System (Innovative Technology). Analytical thin-layer chromatography (TLC) was performed on silica gel plates with F-254 indicator and compounds were visualized by irradiation with UV light. Flash chromatography was carried out utilizing silica gel 200-300 mesh. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker AM-400 spectrometer (400 MHz ¹H, 101 MHz ¹³C). The spectra were recorded in CDCl₃ or DMSO-d₆ as solvents at room temperature, ¹H and ¹³CNMR chemical shifts are reported in ppm relative to either the residual solvent peak (¹³C) (δ = 77.00 ppm) or TMS (¹H) ($\delta = 0$ ppm) as an internal standard. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = double doublet), coupling constant (Hz) and integration. Data for ¹³C NMR are reported as chemical shift. IR spectra were recorded using Nicolet NEXUS 670 FT-IR instrument and are reported in wavenumbers (cm⁻¹). HRMS were performed on Bruker Apex II mass instrument (ESI). Enantiomeric excess values were determined by HPLC with employing a Daicel Chirapak AD-H, AS-H, OD-H. on Agilent 1100 series and eluting with *i*-PrOH and *n*-hexane. Optical rotation was measured on the Perkin Elmer 341 polarimeter with $[\alpha]_{D}$ values reported in degrees; concentration (c) is in g/100 mL.

2. Preparation of Substrates

Substrates 1 were prepared following the published procedures.

To a solution of catalysts *rac*-**A** (10 mol %) and *rac*-**B** (5 mol %) in dry toluene or DCE was added unsaturated aldehyde **S2** (1 equiv) at room temperature. Then the reaction mixture was heated to 40 $^{\circ}$ C and Allyl Ketones **S1** (1.2 equiv) was added subsequently. The reaction mixture was stirred at 50 $^{\circ}$ C and monitored by TLC. Upon complete consumption of aldehyde **S2**, the reaction mixture was then immediately purified by flash chromatography on silica gel to give the desired products **1a-m**.

(E)-7-(4-chlorophenyl)-7-oxo-3-phenylhept-5-enal (1b)

Faint yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 7.78 - 7.61 (m, 2H), 7.44 - 7.09 (m, 7H), 6.96 - 6.77 (m, 1H), 6.71 (d, *J* = 15.6 Hz, 1H), 3.54 - 3.29 (m, 1H), 2.89 - 2.74 (m, 2H), 2.74 - 2.50 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 200.6,

189.0, 146.2, 142.3, 139.0, 135.8, 129.8, 128.7, 128.6, 127.6, 127.3, 126.9, 49.4, 39.3, 39.0. HRMS (ESI): exact mass calculated for $[M+H]^+$ ($C_{19}H_{18}ClO_2$) requires m/z 313.0990, found m/z 313.0994.

(E)-7-(4-bromophenyl)-7-oxo-3-phenylhept-5-enal (1d)

Faint yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.68 (t, J = 1.2 Hz, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.8 Hz, 2H), 7.32 (t, J = 7.2 Hz, 2H), 7.25 - 7.15 (m, 3H), 6.93 - 6.76 (m, 1H), 6.70 (d, J = 15.2 Hz, 1H), 3.51 - 3.38 (m, 1H), 2.88 - 2.75 (m, 1H), 3.51 - 3.38 (m, 1H), 3.51 - 3.38 (m, 1H), 3.51 - 3.51 (m, 2H), 3.51 (m, 2H), 3.51 - 3.51 (m, 2H), 3.51 - 3.51 (m, 2H), 3.51 (m, 2H), 3.51 - 3.51 (m, 2H), 3.

2H), 2.74 - 2.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 200.6, 189.3, 146.3, 142.3, 136.2,

131.7, 129.9, 128.8, 127.7, 127.6, 127.3, 127.0, 49.5, 39.3, 39.0. HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₉H₁₈BrO₂) requires m/z 357.0485, found m/z 357.0484.

(E)-7-(2-fluorophenyl)-7-oxo-3-phenylhept-5-enal (1f)

6.72 (m, 1H), 6.66 (d, J = 15.6 Hz, 1H), 3.44 (p, J = 7.2 Hz, 1H), 2.81 (d, J = 7.2 Hz, 2H), 2.64 (t, J = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 200.8, 189.1 (d, J = 2 Hz), 161.0 (d, J = 251 Hz), 146.3, 142.4, 133.8 (d, J = 8 Hz), 131.5 (d, J = 6 Hz), 130. (d, J = 2 Hz), 128.8, 127.3, 127.0, 126.6 (d, J = 14 Hz), 124.3 (d, J = 3 Hz), 116.4 (d, J = 22 Hz), 49.4, 39.4, 39.0. HRMS (ESI): exact mass calculated for [M+H]⁺ (C₁₉H₁₈FO₂) requires m/z 297.1285, found m/z 297.1289.

(E)-7-(4-fluorophenyl)-7-oxo-3-phenylhept-5-enal (1i)

Faint yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (t, *J* = 1.2 Hz, 1H), 7.86 - 7.75 (m, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.28 - 7.18 (m, 3H), 7.09 (t, *J* = 8.4 Hz, 2H), 6.91 - 6.78 (m, 1H), 6.73

(d, J = 15.2 Hz, 1H), 3.53 - 3.38 (m, 1H), 2.83 (d, J = 7.2 Hz, 2H), 2.75 - 2.58 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 200.7, 188.8, 165.5 (d, J = 253 Hz), 145.9, 142.3, 133 (d, J = 3 Hz), 131.1 (d, J = 9 Hz), 128.8, 127.8, 127.4, 127.0, 115.5 (d, J = 21 Hz), 49.6, 39.4, 39.1. HRMS (ESI): exact mass calculated for [M+H]⁺ (C₁₉H₁₈FO₂) requires m/z 297.1285, found m/z 297.1289.

(E)-7-oxo-7-phenyl-3-(p-tolyl)hept-5-enal (1j)

Faint yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 7.79 (d, J = 7.2 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.12 (m, 5 H), 6.82 (m, 2H), 3.47 – 3.36 (m, 1H), 2.82 – 2.77 (m, 1H), 2.65 (dd, J = 13.2, 6.6 Hz, 1H), 2.34 – 2.25 (m, 5H). ¹³C NMR (101 MHz, CDCl₃)

δ 201.0, 190.5, 145.9, 139.3, 137.7, 136.7, 132.7, 129.5, 128.5, 128.5, 128.2, 127.3, 49.6, 39.6, 38.9,

21.0. HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₀H₂₁O₂) requires m/z 293.1536, found m/z 293.1532.

(E)-3-(4-methoxyphenyl)-7-oxo-7-phenylhept-5-enal (1k)

Faint yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.67 (s, 1H), 7.85 – 7.74 (m, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.13 (d, J = 8.8 Hz, 2H), 6.91 - 6.69 (m, 4H), 3.77 (s, 3H), 3.48 - 3.33(m, 1H), 2.78 (dd, J = 7.2, 1.6 Hz, 2H), 2.71 – 2.52 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 190.4, 158.4, 145.9, 137.6, 134.3, 132.6, 128.4, 128.4,

128.3 128.0, 114.1, 55.1, 49.6, 39.6, 38.4. HRMS (ESI): exact mass calculated for $[M+H]^+$ $(C_{20}H_{21}O_3)$ requires m/z 309.1485, found m/z 309.1490.

(E)-3-(4-bromophenyl)-7-oxo-7-phenylhept-5-enal (11)

Faint yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.67 (s, 1H), 7.86 – 7.72 (m, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.43 (dd, J = 7.8, 5.8 Hz, 4H), 7.09 (d, J = 8.4 Hz, 2H), 6.88 – 6.71 (m, 2H), 3.46 – 3.39 (m, 1H), 2.81 – 2.79 (m, 2H), 2.72 – 2.55 (m, 2H). ¹³C NMR (101 MHz,

CDCl₃) δ 200.1, 190.2, 145.0, 141.5, 137.4, 132.7, 131.8, 129.1, 128.5, 128.4, 128.2, 120.7, 49.3, 39.1, 38.4. HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₁₉H₁₈BrO₂) requires m/z 357.0485, found m/z 357.0484.

(E)-7-oxo-7-phenyl-3-(m-tolyl)hept-5-enal (1m)

Faint yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 7.79 (d, J = 7.2 Hz, 2H), 7.53 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 7.05 - 7.00 (m, 3H), 6.91 - 6.69 (m, 2H), 3.41 (p, J = 7.2 Hz, 1H), 2.80 (d, J = 7.2 Hz, 2H), 2.70 - 2.57

(m, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 190.6, 145.9, 142.3, 138.4, 137.6, 132.7, 128.7, 128.50, 128.4, 128.2, 127.8, 124.3, 49.5, 39.5, 39.1, 21.4. HRMS (ESI): exact mass calculated for $[M+H]^+$ (C₂₀H₂₁O₂) requires m/z 293.1536, found m/z 293.1541.

3. General procedure

Materials were purified by chromatography before use. To a flame dried reaction vial with a magnetic stirring bar was added catalyst **3a** (0.02 mmol, 10 mol%) and catalyst **4b** (0.01 mmol, 5 mol%) and 4-nitrobenzoic acid (0.01 mmol, 5 mol%). Under the protection of nitrogen, a solution of substrate **1** in ultra dry DCE (0.2 mol/L, 1.0 mL) and cinnamaldehyde (0.2 mmol) was added by syringe respectively. Then the reaction mixture was stirred at 50 °C for the specified time and monitored by TLC. Since the two products are difficult to separate, after the reaction was completed, the reaction mixture was cooled to -10 °C, then Ph₃PCHCOOMe (0.15 mmol) was added and the reaction was monitored by TLC. After reacting for 4 h, the mixture was warmed to room temperature for another hour and then purified by chromatography to give the desired products.

4. Analytical and spectra data

methyl (S,2E,7E)-9-oxo-5,9-diphenylnona-2,7-dienoate (5a)

Colorless oil; $[\alpha]_D^{20} = -3$ (*c* 1.0, CH₂Cl₂, 95% ee); IR(KBr cm⁻¹): 3194, 3061, 3029, 2950, 2927, 1721, 1669, 1620, 1598, 1449, 1437, 1278, 1209, 982, 763; ¹H NMR (400

MHz, CDCl₃) δ 7.78 (d, J = 7.2 Hz, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.32 (t, J = 7.2 Hz, 2H), 7.23 (t, J = 6.4 Hz, 1H), 7.17 (d, J = 7.2 Hz, 2H), 6.90 – 6.71 (m, 3H), 5.80 (d, J = 15.6 Hz, 1H), 3.69 (s, 3H), 3.04 – 2.91 (m, 1H), 2.74 – 2.52 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 190.5, 166.6, 146.5, 146.4, 142.6, 137.6, 132.6, 128.7, 128.4, 128.4, 127.9, 127.4, 126.8, 122.8, 51.4, 44.3, 39.2, 38.7. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 11.81 min, minor enantiomer $t_R = 13.18$ min. HRMS (ESI) : $[M+H]^+$ calcd for $[C_{22}H_{23}O_3]$: 335.1642, found: 335.1643.

methyl (2E,7E)-9-(4-chlorophenyl)-9-oxo-5-phenylnona-2,7-dienoate (5b)

Colorless oil; $[\alpha]_D^{20} = +3$ (c 1.0, CH₂Cl₂, 89% ee); IR(KBr cm⁻¹): 3058, 3028, 2950, 2926, 2850, 1721, 1670, 1621, 1597, 1492, 1448, 1436, 1277, 1211, 1092,

1014, 982; ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.64 (m, 2H), 7.46 – 7.34 (m, 2H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.19 – 7.12 (m, 2H), 6.90 – 6.78 (m, 2H), 6.69 (d, *J* = 15.6 Hz, 1H), 5.80 (d, *J* = 15.6 Hz, 1H), 3.68 (s, 3H), 2.97 (p, *J* = 7.2 Hz, 1H), 2.76 – 2.50 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 189.2, 166.5, 146.8, 146.3, 142.5, 139.0, 135.9, 129.9, 128.7, 127.5, 127.4, 126.9, 122.8, 51.4, 44.3, 39.1, 38.7. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 16.61 min, minor enantiomer t_R = 20.32 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₂H₂₂ClO₃]: 369.1252, found: 369.1248.

methyl (S,2E,7E)-9-oxo-5-phenyl-9-(m-tolyl)nona-2,7-dienoate (5c)

Colorless oil; $[\alpha]_D^{20} = +5$ (*c* 1.0, CH₂Cl₂, 96% ee); IR(KBr cm⁻¹): 3060, 3028, 2951, 2926, 2854, 1721, 1671, 1620, 1585, 1453, 1436, 1398, 1267, 1212, 1070, 1009;

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.53 (m, 2H), 7.37 – 7.27 (m, 4H), 7.25 – 7.20 (m, 1H), 7.20 – 7.15 (m, 2H), 6.90 – 6.79 (m, 2H), 6.75 (d, *J* = 15.6 Hz, 1H), 5.80 (d, *J* = 15.6 Hz, 1H), 3.69 (s, 3H), 3.02 – 2.92 (m, 1H), 2.72 – 2.55 (m, 4H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 166.6, 146.5, 146.1, 142.6, 138.2, 137.7, 133.4, 129.0, 128.7, 128.3, 128.1, 127.4, 126.8, 125.7, 122.8, 51.4, 44.3, 39.2, 38.7, 21.3. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 12.81 min, minor enantiomer t_R = 14.79 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₃H₂₅O₃]: 349.1798, found: 349.1797.

methyl (S,2E,7E)-9-(4-bromophenyl)-9-oxo-5-phenylnona-2,7-dienoate (5d)

Colorless oil; $[\alpha]_D{}^{20} = +7$ (*c* 1.0, CH₂Cl₂, 95% ee); IR(KBr cm⁻¹): 3028, 2951, 2924, 2857, 1722, 1670, 1621, 1452, 1436, 1278, 1204, 1165, 1032, 982; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.8 Hz, 2H),

7.53 (d, J = 8.4 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.22 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 7.6 Hz, 2H), 6.90 - 6.78 (m, 2H), 6.68 (d, J = 15.6 Hz, 1H), 5.80 (d, J = 15.6 Hz, 1H), 3.67 (s, 3H), 3.04 - 2.86 (m, 1H), 2.79 - 2.49 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 189.3, 166.4, 146.8, 146.2, 142.4, 136.3, 131.6, 129.9, 128.6, 127.6, 127.4, 127.3, 126.8, 122.8, 51.3, 44.2, 39.0, 38.7. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 15.45 min, minor enantiomer t_R = 17.24 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₂H₂₂BrO₃]:412.0747, found: 413.0744.

methyl (S,2E,7E)-9-oxo-5-phenyl-9-(p-tolyl)nona-2,7-dienoate (5e)

Colorless oil; $[\alpha]_D^{20} = +6$ (*c* 1.0, CH₂Cl₂, 91% ee); IR(KBr cm⁻¹): 3061, 3027, 2950, 2926, 2851, 1722, 1654, 1620, 1453, 1436, 1272, 1210, 1155, 1038, 982; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 7.2

Hz, 2H), 7.25 - 7.10 (m, 5H), 6.93 - 6.68 (m, 3H), 5.79 (d, J = 15.6 Hz, 1H), 3.67 (s, 3H), 3.05 - 2.85 (m, 1H), 2.73 - 2.50 (m, 4H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.9, 166.5, 146.4, 145.7, 143.4, 142.6, 135.0, 129.1, 128.6, 128.5, 127.8, 127.3, 126.7, 122.7, 51.3, 44.3, 39.1, 38.6, 21.5. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 12.76 min, minor enantiomer t_R = 16.28 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₃H₂₅O₃]: 349.1798, found: 349.1797.

methyl (S,2E,7E)-9-(2-fluorophenyl)-9-oxo-5-phenylnona-2,7-dienoate (5f)

Colorless oil; $[\alpha]_D{}^{20} = +0$ (c 1.0, CH₂Cl₂, 88% ee); Me IR(KBr cm⁻¹): 3029, 2950, 2926, 1721, 1657, 1618, 1481, 1452, 1275, 1210, 1155, 1103, 1028, 981; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (td, J = 7.6, 1.6 Hz, 1H), 7.46 (ddd, J = 15.2, 5.2, 1.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 2H), 7.24 - 7.13 (m, 4H), 7.09 (dd, J = 10.0, 8.8 Hz, 1H), 6.90 - 6.71 (m, 2H), 6.70 - 6.60 (m, 1H), 5.79 (d, J = 15.6 Hz, 1H), 3.68 (s, 3H), 3.02 - 2.90 (m, 1H), 2.70 - 2.51 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 189.1 (d, J = 2 Hz), 166.6, 160.9 (d, J = 252 Hz), 147.0, 146.4, 142.5, 133.7 (d, J = 8 Hz), 131.2 (d, J = 5 Hz), 130.8 (d, J = 3 Hz), 128.6, 127.3, 126.8, 126.7 (d, J = 13 Hz), 124.3 (d, J = 6 Hz), 122.8, 116.3 (d, J = 23 Hz), 51.4, 44.2, 39.1, 38.5. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 11.94 min, minor enantiomer t_R = 14.33 min. HRMS (ESI) : [M+NH₄]⁺calcd for [C₂₂H₂₅FNO₃]: 370.1813, found: 370.1814.

methyl (S,2E,7E)-9-(3-chlorophenyl)-9-oxo-5-phenylnona-2,7-dienoate (5g)

Colorless oil; $[\alpha]_D^{20} = +1$ (*c* 1.0, CH₂Cl₂, 89% ee); IR(KBr cm⁻¹): 3066, 2925, 2854, 1720, 1656, 1620, 1451, 1438, 1382, 1278, 1226, 1198, 1148, 1097, 1030, 982; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.62 (d,

J = 7.6 Hz, 1H), 7.49 (dd, J = 8.0, 1.2 Hz, 1H), 7.39 - 7.29 (m, 3H), 7.23 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 6.8 Hz, 2H), 6.91 -6.76 (m, 2H), 6.67 (d, J = 15.6 Hz, 1H), 5.81 (d, J = 15.6 Hz, 1H), 3.69 (s, 3H), 2.97 (p, J = 7.2 Hz 1H), 2.76 - 2.54 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 189.3, 166.6, 147.3, 146.3, 142.5, 139.3, 134.7, 132.6, 129.8, 128.8, 128.6, 127.6, 127.4, 127.0, 126.5, 122.9, 51.4, 44.3, 39.2, 38.8. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 15.47 min, minor enantiomer t_R = 17.03 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₂H₂₂ClO₃]: 369.1252, found: 369.1248.

methyl (S,2E,7E)-9-(4-methoxyphenyl)-9-oxo-5-phenylnona-2,7-dienoate (5h)

Colorless oil; $[\alpha]_D^{20} = +4$ (*c* 1.0, CH₂Cl₂, 95% ee); IR(KBr cm⁻¹): 3058, 2969, 2933, 1720, 1664, 1619, 1600, 1511, 1437, 1340, 1306, 1264, 1172, 1028, 982; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.8 Hz, 2H), 7.33 - 7.27 (m, 2H), 7.26 - 7.13 (m, 3H), 6.90 - 6.74 (m, 5H), 5.80 (d, J = 15.6 Hz, 1H), 3.85 (s, 3H), 3.68 (s, 3H), 3.03 - 2.90 (m, 1H), 2.72 - 2.50 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 188.7, 166.6, 163.3, 146.5, 145.2, 142.7, 130.7, 130.5, 128.6, 127.6, 127.4, 126.8, 122.7, 113.6, 55.4, 51.4, 44.3, 39.1, 38.6. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 21.65 min, minor enantiomer t_R = 26.47 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₃H₂₅O₄]: 365.1747, found: 365.1750.

methyl (S,2E,7E)-9-(4-fluorophenyl)-9-oxo-5-phenylnona-2,7-dienoate (5i)

Colorless oil; $[\alpha]_D^{20} = +4$ (*c* 1.0, CH₂Cl₂, 96% ee); IR(KBr cm⁻¹): 3062, 3028, 2950, 2928, 1721, 1671, 1657, 1621, 1598, 1507, 1436, 1338, 1277, 1229, 1156, 1031, 982; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, *J* = 8.0, 5.6

Hz, 2H), 7.32 (t, J = 7.2 Hz, 2H), 7.27 - 7.13 (m, 3H), 7.08 (t, J = 8.4 Hz, 2H), 6.95 -6.76 (m, 2H), 6.72 (d, J = 15.6 Hz, 1H), 5.80 (d, J = 15.6 Hz, 1H), 3.68 (s, 3H), 3.05 - 2.85 (m, 1H), 2.78 - 2.45 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 188.8, 166.7, 165.4 (d, J = 253 Hz), 146.4 (d, J = 14 Hz), 142.5, 133.9 (d, J = 3 Hz), 131.1, 131.0, 128.7, 127.5, 127.4, 126.8, 122.8, 115.5 (d, J = 21 Hz), 51.4, 44.3, 39.1, 38.7. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 14.87 min, minor enantiomer t_R = 16.79 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₂H₂₂FO₃]: 353.1547, found: 353.1546.

methyl (S,2E,7E)-9-oxo-9-phenyl-5-(p-tolyl)nona-2,7-dienoate (5j)

Colorless oil; $[\alpha]_D^{20} = -1$ (*c* 1.0, CH₂Cl₂, 98% ee); IR(KBr cm⁻¹): 2950, 2924, 2856, 1722, 1670, 1621, 1598, 1447, 1437, 1276, 1209, 1178, 1157, 1037, 1020, 981; ¹H NMR (400 MHz, CDCl₃) δ 7.81 - 7.75 (m, 2H), 7.57 -

7.50 (m, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.15 - 7.09 (m, 2H), 7.09 - 7.01 (m, 1H), 6.90 - 6.70 (m, 3H), 5.80 (d, *J* = 15.6 Hz, 1H), 3.69 (s, 3H), 2.99 - 2.89 (m, 1H), 2.70 - 2.54 (m, 4H), 2.32 (s,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.7, 166.7, 146.7, 146.6, 139.6, 137.7, 136.4, 132.6, 129.4, 128.5, 128.4, 127.9, 127.3, 122.8, 51.4, 44.0, 39.3, 38.8, 21.0. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 14.31 min, minor enantiomer t_R = 15.74 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₃H₂₅O₃]: 349.1798, found: 349.1799.

methyl (S,2E,7E)-5-(4-methoxyphenyl)-9-oxo-9-phenylnona-2,7-dienoate (5k)

Colorless oil; $[\alpha]_D^{20} = +8$ (*c* 1.0, CH₂Cl₂, 96% ee); IR(KBr cm⁻¹): 3057, 3029, 3000, 2950, 2931, 1721, 1657, 1618, 1513, 1446, 1437, 1275, 1249, 1179, 1036, 981; ¹H NMR (400 MHz, CDCl₃) δ 7.84 - 7.72 (m, 2H), 7.56 - 7.49 (m,

1H), 7.41 (t, J = 7.6 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 6.92 - 6.70 (m, 5H), 5.79 (d, J = 15.6 Hz, 1H), 3.77 (s, 3H), 3.68 (s, 3H), 3.01 – 2.86 (m, 1H), 2.73 – 2.45 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 190.5, 166.6, 158.3, 146.6, 146.5, 137.6, 134.6, 132.6, 128.4, 128.4, 128.3, 127.8, 122.7, 114.0, 55.1, 51.3, 43.5, 39.4, 38.9. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 20.05 min, minor enantiomer t_R = 22.09 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₃H₂₅O₄]: 365.1747, found: 365.1748.

methyl (S,2E,7E)-5-(4-bromophenyl)-9-oxo-9-phenylnona-2,7-dienoate (5l)

Colorless oil; $[\alpha]_D^{20} = -6$ (*c* 1.0, CH₂Cl₂, 89% ee); IR(KBr cm⁻¹): 3423, 2950, 2927, 1721, 1669, 1621, 1488, 1448, 1437, 1277, 1228, 1209, 1074, 1010, 981; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.2 Hz, 2H), 7.54 (t, *J* =

7.2 Hz, 1H), 7.46-7.42 (m, 4H), 7.05 (d, J = 8.4 Hz, 2H), 6.88 – 6.70 (m, 3H), 5.79 (d, J = 15.6 Hz, 1H), 3.69 (s, 3H), 3.01 – 2.89 (m, 1H), 2.71 – 2.49 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 190.4, 166.5, 145.8, 145.6, 141.6, 137.6, 132.8, 131.9, 129.2, 128.5, 128.5, 128.1 123.2, 120.7, 51.5, 43.9, 39.1, 38.5. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer t_R = 28.91 min,

minor enantiomer $t_R = 32.35$ min. HRMS (ESI) : [M+H]⁺calcd for [C₂₂H₂₂BrO₃]: 413.0747, found: 413.0745.

methyl (S,2E,7E)-9-oxo-9-phenyl-5-(m-tolyl)nona-2,7-dienoate (5m)

Colorless oil; $[\alpha]_{D}^{20} = -4$ (*c* 1.0, CH₂Cl₂, 93% ee); IR(KBr cm⁻¹): 3425, 3056, 3024, 2949, 2924, 1721, 1670, 1620, COOMe 1447, 1436, 1277, 1210, 1178, 1037, 1020, 982; ¹H NMR (400 MHz, CDCl₃) δ 7.83 - 7.73 (m, 2H), 7.57 - 7.49 (m, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 8.0 Hz, 1H), 7.04 (d, J = 7.2 Hz, 1H), 6.98 - 6.96 (m, 2H), 6.88 -6.74 (m, 3H), 5.81 (d, J = 15.6 Hz, 1H), 3.69 (s, 3H), 3.02 - 2.85 (m, 1H), 2.76 -

2.52 (m, 4H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.7, 166.7, 146.6, 146.5, 142.6, 138.3, 137.7, 132.6, 128.6, 128.5, 128.4, 128.2, 127.9, 127.6, 124.4, 122.7, 51.4, 44.2, 39.3, 38.7, 21.5. The enantiomeric excess was determined by HPLC with AS-H column. (*n*-hexane:*i*-PrOH = 80:20), 1mL/min; major enantiomer $t_R = 10.78$ min, minor enantiomer t_R = 11.55 min. HRMS (ESI) : $[M+H]^+$ calcd for $[C_{23}H_{25}O_3]$: 349.1798, found: 349.1799.

(1S,2S,3R,4R,6R)-4-(2-oxo-2-phenylethyl)-2,6-diphenylcyclohexane-1,3-dicarbaldehyde (6a)

3.03 (m, 3H), 2.88 (dd, J = 17.1, 7.6 Hz, 1H), 2.84 – 2.66 (m, 2H), 2.21 (d, J = 13.2 Hz, 1H), 1.62 (dd, J = 24.1, 11.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 202.9, 198.2, 141.6, 138.7, 136.7, 133.3, 129.2, 128.8, 128.6, 128.0, 128.0, 127.8, 127.3, 127.2, 60.0, 59.9, 46.0, 45.0, 42.4, 39.6, 33.1. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7a** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; minor enantiomer t = 9.64 min, major enantiomer t = 13.28min. HRMS (ESI): [M+H]⁺ calcd for [C₂₈H₂₇O₃]: 411.1955, found: 411.1952.

(1S,2S,3R,4R,6R)-2-(4-chlorophenyl)-4-(2-oxo-2-phenylethyl)-6-phenylcyclohexane-1,3-d icarbaldehyde (6b)

White solid; $[\alpha]_D^{20} = +21$ (*c* 1.0, CH₂Cl₂, 96% ee); IR(KBr cm⁻¹): 3060, 2954, 2923, 2851, 2724, 1722, 1681, 1597, 1580, 1492, 1448, 1410, 1090, 1013; ¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, *J* = 4.0 Hz, 1H), 9.23 (d, *J* = 2.4 Hz, 1H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.33 – 7.13 (m,

9H), 3.41 (t, J = 10.6 Hz, 1H), 3.09 (m, 3H), 2.90 (dd, J = 17.2, 7.6 Hz, 1H), 2.77 (dd, J = 7.6, 3.6 Hz, 1H), 2.67 (td, J = 11.2, 4.0 Hz, 1H), 2.21 (d, J = 13.2 Hz, 1H), 1.63 (dd, J = 24.8, 12.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.9, 202.6, 198.1, 141.3, 137.4, 136.7, 133.6, 133.4, 129.4, 129.4, 128.9, 128.7, 128.0, 127.3, 127.3, 59.9, 59.8, 45.3, 45.1, 42.3, 39.5, 33.1.HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7b** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0

mL/min; minor enantiomer t = 11.70 min, major enantiomer t = 18.82 min. HRMS (ESI): [M+H]⁺calcd for [C₂₈H₂₆ClO₃]: 445.1565, found: 445.1566.

(1S,2S,3R,4R,6R)-4-(2-oxo-2-phenylethyl)-6-phenyl-2-(p-tolyl)cyclohexane-1,3-dicarbald

ehyde (6c)

White solid; $[\alpha]_D^{20} = +12$ (*c* 0.5, CH₂Cl₂, 98% ee); IR(KBr cm⁻¹): 3060. 2955, 2923, 2869, 2851, 1719, 1678, 1457, 1378, 1023; ¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, *J* = 4.4 Hz, 1H), 9.25 (d, *J* = 2.4 Hz, 1H), 7.89 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.44 (t, *J*

= 7.6 Hz, 2H), 7.33 - 7.15 (m, 5H), 7.15 - 7.06 (m, 4H), 3.36 (t, J = 10.8 Hz, 1H), 3.16 - 3.03 (m, 3H), 2.88 (dd, J = 17.2, 7.6 Hz, 1H), 2.83 - 2.63 (m, 2H), 2.27 (s, 3H), 2.24 - 2.15 (m, 1H), 1.68 - 1.55 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.5, 203.0, 198.2, 141.7, 137.5, 136.7, 135.6, 133.3, 129.9, 128.8, 128.6, 128.0, 127.8, 127.4, 127.2, 60.1, 60.0, 45.7, 45.0, 42.5, 39.6, 33.1, 21.0. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7c** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; minor enantiomer t = 7.58 min, major enantiomer t = 10.30 min. HRMS (ESI): [M+H]⁺ calcd for [C₂₉H₂₉O₃]: 425.2111, found: 425.2109.

(1S, 2S, 3R, 4R, 6R) - 2 - (2 - chlorophenyl) - 4 - (2 - oxo - 2 - phenylethyl) - 6 - phenylcyclohexane - 1, 3 - d - 2 - (2 - chlorophenyl) - 4 - (2 - oxo - 2 - phenylethyl) - 6 - phenylcyclohexane - 1, 3 - d - 2 - (2 - chlorophenyl) - 4 - (2 - oxo - 2 - phenylethyl) - 6 - phenylcyclohexane - 1, 3 - d - 2 - (2 - chlorophenyl) - 4 - (2 - oxo - 2 - phenylethyl) - 6 - phenylcyclohexane - 1, 3 - d - 2 - (2 - chlorophenyl) - 4 - (2 - oxo - 2 - phenylethyl) - 6 - phenylcyclohexane - 1, 3 - d - 2 - (2 - chlorophenylcyclohexane - 1, 3 - (2 - chlorophenylcyclohexane - 1, 3 -

icarbaldehyde (6d)

White solid; $[\alpha]_D^{20} = +10$ (*c* 1.0, CH₂Cl₂, 99% ee); IR(KBr cm⁻¹): 2955, 2924, 2870, 2852, 1722, 1673, 1450, 1214, 1033, 1015; ¹H NMR (400 MHz, CDCl₃) δ 9.46 (d, *J* = 3.2 Hz, 1H), 9.28 (d, *J* = 4.0 Hz, 1H), 7.89 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.50 - 7.40 (m, 3H), 7.40 -

7.08 (m, 8H), 4.17 (t, J = 11.2 Hz, 1H), 3.30 - 2.80 (m, 5H), 2.70 - 2.50 (m, 1H), 2.26 (d, J = 10.4 Hz, 1H), 1.80 - 1.52 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.5, 201.4, 198.0, 141.4, 136.7, 136.5, 133.6, 133.4, 130.0, 128.9, 128.8, 128.6, 128.5, 128.0, 127.8, 127.3, 61.0, 60.5, 44.7, 42.4, 40.2, 39.4, 32.9. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7d** with Ph₃PCHCOOMe (hexane:

i-PrOH = 70:30), 1.0 mL/min; minor enantiomer t = 7.32 min, major enantiomer t = 12.17 min. HRMS (ESI): [M+H]⁺ calcd for [C₂₈H₂₆ClO₃]: 445.1565, found: 445.1562.

(18, 28, 3R, 4R, 6R) - 2 - (3, 5 - dichlorophenyl) - 4 - (2 - oxo - 2 - phenylethyl) - 6 - phenylcyclohexane - 1 - (3, 5 - dichlorophenyl) - 4 - (2 - oxo - 2 - phenylethyl) - 6 - phenylcyclohexane - 1 - (3, 5 - dichlorophenyl) - 4 - (3, 5 - dichlorophenyl) - 4 - (3, 5 - dichlorophenyl) - 4 - (3, 5 - dichlorophenyl) - 6 - phenylcyclohexane - 1 - (3, 5 - dichlorophenyl) - 4 - (3, 5 - dichlorophenyl) - 4 - (3, 5 - dichlorophenyl) - 6 - phenylcyclohexane - 1 - (3, 5 - dichlorophenyl) - 6 - phenylcyclohexane - 1 - (3, 5 - dichlorophenyl) - 6 - phenylcyclohexane - 1 - (3, 5 - dichlorophenyl) - 6 - phenylcyclohexane - 1 - (3, 5 - dichlorophenyl) - 6 - phenylcyclohexane - 1 - (3, 5 - dichlorophenylcyclohexane - (3, 5 - dichlorophenylcyclohexane - (3, 5 - dichlor

,3-dicarbaldehyde (6e)

White solid; $[\alpha]_D^{20} = +25$ (*c* 1.0, CH₂Cl₂, 94% ee); IR(KBr cm⁻¹): 2955, 2924, 2852, 2725, 1723, 1682, 1587, 1566, 1449, 1433, 1215; ¹H NMR (400 MHz, CDCl₃) δ 9.45 (d, *J* = 4.4 Hz, 1H), 9.24 (d, *J* = 2.4 Hz, 1H), 7.88 (d, *J* = 7.2 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.35 – 7.15 (m, 6H), 7.13 (d, *J* = 1.6 Hz, 2H),

3.40 (t, J = 11.2 Hz, 1H), 3.16 – 2.92 (m, 3H), 2.92 – 2.82 (m, 1H), 2.82 – 2.60 (m, 2H), 2.20 (d, J = 13.6 Hz, 1H), 1.65 (dd, J = 24.8, 12.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.5, 202.3, 197.9, 142.7, 141.0, 136.6, 135.6, 133.4, 129.0, 128.7, 128.1, 127.9, 127.5, 127.3, 126.6, 59.6, 59.3, 45.4, 44.9, 42.2, 39.5, 33.0. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7e** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; minor enantiomer t = 9.91 min, major enantiomer t = 11.99 min. HRMS (ESI): [M+H]⁺ calcd for [C₂₈H₂₅Cl₂O₃]: 479.1175, found: 479.1171.

(1S,2S,3R,4R,6R)-4-(2-oxo-2-phenylethyl)-6-phenyl-2-(4-(trifluoromethyl)phenyl)cycloh exane-1,3-dicarbaldehyde (6f)

7.14 (m, 5H), 3.51 (t, J = 10.8 Hz, 1H), 3.21 - 3.00 (m, 3H), 2.92 (dd, J = 17.2, 7.2 Hz, 1H), 2.86 - 2.67 (m, 2H), 2.29 - 2.16 (m, 1H), 1.67 (dd, J = 24.8, 11.2 Hz, 1H). ¹³C NMR (101

MHz, CDCl₃) δ 202.7, 202.50, 198.0, 143.2, 141.1, 136.6, 133.4, 129.9 (q, *J* = 33 Hz), 128.9, 128.7, 128.6, 127.9, 127.4, 127.3, 126.1 (q, *J* = 4 Hz), 123.8 (q, *J* = 271 Hz), 59.8, 59.6, 45.4, 45.3, 42.2, 39.6, 33.1. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7f** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; minor enantiomer *t* = 11.47 min, major enantiomer *t* = 19.47 min. HRMS (ESI): [M+H]⁺ calcd for [C₂₉H₂₆F₃O₃]: 479.1829, found: 479.1826.

(1S,2S,3R,4R,6R)-2-(4-bromophenyl)-4-(2-oxo-2-phenylethyl)-6-phenylcyclohexane-1,3-

dicarbaldehyde (6g)

White solid; $[\alpha]_D^{20} = +22$ (*c* 1.0, CH₂Cl₂, 97% ee); IR(KBr cm⁻¹): 2956, 2923, 2851, 1718, 1683, 1489, 1458, 1378, 1013; ¹H NMR (400 MHz, CDCl₃) δ 9.41 (d, *J* = 4.4 Hz, 1H), 9.21 (d, *J* = 2.4 Hz, 1H), 7.88 (d, *J* = 7.2 Hz, 2H), 7.53 (t, *J* = 7.6 Hz, 1H), 7.48 - 7.35

(m, 4H), 7.33 - 7.15 (m, 6H), 7.10 (d, J = 8.4 Hz, 2H), 3.39 (t, J = 10.8 Hz, 1H), 3.16 - 2.99 (m, 3H), 2.89 (dd, J = 17.2, 7.6 Hz, 1H), 2.84 - 2.62 (m, 2H), 2.20 (d, J = 13.2 1H), 1.62 (dd, J = 24.8, 12.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 202.9, 202.6, 198.0, 141.3, 137.9, 136.6, 133.3, 132.2, 129.7, 128.8, 128.6, 127.9, 127.2, 121.5, 59.8, 59.6, 45.1, 45.0, 42.2, 39.4, 33.0. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7g** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; minor enantiomer t = 14.20 min, major enantiomer t = 22.37 min. HRMS (ESI): [M+H]⁺ calcd for [C₂₈H₂₆BrO₃]: 489.1060, found: 489.1059.

(1S,2S,3R,4R,6R)-2-(2-fluorophenyl)-4-(2-oxo-2-phenylethyl)-6-phenylcyclohexane-1,3-d icarbaldehyde (6h)

White solid; $[\alpha]_D^{20} = +21$ (*c* 1.0, CH₂Cl₂, 97% ee); IR(KBr cm⁻¹): 2952, 2921, 2850, 1718, 1685, 1598, 1579, 1511, 1447, 1285, 1231, 1162, 1100, 838; ¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, *J* = 4.4 Hz, 1H), 9.24 (d, *J* = 2.0 Hz, 1H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.36 - 7.11 (m, 7H), 6.98 (t, *J* = 8.4 Hz, 2H), 3.42 (t, J = 10.8 Hz, 1H), 3.18 - 2.99 (m, 3H), 2.90 (dd, J = 17.2, 7.6 Hz, 1H), 2.85 - 2.70 (m, 1H), 2.67 (td, J = 11.2, 4.4 Hz, 1H), 2.21 (d, J = 13.2 Hz, 1H), 1.75 - 1.52 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 202.8, 198.1, 162.0 (d, J = 245 Hz), 141.4, 136.7, 134.6, 134.6, 133.4, 129.6, 129.6, 128.9, 128.6, 128.0, 127.3, 116.2, 116.0, 60.1, 60.0, 45.2, 45.0, 42.3, 39.5, 33.1. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7h** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; minor enantiomer t = 11.70 min, major enantiomer t = 15.81 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₈H₂₆FO₃]: 419.1860, found: 419.1858.

(1S,2S,3R,4R,6R)-4-(2-(4-chlorophenyl)-2-oxoethyl)-2,6-diphenylcyclohexane-1,3-dicarb aldehyde (6i)

(m, 3H), 2.29 - 2.13 (m, 1H), 1.61 (dd, J = 24.0, 11.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 202.8, 197.0, 141.6, 139.8, 138.6, 135.0, 129.4, 129.2, 129.0, 128.9, 128.0, 127.9, 127.3, 127.3, 59.9, 46.1, 45.1, 42.4, 39.6, 33.0. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding **7i** ester with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; minor enantiomer t = 16.78 min, major enantiomer t = 18.62 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₈H₂₆ClO₃]: 445.1565, found: 445.1561.

(1S,2S,3R,4R,6R)-4-(2-oxo-2-(m-tolyl)ethyl)-2,6-diphenylcyclohexane-1,3-dicarbaldehyd e (6j)

(d, J = 2.8 Hz, 1H), 7.68 (d, J = 9.2 Hz, 2H), 7.40 - 7.13 (m, 12H), 3.40 (t, J = 10.8 Hz, 1H), 3.18 - 3.04 (m, 3H), 2.95 - 2.65 (m, 3H), 2.39 (s, 3H), 2.22 (d, J = 10.0 Hz, 1H), 1.61 (dd, J = 24.4, 11.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 202.9, 198.4, 141.7, 138.7, 138.5, 136.8, 134.1, 129.2, 128.8, 128.5, 128.5, 128.0, 127.8, 127.4, 127.2, 125.2, 60.1, 59.9, 46.0, 45.1, 42.5, 39.6, 33.1, 21.3. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7j** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; minor enantiomer t = 7.82 min, major enantiomer t = 11.05min. HRMS (ESI) : [M+H]⁺calcd for [C₂₉H₂₉O₃]: 425.2111, found: 425.2110.

(1S,2S,3R,4R,6R)-4-(2-(4-bromophenyl)-2-oxoethyl)-2,6-diphenylcyclohexane-1,3-dicarb aldehyde (6k)

12.8 Hz, 1H), 1.72 (dd, J = 22.0, 10.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 204.5, 203.7, 197.9, 142.7, 139.9, 135.6, 131.8, 129.9, 128.6, 128.5, 128.2, 127.5, 127.4, 127.1, 126.7, 59.2, 59.0, 44.2, 43.6, 42.3, 38.2, 32.6. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7k** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; minor enantiomer t = 13.84 min, major enantiomer t = 17.80 min. HRMS (ESI) : [M+H]⁺calcd for [C₂₉H₂₆BrO₃]: 489.1060, found: 489.1058.

(1S,2S,3R,4R,6R)-4-(2-oxo-2-(p-tolyl)ethyl)-2,6-diphenylcyclohexane-1,3-dicarbaldehyde (6l)

3H), 2.38 (s, 3H), 2.27 - 2.15 (m, 1H), 1.60 (dd, J = 24.0, 11.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 202.9, 197.9, 144.2, 141.6, 138.7, 134.2, 129.3, 129.2, 128.8, 128.7, 128.1, 128.0, 127.8, 127.3, 127.2, 60.0, 59.9, 45.9, 45.0, 42.3, 39.5, 33.1, 21.6. HPLC: The enantiomeric excess was determined by HPLC with an OD-H column after converted to corresponding ester 7l with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; major enantiomer t = 16.51 min, minor enantiomer t = 36.10 min. HRMS (ESI) : [M+H]⁺ calcd for [C₂₉H₂₉O₃]: 425.2111, found: 425.2108.

(1S,2S,3R,4R,6R)-4-(2-(2-fluorophenyl)-2-oxoethyl)-2,6-diphenylcyclohexane-1,3-dicarb aldehyde (6m)

1H), 3.40 (t, J = 11.2 Hz, 1H), 3.17 - 3.06 (m, 3H), 2.93 (ddd, J = 18.4, 7.6, 3.2 Hz, 1H), 2.85 -2.72 (m, 1H), 2.67 (td, J = 11.2, 6.8 Hz, 1H), 2.26 - 2.17 (m, 1H), 1.64 (dd, J = 24.8, 12.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 203.1, 196.5 (d, J = 4 Hz), 161.8 (d, J = 253 Hz), 141.7, 138.7, 134.8, (d, J = 9 Hz), 130.6 (d, J = 2 Hz), 129.2, 128.9, 128.1, 127.8, 127.4, 127.2, 125.5 (d, J = 13 Hz), 124.5 (d, J = 4 Hz), 116.7 (d, J = 24 Hz), 60.0, 59.9, 47.5, 47.4, 45.9, 45.1, 39.7, 32.9. HPLC: The enantiomeric excess was determined by HPLC with an OD-H column after converted to corresponding ester **7m** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; major enantiomer t = 9.15 min, minor enantiomer t = 22.89 min. HRMS (ESI) : $[M+H]^+$ calcd for $[C_{28}H_{26}FO_3]$: 429.1860, found: 429.1859.

(1S,2S,3R,4R,6R)-4-(2-(3-chlorophenyl)-2-oxoethyl)-2,6-diphenylcyclohexane-1,3-dicarb aldehyde (6n)

3.02 (m, 3H), 2.92 - 2.62 (m, 3H), 2.20 (d, J = 13.2 Hz, 1H), 1.62 (dd, J = 24.0, 11.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 202.9, 196.9, 141.5, 138.6, 138.2, 135.0, 133.2, 130.0, 129.2, 128.9, 128.1, 128.0, 127.9, 127.3, 127.2, 126.1, 59.9, 59.8, 46.0, 45.0, 42.6, 39.5, 32.9. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7n** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; minor enantiomer t = 9.7 min, major enantiomer t = 14.6 min. HRMS (ESI) : [M+H]⁺ calcd for [C₂₈H₂₆ClO₃]: 445.1565, found: 445.1564.

(1S,2S,3R,4R,6R)-4-(2-(4-methoxyphenyl)-2-oxoethyl)-2,6-diphenylcyclohexane-1,3-dica rbaldehyde (60)

White solid; $[\alpha]_D^{20} = +42$ (*c* 0.5, CH₂Cl₂, 98% ee); IR(KBr cm⁻¹): 3417, 3028, 2955, 2922, 2850, 1719, 1668, 1599, 1574, 1510, 1456, 1419, 1377, 1317, 1253, 1168, 1030; ¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, *J* = 4.4 Hz, 1H), 9.24 (d, *J* = 3.2 Hz, 1H), 7.88 (d, *J* = 8.8 Hz, 2H), 7.34 - 7.14 (m, 10H), 6.94 - 6.86 (m, 2H), 3.84 (s, 3H), 3.39 (t, *J* = 10.4 Hz, 1H), 3.19 -

3.00 (m, 3H), 2.86 - 2.65 (m, 3H), 2.21 (d, J = 10.4 Hz, 1H), 1.60 (dd, J = 24.0, 12.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 202.9, 196.7, 163.7, 141.7, 138.8, 130.3, 129.8, 129.2, 128.8, 128.0, 127.8, 127.3, 127.2, 113.8, 60.1, 59.9, 55.4, 46.0, 45.1, 42.1, 39.6, 33.3. HPLC: The product was converted to corresponding ester **70** with Ph₃PCHCOOMe and enantiomeric excess was determined by HPLC with an AD-H column (hexane: *i*-PrOH = 80:20), 1.0 mL/min; minor enantiomer t = 23.44 min, major enantiomer t = 26.94 min. HRMS (ESI) : $[M+H]^+$ calcd for $[C_{29}H_{29}O_4]$: 441.2060, found: 441.2058.

(1S,2S,3R,4R,6R)-4-(2-(4-fluorophenyl)-2-oxoethyl)-2,6-diphenylcyclohexane-1,3-dicarb aldehyde (6p)

White solid; $[\alpha]_D^{20} = +25$ (*c* 1.0, CH₂Cl₂, 97% ee); IR(KBr cm⁻¹): 2955, 2920, 2850, 2729, 1715, 1683, 1672, 1595, 1506, 1495, 1455, 1435, 1410, 1231, 1175, 1101; ¹H NMR (400 MHz, CDCl₃) δ 9.41 (d, *J* = 3.6 Hz, 1H), 9.24 (d, *J* = 2.4 Hz, 1H), 7.92 (dd, *J* = 8.4, 5.6 Hz, 2H), 7.34 - 7.14 (m, 10H), 7.10 (t, *J* = 8.4 Hz, 2H), 3.39 (t, *J* = 10.4 Hz, 1H), 3.20 - 3.03 (m, 3H), 2.88 - 2.65 (m, 3H), 2.20 (d, *J* = 13.2 Hz, 1H), 1.61 (dd, *J*

= 23.6, 12.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 202.8, 196.6, 165.9 (d, *J* = 250 Hz), 141.6, 138.6, 133.1 (d, *J* = 3 Hz), 130.7 (d, *J* = 9 Hz), 129.2, 128.8, 128.0, 127.8, 127.3, 127.2, 115.8 (d, *J* = 22 Hz), 59.9, 59.8, 46.0, 45.0, 42.4, 39.6, 33.0. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7p** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 80:20), 1.0 mL/min; minor enantiomer *t* = 19.28 min, major enantiomer *t* = 25.31 min. HRMS (ESI) : [M+H]⁺ calcd for [C₂₈H₂₆FO₃]: 429.1860, found: 429.1858.

(1S,2S,3R,4R,6R)-4-(2-oxo-2-phenylethyl)-2-phenyl-6-(p-tolyl)cyclohexane-1,3-dicarbald ehyde (6q)

White solid; $[\alpha]_D^{20} = +16 (c \ 1.0, CH_2Cl_2, 95\% ee)$; IR(KBr cm⁻¹): 2955, 2923, 2851, 1723, 1682, 1597, 1580, 1514, 1449, 1377, 1218, 1182, 1021; ¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, J = 4.4 Hz, 1H), 9.24 (d, J = 3.2 Hz, 1H), 7.96 - 7.85 (m, 2H), 7.59 - 7.51 (m, 1H), 7.43 (t, J =7.6 Hz, 2H), 7.34 - 7.16 (m, 5H), 7.12 - 7.06 (m, 4H), 3.39 (t, J = 10.8

Hz, 1H), 3.17 - 3.00 (m, 3H), 2.88 (dd, J = 17.2, 7.6 Hz, 1H), 2.83 - 2.65 (m, 1H), 2.27 (s, 3H), 2.19 (dt, J = 13.2, 3.2 Hz, 1H), 1.59 (dd, J = 24.8, 11.6 Hz, 1H). ¹³C NMR (101 MHz,

CDCl₃) δ 203.4, 203.0, 198.2, 138.8, 138.6, 136.8, 136.7, 133.3, 129.5, 129.2, 128.6, 128.0, 128.0, 127.8, 127.2, 60.0, 60.0, 46.0, 44.7, 42.4, 39.7, 33.1, 21.0. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7q** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 80:20), 1.0 mL/min; minor enantiomer *t* = 10.10 min, major enantiomer *t* = 16.57 min. HRMS (ESI) : [M+H]⁺ calcd for [C₂₉H₂₉O₃]: 425.2111, found: 425.2108.

(1R,2S,3S,4R,6R)-4-(4-methoxyphenyl)-6-(2-oxo-2-phenylethyl)-2-phenylcyclohexane-1, 3-dicarbaldehyde (6r)

White solid; $[\alpha]_D^{20} = +26$ (*c* 1.0, CH₂Cl₂, 97% ee); IR(KBr cm⁻¹): 2954, 2923, 2850, 2740, 1718, 1682, 1612, 1597, 1580, 1515, 1457, 1446, 1246, 1178, 1030, 1002; ¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, J = 4.0 Hz, 1H), 9.24 (d, J = 2.8 Hz, 1H), 7.93 - 7.83 (m, 2H), 7.61 -7.50 (m, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 - 7.26 (m, 2H), 7.25 -

7.16 (m, 3H), 7.15 - 7.08 (m, 2H), 6.81 (d, J = 8.8 Hz, 2H), 3.74 (s, 3H), 3.39 (t, J = 11.2 Hz, 1H), 3.17 - 2.97 (m, 3H), 2.88 (dd, J = 17.2, 7.6 Hz, 1H), 2.81 - 2.63 (m, 2H), 2.25 - 2.12 (m, 1H), 1.66 - 1.51 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 203.0, 198.2, 158.6, 138.8, 136.7, 133.7, 133.3, 129.2, 128.6, 128.3, 128.0, 128.0, 127.8, 114.2, 60.2, 60.0, 55.2, 46.0, 44.2, 42.4, 39.8, 33.1. HPLC: The enantiomeric excess was determined by HPLC with an AS-H column after converted to corresponding ester **7r** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 80:20), 1.0 mL/min; minor enantiomer t = 11.04 min, major enantiomer t = 16.41 min. HRMS (ESI) : [M+H]⁺ calcd for [C₂₉H₂₉O₄]: 441.2060, found: 441.2059.

(1R,2S,3S,4R,6R)-4-(4-bromophenyl)-6-(2-oxo-2-phenylethyl)-2-phenylcyclohexane-1,3dicarbaldehyde (6s)

Hz, 1H), 7.48 – 7.36 (m, 4H), 7.34 – 7.26 (m, 2H), 7.24 – 7.18 (m, 3H), 7.09 (d, J = 8.4 Hz, 2H), 3.36 (t, J = 10.7 Hz, 1H), 3.16 – 3.03 (m, 3H), 2.88 (dd, J = 17.2, 7.5 Hz, 1H), 2.81 – 2.67 (m, 2H), 2.18 (d, J = 13.3 Hz, 1H), 1.66 – 1.54 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 202.6, 198.1, 140.7, 138.4, 136.6, 133.4, 131.9, 129.3, 129.1, 128.7, 128.0, 120.9, 59.8, 59.8, 46.2, 44.3, 42.3, 39.3, 33.0. HPLC: The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7s** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 70:30), 1.0 mL/min; minor enantiomer t = 10.16 min, major enantiomer t = 17.32 min. HRMS (ESI) : [M+H]⁺ calcd for [C₂₈H₂₆BrO₃]: 489.1060, found: 489.1059.

(1S,2S,3R,4R,6R)-4-(2-oxo-2-phenylethyl)-2-phenyl-6-(m-tolyl)cyclohexane-1,3-dicarbal dehyde (6t)

White solid; $[\alpha]_D^{20} = +23$ (*c* 1.0, CH₂Cl₂, 95% ee); IR(KBr cm⁻¹): 2954, 2922, 2850, 2735, 1715, 1680, 1598, 1581, 1493, 1454, 1447, 1279, 1162, 1007 . ¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, *J* = 4.0 Hz, 1H), 9.25 (d, *J* = 3.2 Hz, 1H), 7.88 (d, *J* = 7.2 Hz, 2H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.34 - 6.95 (m, 9H), 3.39 (t,

J = 11.2 Hz, 1H), 3.21 - 2.97 (m, 3H), 2.88 (dd, J = 17.2, 7.6 Hz, 1H), 2.81 - 2.62 (m, 2H), 2.30 (s, 3H), 2.19 (dt, J = 13.2, 3.2 Hz, 1H), 1.60 (dd, J = 24.8, 12.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 202.9, 198.2, 141.6, 138.8, 138.4, 136.7, 133.3, 129.2, 128.7, 128.6, 128.1, 128.0, 127.9, 127.9, 127.8, 124.3, 60.0, 59.8, 45.9, 45.0, 42.4, 39.6, 33.1, 21.4. The enantiomeric excess was determined by HPLC with an AD-H column after converted to corresponding ester **7t** with Ph₃PCHCOOMe (hexane: *i*-PrOH = 80:20), 1.0 mL/min; minor enantiomer t = 11.40 min, major enantiomer t = 16.62 min. HRMS (ESI) : [M+H]⁺ calcd for [C₂₉H₂₉O₃]: 425.2111 found: 425.2109.

5. X-ray crystallography of product **6d**

OHC.	C18 C17 C18 C15 C14 C15 C14 C15
6d	

CCDC 1526972

Bond precisi	on:	C-C =	0.0059	А		Wavelength=0.71073	
Cell:	a=6.5747(5	5)	b=16.8	8602(9)	c=10.7211	1(7)	
	alpha=90		beta=9	3.733(7)	gamma=9	0	
Temperature	: 293 K						
		Calculate	ed			Reported	
Volume		1185.92((14)			1185.93(14)	
Space group		P 21				P 1 21 1	
Hall group		P 2yb				P 2yb	
Moiety form	ula	C28 H25	5 Cl O3			C28 H25 Cl O3	
Sum formula	L	C28 H25	5 Cl O3			C28 H25 Cl O3	
Mr		444.93				444.93	
Dx,g cm-3		1.246				1.246	
Z		2				2	
Mu (mm-1)		0.188				0.188	
F000		468.0				468.0	
F000'		468.50					
h,k,lmax		8,20,13				8,20,13	
Nref		4650[24	09]			4371	
Tmin,Tmax						0.616,1.000	
Tmin'							
Correction method= # Reported T Limits: Tmin=0.616 Tmax=1.000 AbsCorr =							
MULTI-SCA	N						
Data completeness= 1.81/0.94 Theta(max)= 26.020							
R(reflections) = 0.0558(2772) $wR2(reflections) = 0.1261(4371)$							
S = 1.034		Npai	r= 289				

Displacement ellipsoids are drawn at 30% probability level

¹³C NMR of **5a** (101M, CDCl₃)

¹H NMR of **5b** (400M, CDCl₃)

¹³C NMR of **5b** (101M, CDCl₃)

¹H NMR of **5c** (400M, CDCl₃)

¹³C NMR of **5c** (101M, CDCl₃)

¹H NMR of **5d** (400M, CDCl₃)

¹³C NMR of **5d** (101M, CDCl₃)

¹H NMR of **5e** (400M, CDCl₃)

¹³C NMR of **5e** (101M, CDCl₃)

¹H NMR of **5f** (400M, CDCl₃)

¹³C NMR of **5f** (101M, CDCl₃)

¹H NMR of **5g** (400M, CDCl₃)

¹³C NMR of **5**g (101M, CDCl₃)

¹H NMR of **5h** (400M, CDCl₃)

¹³C NMR of **5h** (101M, CDCl₃)

¹H NMR of **5i** (400M, CDCl₃)

¹³C NMR of **5i** (101M, CDCl₃)

¹H NMR of **5j** (400M, CDCl₃)

¹³C NMR of **5j** (101M, CDCl₃)

¹H NMR of **5**k (400M, CDCl₃)

¹³C NMR of **5k** (101M, CDCl₃)

¹H NMR of **5l** (400M, CDCl₃)

¹³C NMR of **5**l (101M, CDCl₃)

¹H NMR of **5m** (400M, $CDCl_3$)

¹³C NMR of **5m** (101M, CDCl₃)

¹³C NMR of **6a** (101M, CDCl₃)

¹³C NMR of **6b** (101M, CDCl₃)

¹³C NMR of **6c** (101M, CDCl₃)

¹³C NMR of **6e** (101M, CDCl₃)

¹³C NMR of **6f** (101M, CDCl₃)

¹³C NMR of **6g** (101M, CDCl₃)

¹³C NMR of **6h** (101M, CDCl₃)

¹³C NMR of **6i** (101M, CDCl₃)

¹³C NMR of **6j** (101M, CDCl₃)

¹³C NMR of **6k** (101M, DMSO-d₆)

¹³C NMR of **61** (101M, CDCl₃)

¹³C NMR of **6m** (101M, CDCl₃)

¹³C NMR of **6n** (101M, CDCl₃)

¹³C NMR of **60** (101M, CDCl₃)

¹³C NMR of **6p** (101M, CDCl₃)

¹³C NMR of **6q** (101M, CDCl₃)

¹³C NMR of **6r** (101M, CDCl₃)

¹³C NMR of **6s** (101M, CDCl₃)

¹³C NMR of **6t** (101M, CDCl₃)

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254,16 nm	11.807	1.66291e4	603.08282	97.7341
2	DAD 254,16 nm	13.180	385.53983	11.35658	2.2659

Doolz	Processed	Retention	Peak Area	Peak Height	Peak Area
геак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	16.605	1.80234e4	456.15805	50.6735
2	DAD 254, 16 nm	19.992	1.75442e4	286.77222	49.3265
D/	AD1 A, Sig=254,16 Ref=off (JIAZHILON	NG\3-3-2-4-CL-YUAN-SHOU	.D)		
mAU -			6.6 08		
350			Ť		
-					
300 -					
250					
230 -					
200 -	o	COOMe	e		
-	CI CI	5b			
150					
100					
100 -	٨				
- 50 -		٨		318	
-		\bigwedge		20.3	
0					
	5	10	15	20	25 min

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	16.608	1.41172e4	374.07816	94.4590
2	DAD 254, 16 nm	20.318	828.12292	16.25900	5.5410

HPLC using an AS column (hexane: *i*-PrOH = 80:20, 1.0 mL/min)

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	13.230	1.47805e4	336.27496	50.1471
2	DAD 254, 4 nm	15.104	1.46938e4	274.74304	49.8529

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	12.813	3.58698e4	825.17041	98.0333
2	DAD 254, 4 nm	14.793	719.58789	13.14374	1.9667

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	15.694	3850.37939	79.90881	49.2731
2	DAD 254, 4 nm	17.329	3963.98071	63.54708	50.7269

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	15.450	5.33200e4	1017.90649	97.6725
2	DAD 254, 4 nm	17.241	1270.57446	20.32446	2.3275

HPLC using an AS column (hexane: *i*-PrOH = 80:20, 1.0 mL/min)

Dealr	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 280, 16 nm	12.804	3675.54028	87.33235	49.8103
2	DAD 280, 16 nm	16.111	3703.53125	65.34211	50.1897

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 280, 16 nm	12.763	3.85833e4	851.10498	95.5695
2	DAD 280, 16 nm	16.278	1788.66980	30.48558	4.4305

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	12.121	1.62845e4	492.78973	50.3320
2	DAD 230, 16 nm	14.811	1.60697e4	401.10657	49.6680

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	11.935	1.74840e4	534.64960	93.9158
2	DAD 230, 16 nm	14.332	1132.67139	22.10943	6.0842

HPLC using an AS column (hexane: *i*-PrOH = 80:20, 1.0 mL/min)

D1-	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	15.606	4898.58252	134.65163	49.4811
2	DAD 254, 16 nm	17.065	5001.32764	119.42539	50.5189

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	15.469	3.23221e4	842.05261	94.5185
2	DAD 254, 16 nm	17.030	1874.48193	42.53213	5.4815

HPLC using an AS column (hexane: *i*-PrOH = 80:20, 1.0 mL/min)

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	22.440	9433.79688	127.34587	51.8876
2	DAD 230, 16 nm	27.254	8747.41797	109.12292	48.1124

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	21.650	2.88033e4	409.35922	97.3151
2	DAD 230, 16 nm	26.466	794.68066	11.14236	2.6849

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	15.110	6185.77832	143.14149	50.4013
2	DAD 254, 4 nm	16.760	6087.28467	111.09929	49.5987

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	14.865	4.88781e4	1017.24554	97.9102
2	DAD 254, 4 nm	16.792	1043.27332	19.13320	2.0898

HPLC using an AS column (hexane: *i*-PrOH = 80:20, 1.0 mL/min)

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	14.478	3758.25244	87.45330	49.7217
2	DAD 254, 4 nm	15.977	3800.32617	80.14983	50.2783

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	14.309	1.20671e4	263.18414	98.8456
2	DAD 254, 4 nm	15.735	140.92809	3.52518	1.1544

Dook	Processed	Retention	Peak Area	Peak Height	Peak Area
геак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	20.313	2.45412e4	444.10345	49.8146
2	DAD 254, 16 nm	22.450	2.47239e4	389.03632	50.1854
mAU - 500 - 400 - 300 - 200 - 100 -	DAD1 B, Sig=254,16 Ref=360,100 (JIA	ZHILONG2016\JIAZHL2016	0608-2-4-MEO .D)	20052 1988	5 ²⁵⁶
0-					
C	5	10	15	20	25 min

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	20.052	2.91570e4	526.70801	98.0818
2	DAD 254, 16 nm	22.088	570.23621	9.06597	1.9182

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	29.003	1.39707e4	181.81752	49.9643
2	DAD 254, 4 nm	32.188	1.39906e4	161.89824	50.0357

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	28.909	4.33440e4	531.00928	94.6963
2	DAD 254, 4 nm	32.353	2427.56738	28.10785	5.3037

Dool	Processed	Retention	Peak Area	Peak Height	Peak Area	
r eak	Channel	Time (min)	(mAU*s)	(mAU)	(%)	
1	DAD 254, 16 nm	10.767	1.67234e4	535.32800	49.4207	
2	DAD 254, 16 nm	11.765	1.71154e4	484.28903	50.5793	
	DAD1 B, Sig=254,16 Ref=360,100 (JIAZHILONG2016\JIAZHL20160611-2-3-ME .D)					
mAU			10=775	°.		
			at life.			
800 -						
-						
600 -	\searrow					
-	s Å	COOMe				
400 -	Û,	5m				
-						
200 -				1011.85°		
			11.55	alt ^e		
0-	^	$\underline{\qquad}$				
	2 4	6 8	10 1	2 14	16 min	

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	10.779	3.11698e4	987.84576	96.6756
2	DAD 254, 16 nm	11.552	1071.84900	36.24280	3.3244

HPLC using an AD column (hexane: *i*-PrOH = 70:30, 1.0 mL/min)

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	8.746	1048.69092	37.09874	50.5125
2	DAD 230, 16 nm	11.977	1027.40991	24.26802	49.4875

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	9.636	946.14496	23.83072	1.4444
2	DAD 230, 16 nm	13.277	6.45590e4	1049.38318	98.5556

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	12.274	2.18965e4	493.51340	50.4578
2	DAD 230, 16 nm	20.378	2.14992e4	247.50015	49.5422

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	11.699	970.12482	22.45220	2.1563
2	DAD 230, 16 nm	18.824	4.40199e4	562.49994	97.8437

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Peak	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	6.858	1.84747e4	594.32758	50.4768
2	DAD 230, 16 nm	9.775	1.81257e4	431.72662	49.5232

Dealr	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	7.481	275.17828	9.15802	1.1946
2	DAD 230, 16 nm	10.298	2.27591e4	568.62335	98.8054

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	Retention Peak Area Peak Height Time (min) (mAU*s) (mAU) 7.319 21.69337 1.08856 12.507 1.29568e4 258.33707	(%)	
1	DAD 230, 16 nm	7.319	21.69337	1.08856	0.1672
2	DAD 230, 16 nm	12.507	1.29568e4	258.33707	99.8328

10

15

min

7.5

2.5

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	9.913	1317.35828	34.80242	3.1104
2	DAD 230, 16 nm	11.994	4.10362e4	799.49957	96.8896

Dealr	Processed	Retention	Peak Area	Peak Height	Peak Area		
Feak	Channel	Time (min)	(mAU*s)	(mAU)	(%)		
1	DAD 230, 16 nm	11.094	1.61838e4	348.39716	50.3817		
2	DAD 230, 16 nm	18.754	1.59386e4	199.63060	49.6183		
DAD1 D, Sig=230,16 Ref=360,100 (JIAZHILONG2016\4-26-5XIA .D)							
mAU -				69 69			

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	11.466	655.38385	13.49150	2.4111
2	DAD 230, 16 nm	19.469	2.65268e4	314.56116	97.5889

Deal	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	14.200	178.43895	3.52076	1.2756
2	DAD 230, 16 nm	22.365	1.38103e4	153.80035	98.7244

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 210, 8 nm	11.702	66.57973	1.35086	1.2734
2	DAD 210, 8 nm	15.814	5161.90137	82.04559	98.7266

Doolr	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	16.862	2.22083e4	393.87048	50.1479
2	DAD 254, 4 nm	18.703	2.20773e4	329.58698	49.8521

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	16.781	439.22089	8.70777	3.0976
2	DAD 254, 4 nm	18.621	1.37400e4	210.42262	96.9024

Deak	Processed	Retention	Peak Area	Peak Height	Peak Area		
геак	Channel	Time (min)	(mAU*s)	(mAU)	(%)		
1	DAD 210, 8 nm	7.757	2.51196e4	836.81396	50.1949		
2	DAD 210, 8 nm	10.936	2.49245e4	551.32385	49.8051		
D. mAll J	DAD1 C, Sig=210,8 Ref=360,100 (JIAZHILONG2016\可用数据\3-17-1XIA 2 .D)						
700 -		СООМе	40-41 Million	35HAPS			
600 -							
500 -	o cooMe						
400	٨	7 j					
300 -							
200 -			6				
100		2818 818	ulti-a2.315				
		6 8		12 14	16 min		

Deals	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	ion Peak Area Peak Height min) (mAU*s) (mAU) 8 942.37524 21.96951 48 3.54990e4 750.54181	(%)	
1	DAD 210, 8 nm	7.818	942.37524	21.96951	2.5860
2	DAD 210, 8 nm	11.048	3.54990e4	750.54181	97.4140

HPLC using an AD column (hexane: *i*-PrOH = 70:30, 1.0 mL/min)

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 210, 8 nm	13.778	2.58434e4	495.59573	50.1499
2	DAD 210, 8 nm	17.780	2.56889e4	349.41125	49.8501

DAD1 C, Sig=210,8 Ref=360,100 (JIAZHILONG2016\可用数据\3-17-4XIA CHONG2 .D)

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 210, 8 nm	13.838	1310.04456	28.50111	3.9882
2	DAD 210, 8 nm	17.803	3.15383e4	421.07962	96.0118

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	16.509	1.06077e4	110.49479	98.9502
2	DAD 254, 4 nm	36.097	112.54442	8.74923e-1	1.0498

HPLC using an OD column (hexane: *i*-PrOH = 70:30, 1.0 mL/min)

Dool	Processed	Retention	Peak Area	Peak Height	Peak Area
Реак	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	9.219	1.27589e4	309.13327	49.6295
2	DAD 254, 4 nm	22.884	1.29494e4	148.70950	50.3705
mAU 160 - 140 - 120 - 100 - 80 - 60 - 40 -	DAD1 A, Sig=254,4 Ref=360,100 (JIAZI	HILONG2016/JIAZHL2016-2	2-F-XIA-SHOU.D)		
20 -				883 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
0				NW.	
0	5	10	15	20 25	min

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	9.152	6317.70605	157.86595	97.6564
2	DAD 254, 4 nm	22.886	151.61403	1.91411	2.3436

HPLC using an AI	column	(hexane:	<i>i</i> -PrOH =	70:30,	1.0 mL/min))
------------------	--------	----------	------------------	--------	-------------	---

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	9.835	7782.63037	198.95479	50.0229
2	DAD 254, 4 nm	14.674	7775.52002	117.77306	49.9771

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	9.677	60.58463	1.50757	1.7339
2	DAD 254, 4 nm	14.641	3433.63013	54.26755	98.2661

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 280, 16 nm	24.275	6957.09570	75.75133	50.3154
2	DAD 280, 16 nm	28.312	6869.87598	64.03755	49.6846

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 280, 16 nm	23.439	128.78914	1.65331	1.0450
2	DAD 280, 16 nm	26.940	1.21960e4	120.09196	98.9550

0	5	10 15	20	25 30	min		
		1			1		
Deals	Processed	Retention	Peak Area	Peak Height	Peak Area		
reak	Channel	Time (min)	(mAU*s)	(mAU)	(%)		
1	DAD 230, 16 nm	20.311	4.54122e4	561.84076	50.2022		
2	DAD 230, 16 nm	26.659	4.50464e4	377.79135	49.7978		
DAD1 D, Sig=230,16 Ref=360,100 (JIAZHILONG2016UIAZHL20160427-1-XIAD)							
mAU _				306			

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	19.282	514.77063	7.44656	1.5319
2	DAD 230, 16 nm	25.306	3.30891e4	295.56290	98.4681

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	10.165	2.72442e4	692.17053	50.7811
2	DAD 230, 16 nm	16.886	2.64061e4	410.92798	49.2189

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	10.099	902.25653	18.68415	2.4243
2	DAD 230, 16 nm	16.567	3.63142e4	566.01001	97.5757

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area	
	Channel	Time (min)	(mAU*s)	(mAU)	(%)	
1	DAD 230, 16 nm	10.874	6.52911e4	1402.50452	48.4175	
2	DAD 230, 16 nm	16.345	6.95593e4	1036.28333	51.5825	
mAU _	DAD1 D, Sig=230,16 Ref=360,100 (JI/	AZHILONG2016\JIAZHL201	60608-1-XIA.D)	9		
-			ĺ	À		
1200 -	-					
-	COOMe					
1000 -						
800 -						
-	-	O COOMe				
600 -		7r				
400 -	-					
-						
200 -	Λ	337				
-		10	15	20	min	

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 230, 16 nm	11.037	1634.63721	39.68741	1.6658
2	DAD 230, 16 nm	16.406	9.64933e4	1371.35571	98.3342

HPLC using an AD column (hexane: *i*-PrOH = 70:30, 1.0 mL/min)

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 16 nm	10.161	119.51803	3.27890	0.2969
2	DAD 254, 16 nm	17.313	4.01373e4	591.93286	99.7031

Peak	Processed	Retention	Peak Area	Peak Height	Peak Area
	Channel	Time (min)	(mAU*s)	(mAU)	(%)
1	DAD 254, 4 nm	11.396	160.96036	2.74149	2.4522
2	DAD 254, 4 nm	16.621	6402.95947	101.07990	97.5478