Supporting information

Highly Enantioselective Synthesis of Chiral Succinic anhydrides via

Rh/Bisphosphine-Thiourea-Catalyzed Asymmetric Hydrogenation

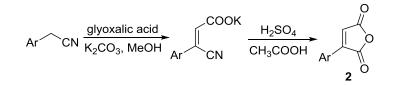
Zhengyu Han,^a Rui Wang,^a Guoxian Gu,^b Xiu-Qin Dong,^{*a} Xumu Zhang^{* b,a}

^a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.

^b Department of Chemistry, South University of Science and Technology of China, Shenzhen, 518000, P.R. China. E-mail address: xumu@whu.edu.cn, xiuqindong@ whu.edu.cn.

Content

I. General Remarks	2
II. General Procedure for the Synthesis of the substrates	2
III. Asymmetric Hydrogenation of Maleic Anhydrides	7
IV. References	13
V. NMR Spectra	14
VI. HPLC Spectra.	37

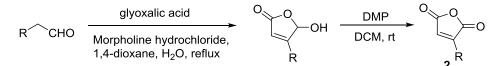

I. General Remarks

All the reactions dealing with air- or moisture-sensitive compounds were carried out in a dry reaction vessel under a positive pressure of nitrogen or in the nitrogen-filled glovebox. Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers without further purification. Anhydrous solvents were purchased from Sigma-Aldrich and transferred by syringe. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker ADVANCE III (400 MHz) spectrometer with CDCl₃ or (CD₃)₂CO as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts are reported in parts per million (ppm, δ scale) downfield from TMS at 0.00 ppm and referenced to the CDCl₃ at 7.26 ppm (for ¹H NMR) or 77.0 ppm (for ¹³C NMR) or to (CD₃)₂CO at 2.05 ppm (for ¹H NMR) or 29.8 ppm, 206.3 ppm (for ¹³C NMR). Data are reported as: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in hertz (Hz) and signal area integration in natural numbers. ¹³C NMR analyses were run with decoupling. Enantiomeric excess values were determined by Daicel chiral column on an Agilent 1260 Series HPLC instrument. Optical rotations [α]_D were measured on a PERKIN ELMER polarimeter 343 instrucment.

All the 3-substituted maleic anhydrides were prepared according the literature.^[1] The absolute configuration of products **2a** and **2l** were determined by comparison of analytical data with the literature (HPLC spectra, optical rotation).^[2] The absolute configuration of others were assigned by analogy.

II. General Procedure for the Synthesis of the substrates

Method A: ^{1a}

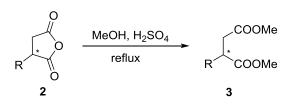

Condensation of arylacetonitriles with glyoxylic acid. A mixture of 20 mmol of the appropriate arylacetonitrile, 25 mmol of glyoxylicacid hydrate, and 50 mmol of potassium carbonate in 40 mL of methanol was stirred at room temperature or reflux for 3-24 h. The resulting thick solid precipitate was filtered and washed with dichloromethane. This solid was suspended in 100 mL of cold water,

stirred overnight, and then filtered and air dried to provide the corresponding potassium (2)-3-aryl-3-cyanopropenoate.

The potassium (*Z*)-3-aryl-3-cyanopropenoates (10 mmol) were dissolved in ca. 25 mL of 88% formic acid containing 1.5 mL of concentrated sulfuric acid. These mixtures were heated at reflux for 2-3 h and then cooled and poured into ice water. The resulting solids were filtered, washed with water, and air dried to provide the arylmaleic anhydrides.

Substrates **1a-1j** were prepared through method A.

Method B: 1b



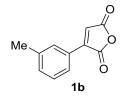
Solid morpholine hydrochloride (3.4 g, 27.5 mmol) was added to a solution of glyoxylic acid monohydrate (2.3 g, 25 mmol) in 20 mL of dioxane. To this suspension was added dropwise 3 mL of H₂O, after which all of the solid material was dissolved. A solution of appropriate alkylaldehyde (26.25 mmol) in 5 mL of dioxane was added via syringe, and the colorless solution was stirred at ambient temperature for 3 h and then heated to 100 $\,^{\circ}$ C and stirred overnight. The reaction mixture was evaporated and extracted 3 times with Et₂O, and the combined organic layers were then washed with saturated NaHCO₃ (aq.) and brine, dried over MgSO₄, and concentrated. The residue was purified with column chromatography to obtain desired 5-hydroxy-4-aryl-2(5H)-furanone.

To a stirred solution of 5-hydroxy-4-aryl-2(5H)-furanone (2 mmol) in DCM (10 mL) was added Dess-Martin periodinane (4 mmol) in one portion and the mixture was stirred for further 3 h in room temperature. After TLC shows starting material has disappeared, the reaction mixture was concentrated under reduced pressure, and the resulting residue was separated by column chromatography (hexane:EtOAc = 10:1) to give the desired maleic anhydrides.

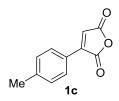
Substrates 1k-1n were prepared through method B.

Esterification:³

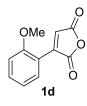
A solution of succinic anhydride 2 (0.1 mmol) in dry methanol (1 mL) containing concentrated sulfuric acid (1 drops) was heated at reflux under anhydrous conditions. After 12 h, the solution was concentrated to near dryness on a rotary vacuum evaporator. The residue was dissolved in chloroform and the solution was washed successively with saturated NaHCO₃ and water before being dried over anhydrous MgSO₄. Removal of solvent under reduced pressure afforded dimethyl succinate as a colorless oil that was sufficiently pure to be used directly in the next step without further purification.


The configuration of **2a** and **2l** was determined as by comparing the optical rotation data with the reported by the literature after esterification of the anhydride.^{2a, 2b} The configuration of **2j** and **2k** was determined by comparing the optical rotation data with the reported by the literature directly.^{2a}

2-phenylmaleic anhydride 1a


White solid; 1.3 g, 38% total yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.00-7.97 (m, 2H), 7.60-7.50 (m, 3H), 7.01 (s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 164.6, 163.7, 146.9, 132.8, 129.4, 129.1, 126.8, 124.5. HRMS (ESI): [M+H⁺] Calc. 175.0395, found 175.0390.

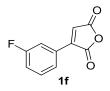
2-(3-methylphenyl)-maleic anhydride 1b


White solid, 410 mg, 22% total yield (10 mmol scale); ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) 7.79-7.77 (m, 2H), 7.43-7.37 (m, 2H), 6.98 (s, 1H), 2.43 (s, 3H); ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) 168.2, 165.3, 149.6, 138.7, 133.8, 131.1, 128.9, 127.3, 124.0, 116.3, 20.5. HRMS (ESI): [M+H⁺] Calc. 189.0552, found 189.0545.

2-(4-methylphenyl)-maleic anhydride 1c

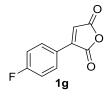
White solid; 180 mg, 10% total yield (10 mmol scale); ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) 8.01 (d, *J* = 8.0Hz, 2H), 7.45 (s, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) 165.4, 164.4, 146.4, 143.1, 129.8, 129.0, 125.0, 124.6, 20.7. HRMS (ESI): [M+H⁺] Calc. 189.0552, found 189.0545.

2-(2-methoxyphenyl)-maleic anhydride 1d

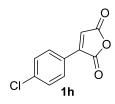


Yellow solid; 210 mg, 11% total yield (10 mmol scale); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.35-8.33 (m, 1H), 7.54-7.50 (m, 1H), 7.39 (s, 1H), 7.12-7.08 (m, 1H), 7.04-7.02 (m, 1H), 3.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 165.6, 165.1, 160.0, 141.9, 133.8, 131.7, 127.6, 121.1, 116.2, 111.2, 55.8. HRMS (ESI): [M+H⁺] Calc. 205.0501, found 204.0495.

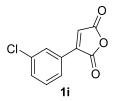
2-(2-fluorophenyl)-maleic anhydride 1e



White yellow solid, mp 95-99 °C; 580 mg, 15% total yield; ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) 8.27-8.23 (m, 1H), 7.72-7.67 (m, 1H), 7.47-7.38 (m, 2H), 7.45 (s, 1H); ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) 165.0, 164.3, 161.8 (d, *J*=253.0 Hz), 140.5, 134.1 (d, *J*=10.1 Hz), 131.2 (d, *J* = 2.0 Hz), 129.4 (d, *J*=13.1 Hz), 124.9 (d, *J*=4.0 Hz), 116.4 (d, *J*=22.2 Hz), 115.9 (d, *J*=11.1 Hz). HRMS (ESI): [M+H⁺] Calc. 193.0301, found 193.0295. 2-(3-fluorophenyl)-maleic anhydride 1f


Light yellow solid, mp 88-91 °C; 930 mg, 24% total yield; ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) 7.84-7.81 (m, 1H), 7.77-7.73 (m, 1H), 7.53-7.48 (m, 1H), 7.51 (s, 1H), 7.03-7.25 (m, 1H); ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) 165.0, 164.0, 162.7 (d, *J* = 246.4 Hz), 145.2 (d, *J* = 3.0 Hz), 131.2 (d, *J* = 8.0 Hz), 129.7 (d, *J* = 9.0 Hz), 127.3, 125.2 (d, *J* = 3.0 Hz), 118.9 (d, *J* = 21.2 Hz), 115.6 (d, *J* = 23.2 Hz). HRMS (ESI): [M+H⁺] Calc. 193.0301, found 193.0295.

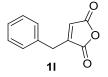
2-(4-fluorophenyl)-maleic anhydride 1g


White solid; 580 mg, 15% total yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.05-8.01 (m, 2H), 7.24-7.20 (m, 2H), 6.97 (s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 165.3 (d, *J* = 254.0 Hz), 164.6, 163.5, 145.7, 131.5 (d, *J* = 10.0 Hz), 123.9 (d, *J* = 2.0 Hz), 123.1 (d, *J* = 4.0 Hz), 116.9 (d, *J* = 22.2 Hz). HRMS (ESI): [M-H⁺] Calc. 193.0301, found 193.0295.

2-(4-chlorophenyl)-maleic anhydride 1h

Light yellow solid; 1.8 g, 43% total yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.95-7.93 (m, 2H), 7.52-7.50 (m, 2H), 7.01 (s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 164.4, 163.4, 145.7, 139.4, 130.3, 129.8, 125.2, 124.7. HRMS (ESI): [M+H⁺] Calc. 209.0005, found 209.0000.

2-(3-chlorophenyl)-maleic anhydride 1i


White solid, mp 89-94 °C; 500 mg, 24% total yield; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.97 (s, 1H), 7.89-7.87 (m, 1H), 7.57-7.54 (m, 1H), 7.49-7.46 (m, 1H), 7.05 (s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 164.1, 163.2, 145.6, 135.6, 132.7, 130.7, 128.9, 128.3, 127.1, 125.7. HRMS (ESI): [M+H⁺] Calc. 209.0005, found 209.0000.

N-phenylmethyl-2-phenyl-maleic anhydride 1k

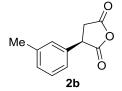
Colorless liquid; 310 mg, 9% total yield; ¹H NMR (400 MHz, (CD₃)₂CO): δ (ppm) 6.55 (s, 1H), 2.91-2.84 (m, 1H), 1.26 (d, *J* = 8.0 Hz, 6H); ¹³C NMR (101 MHz, (CD₃)₂CO): δ (ppm) 165.3, 164.1, 159.3, 127.1, 26.6, 20.5. HRMS (ESI): [M+H⁺] Calc. 141.0552, found 141.0545.

N-phenyl-2-phenyl-maleic anhydride **1**

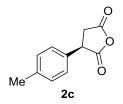
White solid; 550mg, 24% total yield (10 mmol scale); mp 87-91 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.38-7.33 (m, 3H), 7.24-7.22 (m, 2H), 6.42-6.41 (m, 1H), 2.82 (s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 165.6, 163.6, 152.8, 134.3, 129.5, 129.3, 129.0, 127.8, 32.4. HRMS (ESI): [M+H⁺] Calc. 189.0552, found 189.0546.

III. General Procedure for Asymmetric Hydrogenation of Chiral Maleic Anhydrides

In the nitrogen-filled glovebox, a solution of ZhaoPhos (1.0 eq.) and Rh(NBD)₂BF₄ (3.7 mg, 0.005 mmol) in 1.0 mL anhydrous ethyl acetate (EA) was stirred at room temperature for 40 min.

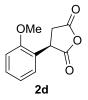

100 uL of the resulting solution transferred by syringe into a vial charged with **1** (0.1 mmol) in 0.9 mL anhydrous EA. The vials were transferred to an autoclave, which was then charged with 1 atm of H_2 and stirred at room temperature for 30min. The solution was passed through short column of silica gel (about 4 cm) to remove the metal complex and concentrated. The product was analyzed by NMR spectroscopy for conversion and chiral HPLC or GC for ee values.

(*R*)-3-phenylsuccinic anhydride 2a

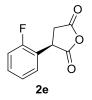


White solid; >99% conversion; 17.1 mg, 98% yield; 97% ee; $[\alpha]_D{}^{20} = -76.09$ (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 98:2; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 46.8 min (major), 52.8 min (minor). ¹H NMR (400 MHz, CDCl₃) δ = 7.44-7.36 (m, 3H), 7.28-7.25 (m, 2H), 4.37-4.33 (m, 1H), 3.51-3.44 (m, 1H), 3.16-3.10 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 170.5, 168.4, 133.5, 128.5, 127.7, 126.2, 45.5, 35.7. HRMS (ESI): [M+H⁺] Calc. 177.0552, found 177.0546.

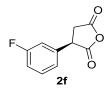
(*R*)-3-(2-methoxyphenyl)-succinic anhydride 2b



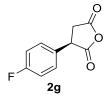
Colorless liquid; >99% conversion; 18.1 mg, 95% yield; 96% ee; $[\alpha]_D^{20} = -65.70$ (c = 1.0, EA); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 97:3; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 65.8 min (major), 75.2 min (minor). ¹H NMR (400 MHz, (CD₃)₂CO) δ = 7.31-7.28 (m, 2H), 7.24-7.23 (m, 1H), 7.19-7.17 (m, 1H), 4.65-4.60 (m, 1H), 3.62-3.55 (m, 1H), 3.30-3.24 m, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, (CD₃)₂CO) δ = 172.9, 170.5, 138.6, 136.0, 128.9, 128.7, 128.6, 125.1, 46.6, 36.5, 20.5. HRMS (ESI): [M+H⁺] Calc. 189.0552, found 189.0546. (*R*)-3-(3-methoxyphenyl)-succinic anhydride 2c


White solid, mp 153-157 °C; >99% conversion; 18.6 mg, 98% yield; >99% ee; $[\alpha]_D^{20} = -60.60$ (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AS-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 70.4 min (major), 83.8 min (minor). ¹H NMR (400 MHz, CDCl₃) δ = 7.23-7.21 (m, 2H), 7.16-7.12 (m, 2H) 4.32-4.28 (m, 1H), 3.48-3.40 (m, 1H), 3.13-3.06 m, 1H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 170.8, 168.6, 137.6, 130.6, 129.1, 126.1, 45.2, 35.7, 20.1. HRMS (ESI): [M+H⁺] Calc. 189.0552, found 189.0546.

(*R*)-3-(4-methoxyphenyl)-succinic anhydride 2d

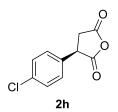

Yellow solid; >99% conversion; 20.4 mg, 99% yield; 96% ee; $[\alpha]_D^{20} = -81.93$ (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 19.0 min (major), 24.6 min (minor). ¹H NMR (400 MHz, CDCl₃) δ = 7.38-7.33 (m, 1H), 7.21-7.19 (m, 1H), 6.99-6.92 (m, 2H), 4.16-4.12 (m, 1H), 3.83 (s, 1H), 3.33-3.25 (m, 1H), 3.05-2.99 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 171.7, 169.6, 155.4, 129.9, 129.3, 123.2, 120.2, 110.3, 54.5, 43.6, 34.9. HRMS (ESI): [M+H⁺] Calc. 207.0652, found 207.0648.

(*R*)-3-(2-fluorophenyl)-succinic anhydride 2e

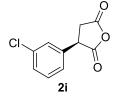

Light yellow solid, mp 85-89 °C; >99% conversion; 18.5 mg, 95% yield; >99% ee; $[\alpha]_D^{25} = -33.40$ (c = 1.0, EA); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 98:2; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 45.9 min (major), 55.8 min (minor). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.41-7.36$ (m, 1H), 7.30-7.26 (m, 1H), 7.21-7.13 (m, 2H), 4.41-4.36 (m, 1H), 3.50-3.42 (m, 1H), 3.11-3.05 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 170.1$, 168.1, 159.4 (d, *J* = 247.5 Hz), 129.9 (d, *J* = 11.1 Hz), 129.2 (d, *J* = 4.0 Hz), 124.0 (d, *J* = 4.0 Hz), 121.6 (d, *J*_{cf}=14.1 Hz), 115.3 (d, *J* = 20.2 Hz), 41.4 (d, *J* = 1.0 Hz), 35.2 (d, *J* = 2.0 Hz). HRMS (ESI): [M+H⁺] Calc. 195.0457, found 195.0453.

(*R*)-3-(3-fluorophenyl)-succinic anhydride 2f

White solid; >99% conversion; 18.2 mg, 94% yield; 95% ee; $[\alpha]_D^{20} = -52.04$ (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 93:7; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R =27.9 min (minor), 34.5 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 7.43-7.38 (m, 1H), 7.11-7.01 (m, 3H), 4.38-4.34 (m, 1H), 3.53-3.45 (m, 1H), 3.16-3.10 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 169.9, 167.9, 162.0 (d, *J* = 249.5 Hz), 135.5 (d, *J* = 7.0 Hz), 130.2 (d, *J* = 8.0 Hz), 121.9 (d, *J* = 3.0 Hz), 114.9 (d, *J* = 20.2 Hz), 113.8 (d, *J* = 23.2 Hz), 45.0 (d, *J* = 2.0 Hz), 35.4. HRMS (ESI): [M+H⁺] Calc. 195.0457, found 195.0453.


(R)-3-(4-fluorophenyl)-succinic anhydride 2g

Light yellow solid, mp 159-163 °C; >99% conversion; 18.6 mg, 96% yield; 98% ee; $[\alpha]_D^{20} =$ -86.90 (c = 1.0, CHCl₃); The enantiomeric excess of 4g was determined by corresponding di-methyl ester **3g**: HPLC on Chiralpak OJ-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min;

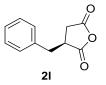

UV detection at 230 nm; $t_R = 14.9 \text{ min (major)}$, 16.2 min (minor). ¹H NMR (400 MHz, CDCl₃) $\delta = 7.29-7.24$ (m, 2H), 7.14-7.09 (m, 2H), 4.37-4.33 (m, 1H), 3.52-3.44 (m, 1H), 3.14-3.07 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 170.4$, 168.1, 161.7 (d, J = 248 Hz), 129.2 (d, J = 3.0 Hz), 128.1 (d, J = 8.0 Hz), 115.5 (d, J = 22.0 Hz), 44.8, 35.6. HRMS (ESI): [M+H⁺] Calc. 195.0457, found 195.0453.

(R)-3-(4-chlorophenyl)-succinic anhydride 2h

Light yellow solid; >99% conversion; 20.4 mg, 98% yield; 93% ee; $[\alpha]_D^{20} = -72.60$ (c = 1.0, CHCl₃); The enantiomeric excess of 4h was determined by corresponding methyl-ester 4h: HPLC on Chiralpak OJ-H column, hexane: isopropanol = 98:2; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 21.6 min (major), 24.9 min (minor). ¹H NMR (400 MHz, CDCl₃) δ = 7.41-7.38 (m, 2H), 7.24-7.21 (m, 2H), 4.36-4.32 (m, 1H), 3.51-3.44 (m, 1H), 3.13-3.06 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 170.2, 168.0, 133.8, 131.8, 128.7, 127.7, 44.8, 35.4. HRMS (ESI): [M-H⁺] Calc. 209.0005, found 209.0004.

(R)-3-(4-bromophenyl)-succinic anhydride 2i

White solid; >99% conversion; 20.7 mg, 97% yield; 93% ee; $[\alpha]_D^{20} = -59.10$ (c = 1.0, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 93:7; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 27.4 min (major), 33.3 min (minor). ¹H NMR (400 MHz, CDCl₃) δ = 7.37-7.29 (m, 2H), 7.19 (d, *J* = 4.0 Hz, 1H), 7.17-7.16 (m, 1H), 4.36-4.32 (m, 1H), 3.52-3.44 (m, 1H), 3.15-3.09 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 169.9, 167.9, 135.2, 134.3, 129.8, 128.0, 126.7, 124.4, 45.0, 35.4. HRMS (ESI): [M-H⁺] Calc. (R)-3-methyl-succinic anhydride 2j


Colorless liquid; >99% conversion; 11.3 mg, 99% yield; 96% ee; $[\alpha]_D{}^{20} = -36.60$ (c = 1.0, CHCl₃); The enantiomeric excess was determined by GC on Chiralpak β -dex225 column, 100 °C, 0 min, 10 °C/min, 150 °C, 25 min; t_R = 18.5 min (minor), 19.2 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 3.23-3.13 (m, 2H), 2.67-2.59 (m, 1H), 1.46 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 173.2, 178.8, 35.0, 34.6, 15.2. HRMS (ESI): [M+H⁺] Calc. 115.0395, found 115.0392.

(S)- 3-isopropyl-succinic anhydride 2k

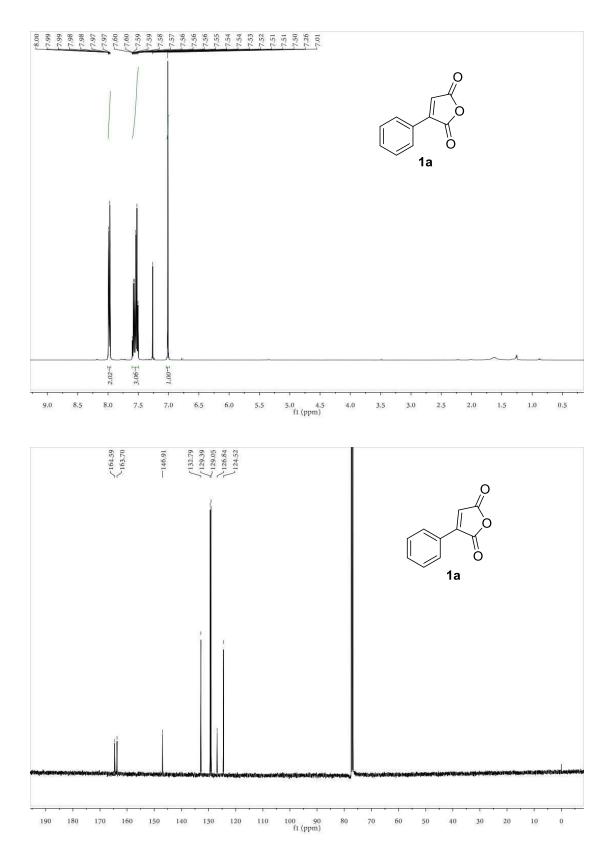
Colorless liquid; >99% conversion; 13.7 mg, 97% yield; 95% ee; $[\alpha]_D^{20} = 23.70$ (c =1.0, CHCl₃); The enantiomeric excess was determined by GC on Chiralpak β -dex120 column, 100 °C, 0 min, 2 °C/min, 120 °C, 25 min; t_R = 28.3 min (minor), 28.9 min (major). ¹H NMR (400 MHz, CDCl₃) δ = 3.11-3.06 (m, 1H), 3.02-2.95 (m, 1H), 2.77-2.71 (m, 1H), 2.33-2.29 (m, 1H), 1.05 (d, *J* = 8.0 Hz, 3H), 1.00 (d, *J* = 8.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ = 171.8, 169.3, 45.7, 29.6, 28.2, 18.7, 17.0. HRMS (ESI): [M+H⁺] Calc. 143.0708, found 143.0702.

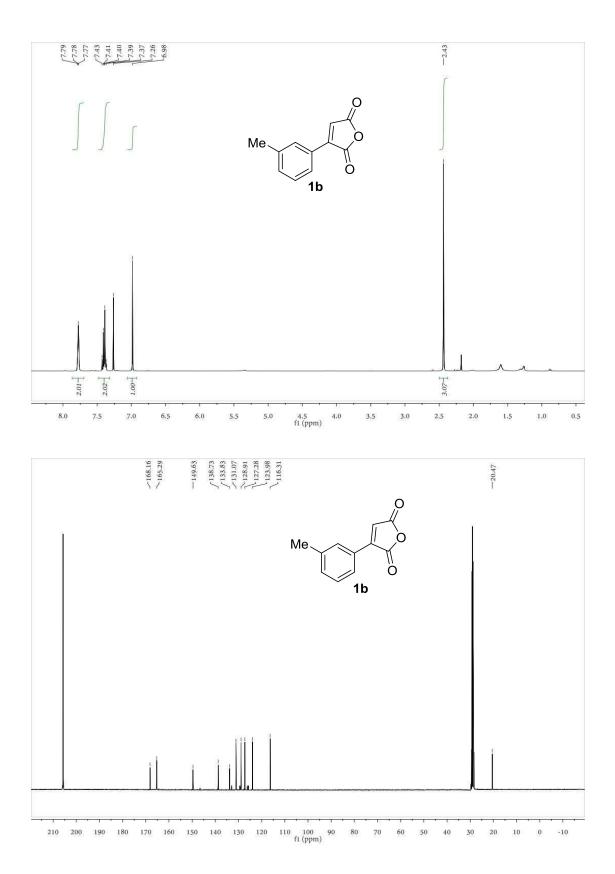
(S)-3-benzyl-succinic anhydride 2l

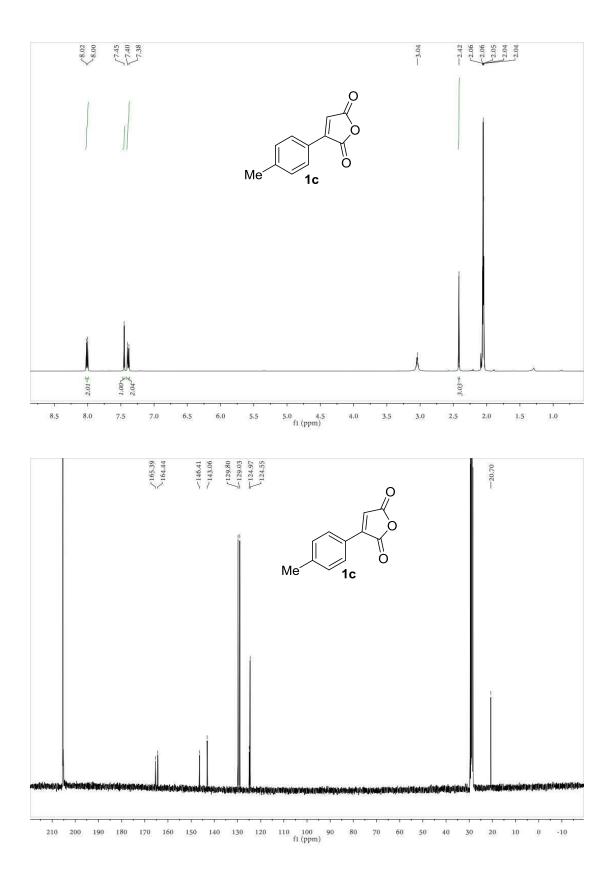
White solid; >99% conversion; 18.3 mg, 96% yield; 90% ee; $[\alpha]_D^{20} = 42.70$ (c = 1.0, CHCl₃)

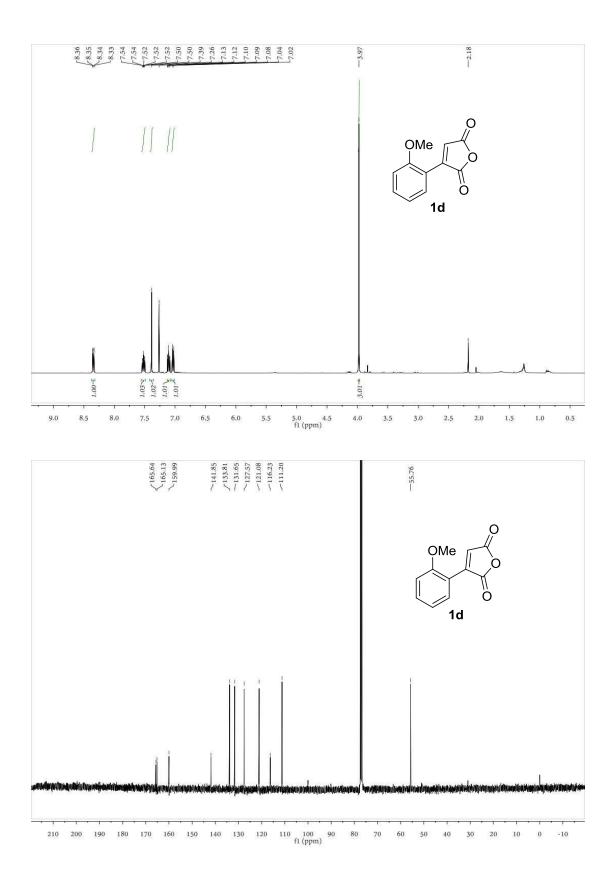
(41: $[\alpha]_D^{20} = +82.33$ (c = 1.0, CHCl₃)); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 15.7 min (major), 17.2 min (minor). ¹H NMR (400 MHz, CDCl₃) δ = 7.37-7.27 (m, 3H), 7.19-7.17 (m, 2H), 3.48-3.42 (m, 1H), 3.27-3.22 (m, 1H), 3.05-2.92 (m, 2H), 2.75-2.69 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ = 172.1, 168.6, 134.8, 128.2, 127.9, 126.6, 41.1, 35.0, 31.9. HRMS (ESI): [M+H⁺] Calc. 191.0708, found 191.0701.

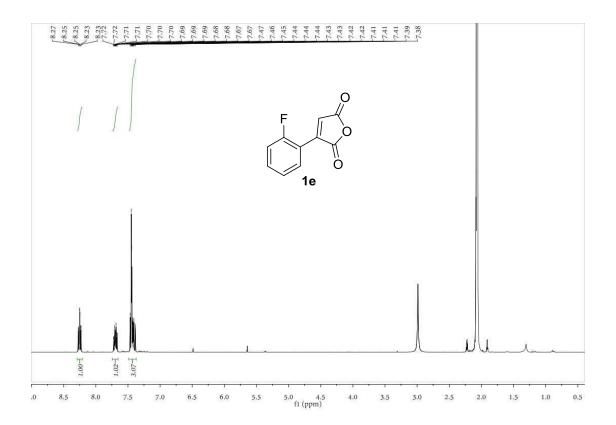
IV. Reference

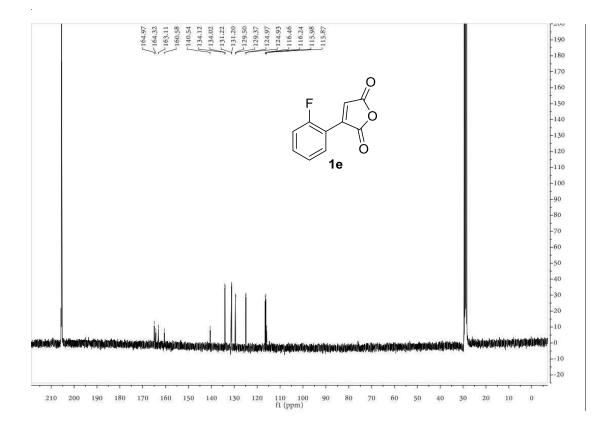

(a) Z. Y. Han, P. Li, Z. Zhang, C. Chen, Q. Wang, X. Q. Dong, X. Zhang, ACS Catal. 2016, 6,
 6214–6218. (b) Y. Chen, K. Tsao, J.W. Keillor, J. Org. Chem. 2015, 80, 12182–12192.

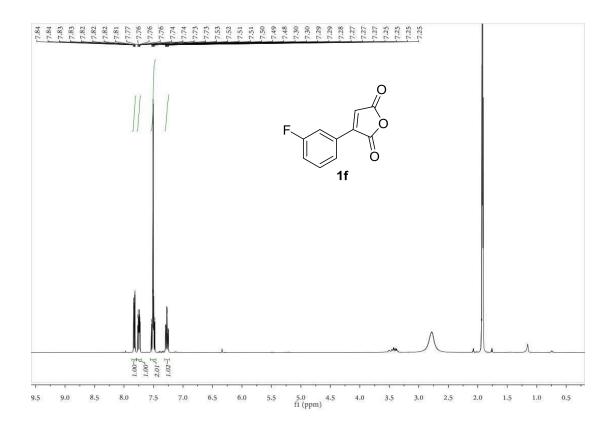

2. (a) B. Maurizio, M. Marc-Andre, P. Andreas, Angew. Chem. Int. Ed. 2014, 53, 5385-5388. (b) L.

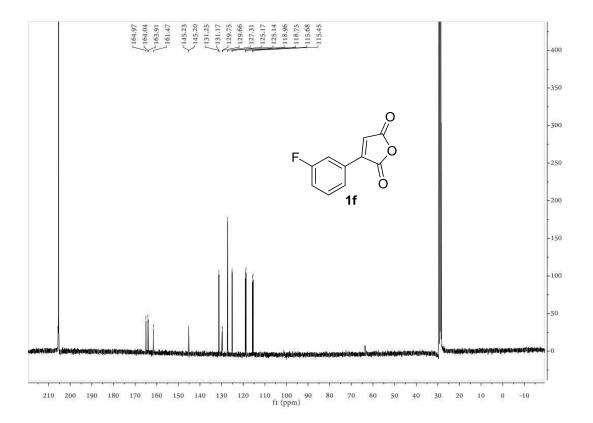

F. Julio, K. Achim, S. Peter, W. Hubert, H. G. Lutz, Chem.-Eur. J. 2011, 17, 14047–14062.

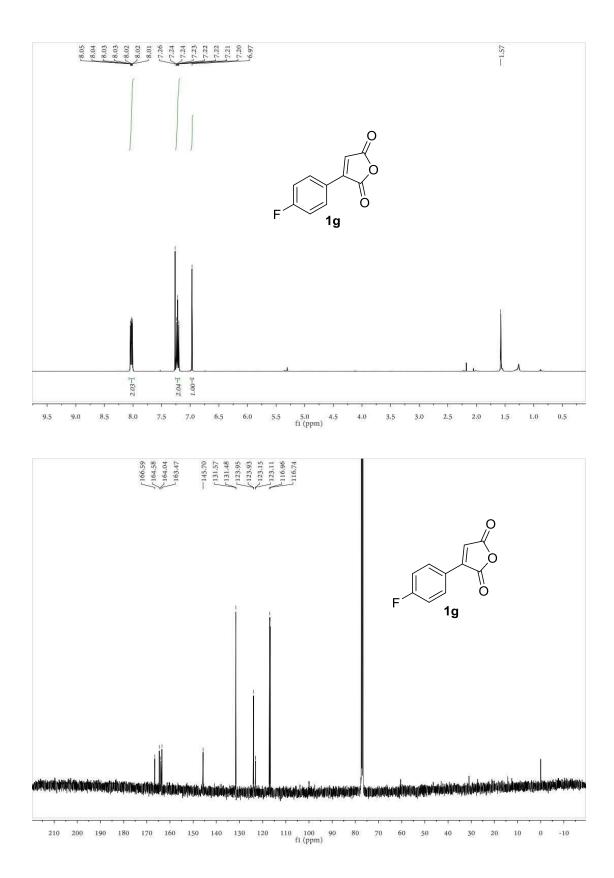

3. G. M. Strunz, C. M. Yu, L. Ya, Canadian Journal of Chemistry, 1990, 68(5), 782-6.

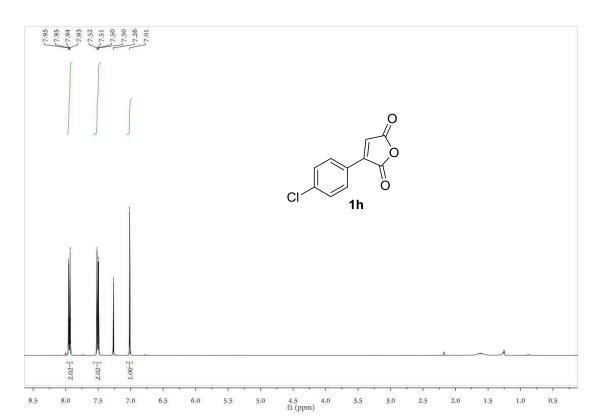

V. NMR Spectra

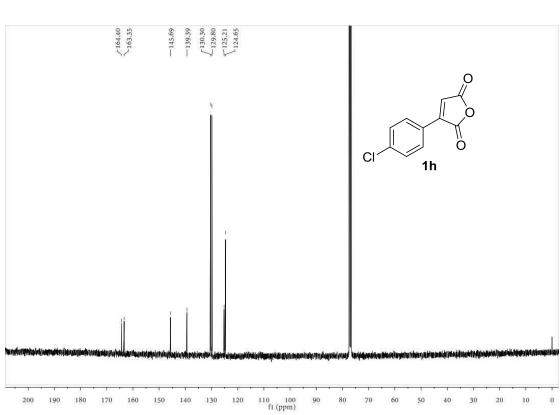


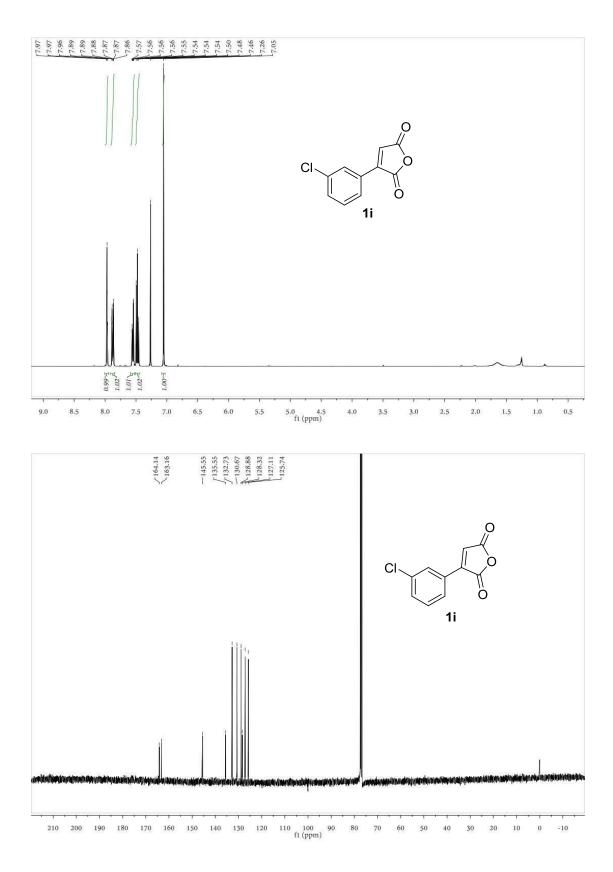


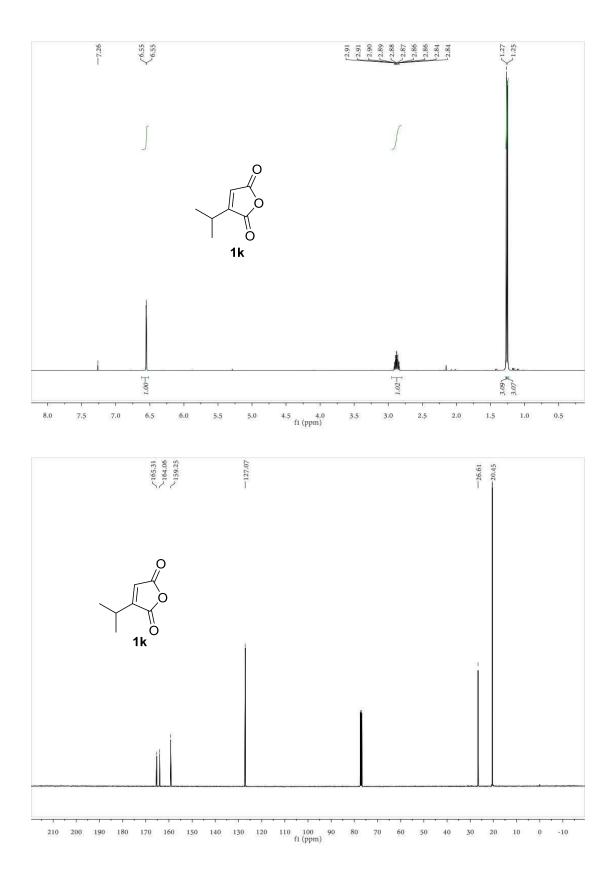


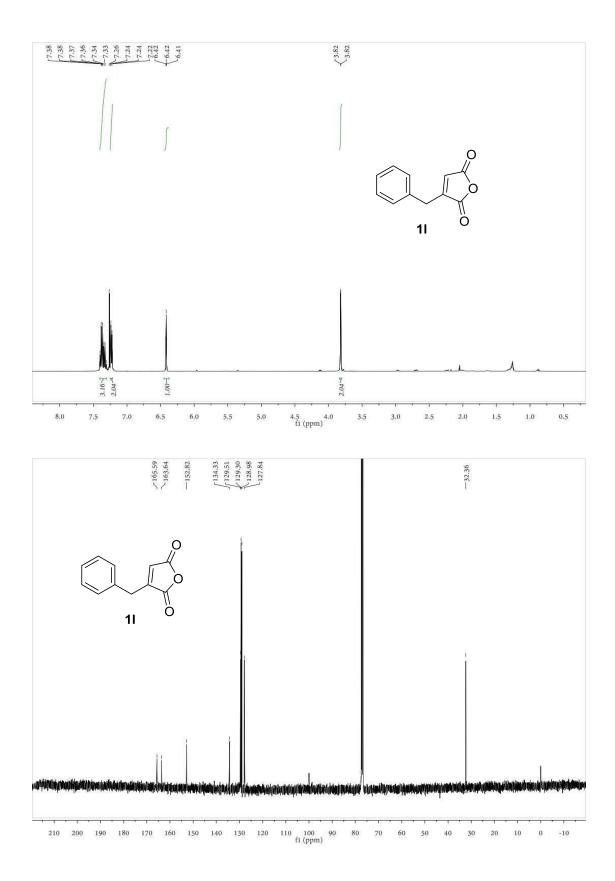


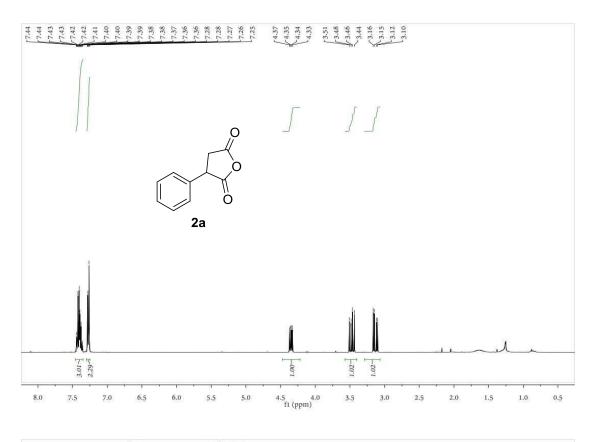


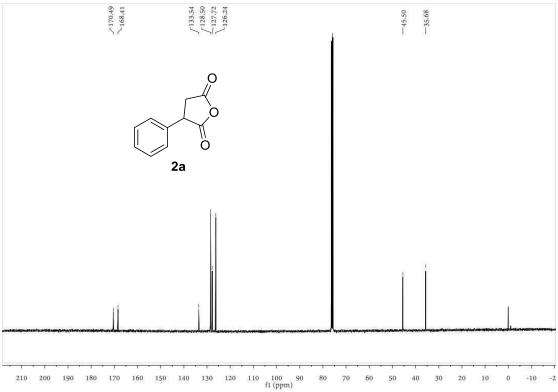


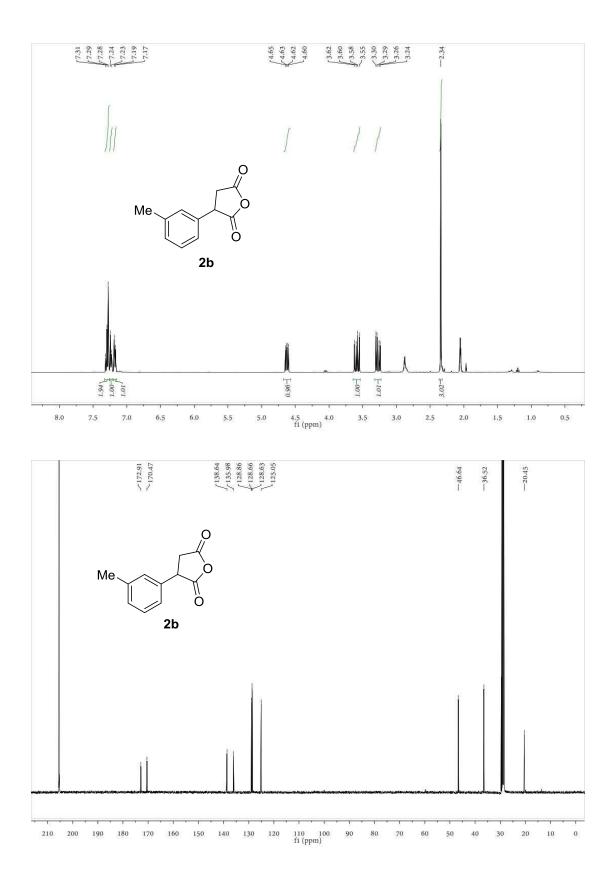


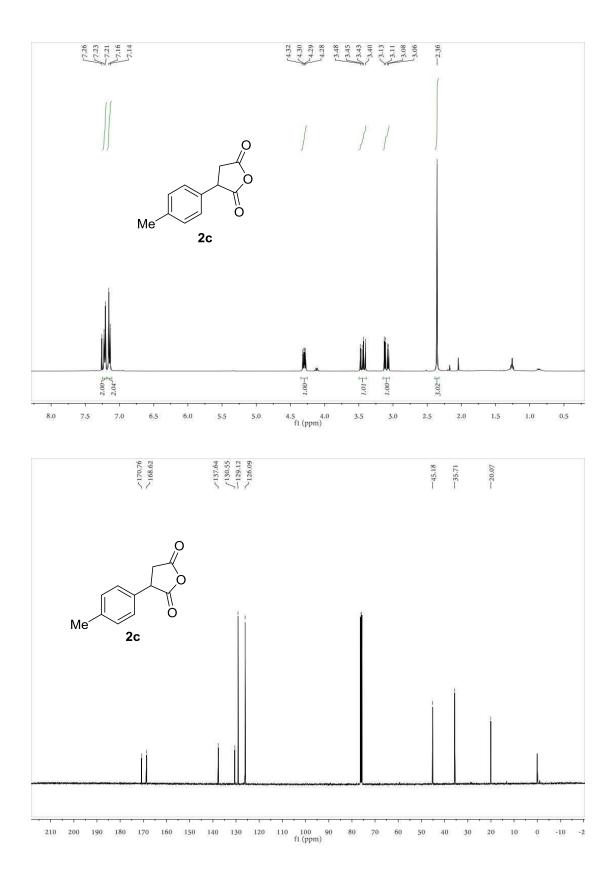


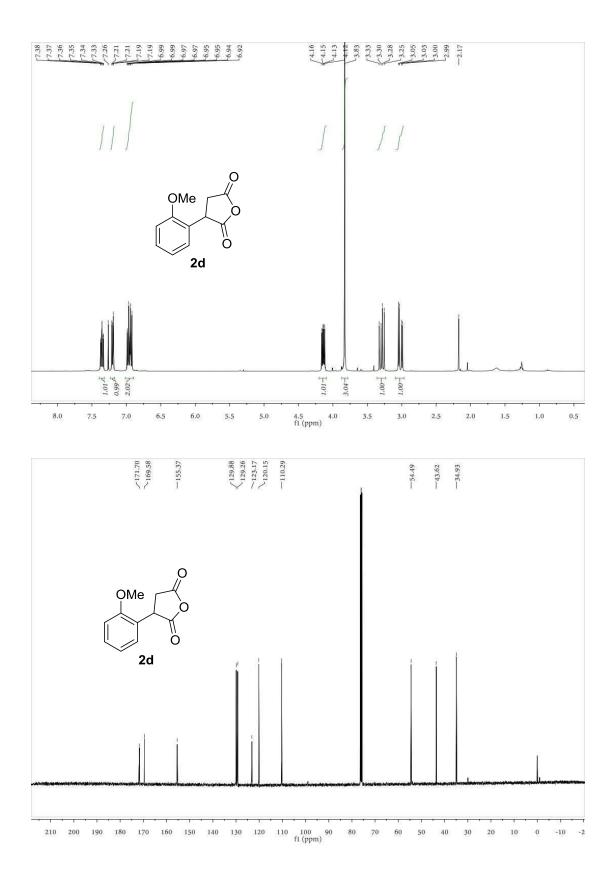


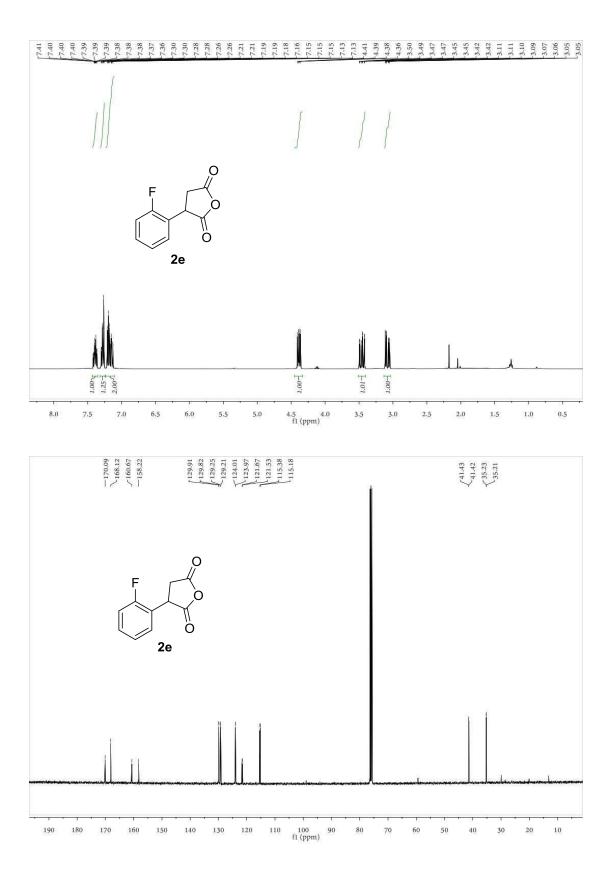


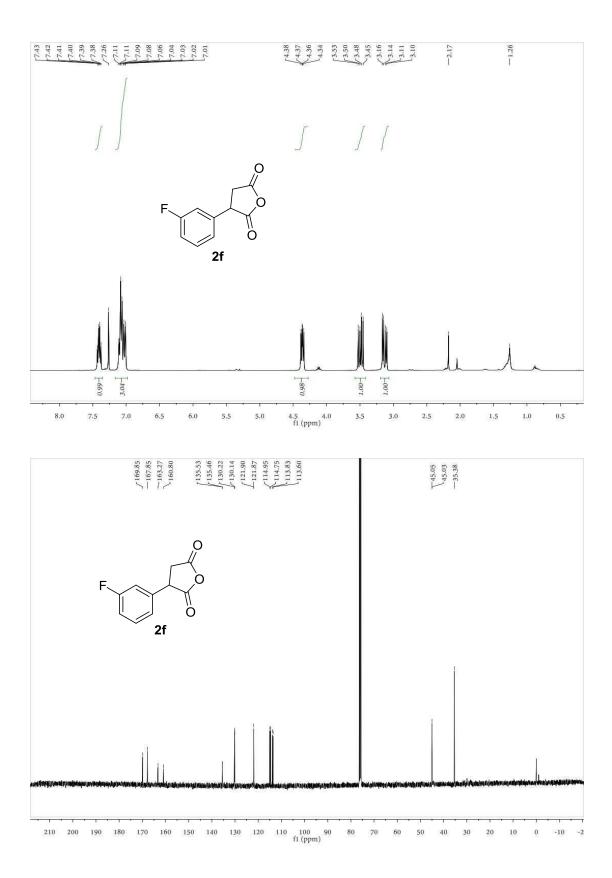


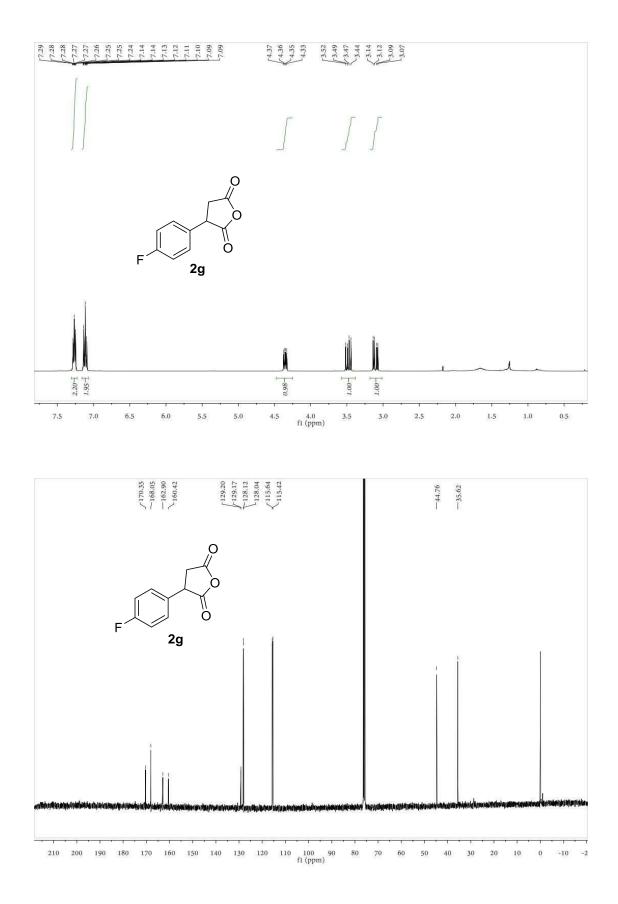


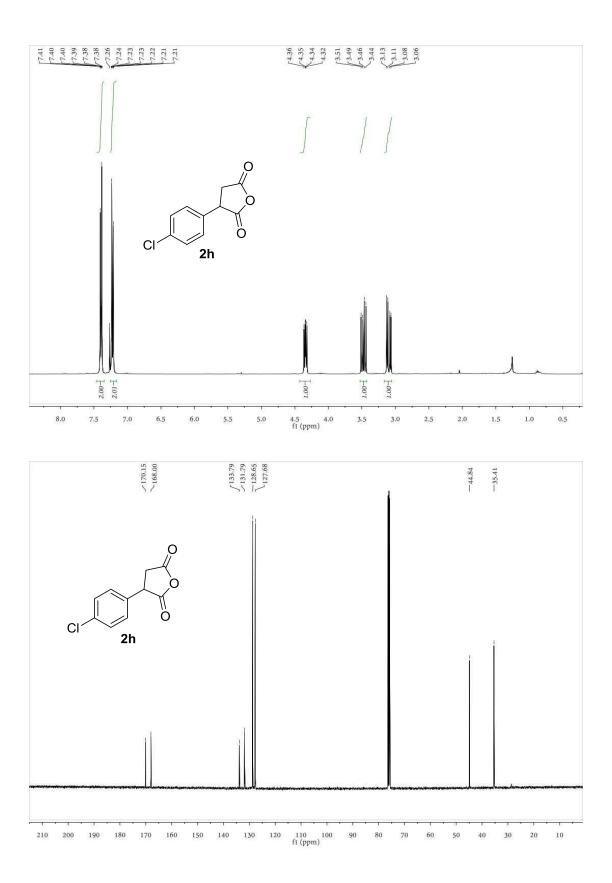


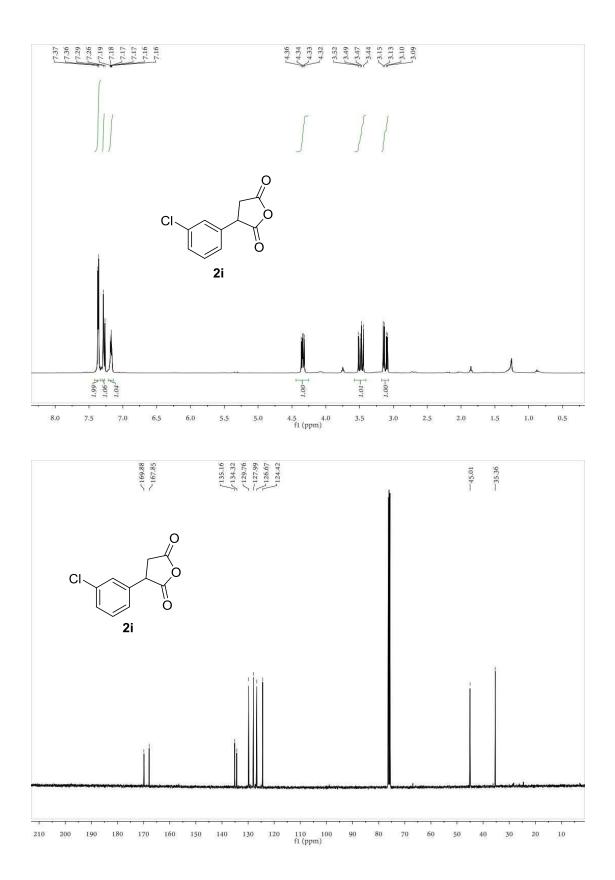


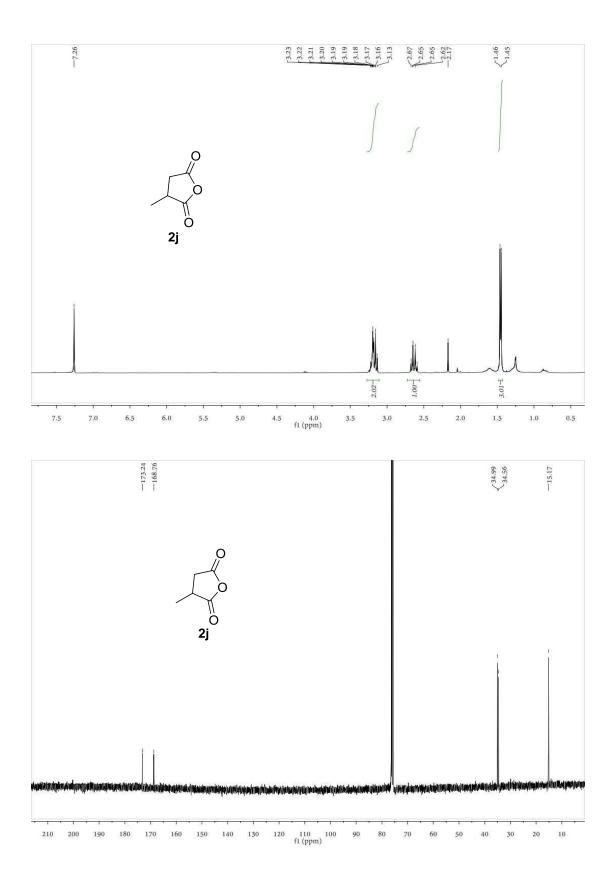


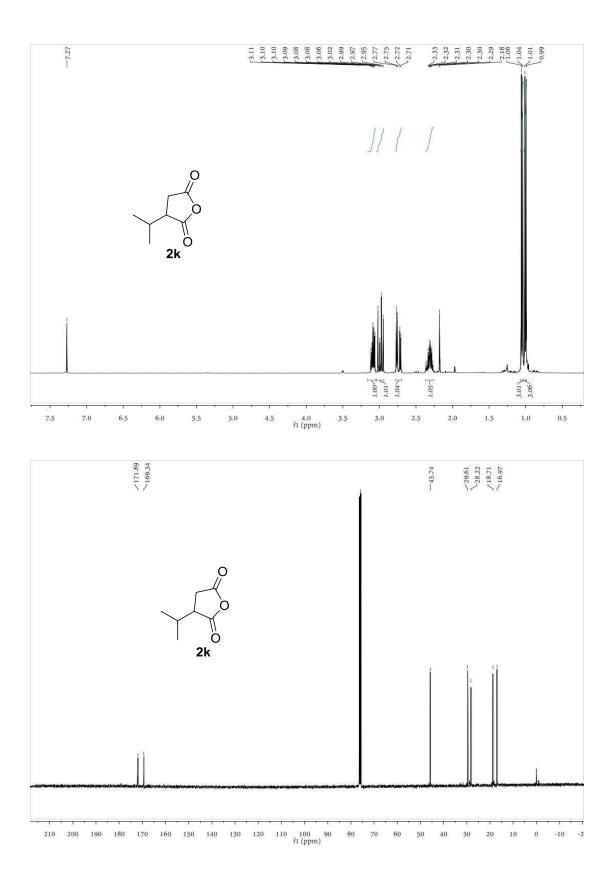


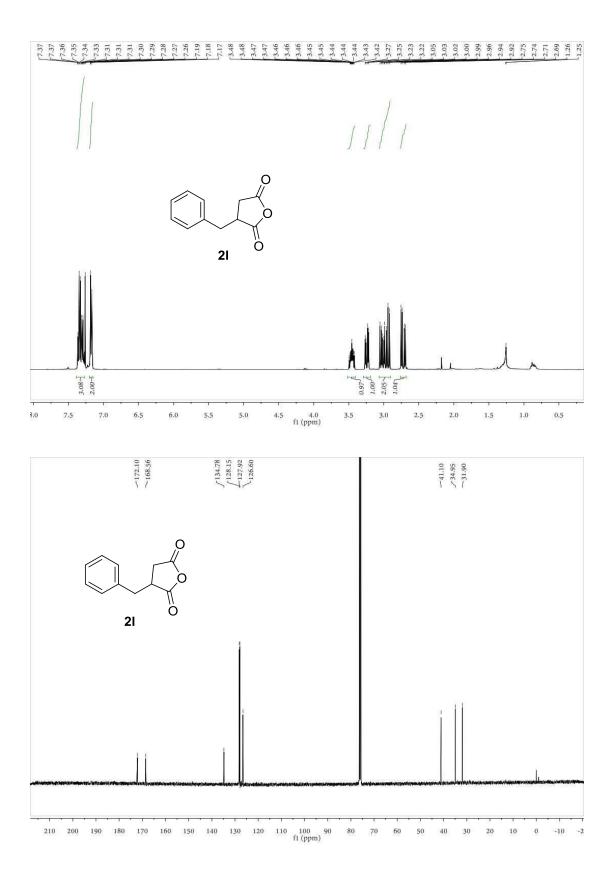












VI. HPLC Spectra

Data File E:\DATA\HZY\SUANGAN\3F-161118 2016-11-19 13-05-46\033-2001.D Sample Name: H-STAND-RAC-2

Acq. Operator	: SYSTEM	Seq. Line	: 20
Acq. Instrument	: 1260HPLC-VWD	Location	: Vial 33
Injection Date	: 11/20/2016 3:32:00 AM	2	: 1
		-	: 2.000 µl
Acq. Method		118 2016-11-19	13-05-46\VWD-AD(1-6)-98-2-1ML-2UI
	210NM-70MIN.M		
Last changed	: 11/19/2016 9:29:56 PM by S		
Analysis Method	210NM-70MIN.M (Sequence Me		13-05-46\VWD-AD(1-6)-98-2-1ML-2UI
Last changed	: 11/20/2016 8:42:59 PM by S		
Last changed	(modified after loading)	TOTEN	
Additional Info	: Peak(s) manually integrate	d	
	avelength=210 nm (E:\DATA\HZY\SUANGAN\3F-1		5-46\033-2001.D)
mAU			(10000 2001.2)
-			
-			
600 -	Ő		
-			
500 -	(rac)-		
500-	(lac)-		
400 -	L 0		
1	~2a		
-	Za		
300 -	45.187		
-	> 45.		51.262
-	()		۶1. ۲
200 -		/	\wedge
-	1		
-	1		
100 -			
0-			
35	37.5 40 42.5 45	47.5	50 52.5 55 57.5
	Area Percent Report		
Sorted By	: Signal		
Multiplier	: 51ghai : 1.0000		
Dilution	: 1.0000		
	iplier & Dilution Factor with	TSTDS	
So not use Muit	aprice a principle raccor with	10100	
ignal 1. VWD1	A, Wavelength=210 nm		
rguar r. vwDr	A, Waverengen-210 Int		

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	45.187	BB	1.0309	1.70889e4	249.87816	55.3176
2	51.262	BB	1.0065	1.38034e4	212.30431	44.6824
Total	s :			3.08924e4	462.18246	

1260HPLC-VWD 11/20/2016 8:43:04 PM SYSTEM

Data File E:\DATA\HZY\SUANGAN\NBD161013-2 2016-10-13 20-12-43\052-0301.D Sample Name: nbd1013-2

cq. Operator :	SYSTEM		Seq. Line	: 3			
cq. Instrument :	1260HPLC-VW	ID.	Location	: Vial 52			
njection Date :	10/13/2016	9:30:10 PM	-	: 1			
			Inj Volume				
cq. Method :		\SUANGAN\NBD1610	013-2 2016-10-13	3 20-12-43\VW	ND-AD(1-6)-	98-2-1ML	
	2UL-210NM-7						
No. A Contraction of the second		8:12:44 PM by SY					
nalysis Method :		\SUANGAN\NBD1610		3 20-12-43\VV	ID-AD(1-6)-	98-2-1ML	-
		'OMIN.M (Sequence					
ast changed :		7:17:50 PM by SY	ISTEM				
		fter loading)					
		ually integrated					
and the second se	ength=210 nm (E:\D	ATAWZY\SUANGAN\NBD	161013-2 2016-10-13 20-1	12-43\052-0301.D)			
mAU							
-							
600 -							
-				_			
500-				C)		
				A			
-					۲ ۲		
400 -				\sim)		
-			Í				
		4	Į	Ö لر			
		2					
300 -		78		× _			
300 -		46.844		2a			
300-		46.84		2a			
200 -		46.84		2a			
-		46.8		2a			
200 -		46.8		2a			
-		46.8					
200 -		46.8					
200 -		46.8		2a			
200	· · · · · ·		· · · · · · · · · · · · · · · · · · ·	52.849		·	
200 -	44	¥9 9 46 48	50		56	-, , , , , , , , , , , , , , , , , , ,	' 'min
200	44			676 26 52 54	56	-, -, -, -, -, -, -, -, -, -, -, -, -, -	, , , , , , , , , , , , , , , , , , ,
200			50	676 26 52 54	56	58	min
	Area	46 48 Percent Report		676 26 52 54	56	58	, i j
		46 48 Percent Report		676 26 52 54		58	, , , , , , , , , , , , , , , , , , ,
	Area	46 48		676 26 52 54	56	58	min
200 100 40 42 borted By	Area	46 48 A Percent Report Signal		676 26 52 54	56	58	min
200- 100- 40-42	Area : :	46 48 Percent Report Signal 1.0000		676 26 52 54	56	58	min
200- 100- 40-42	Area : :	46 48 Percent Report Signal 1.0000 1.0000		676 26 52 54	56		min
200- 100- 40-42	Area : :	46 48 Percent Report Signal 1.0000		676 26 52 54	56	58	, , min
200- 100- 40-42	Area : :	46 48 Percent Report Signal 1.0000 1.0000		676 26 52 54		58	min
200 100 0 40 42 0 40 42 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Area : : lier & Dilut	A Percent Report Signal 1.0000 1.0000 tion Factor with		676 26 52 54	56	58	min
200- 100- 40-42	Area : : lier & Dilut	A Percent Report Signal 1.0000 1.0000 tion Factor with		676 26 52 54	56	58	min
200 100 0 40 42 100 40 42 100 100 100 100 100 100 100 10	Area : : lier & Dilut Wavelength=	46 48 46 48 A Percent Report Signal 1.0000 1.0000 Cion Factor with 2210 nm	ISTDs	676 26 52 54	56	58	, i j
200 100 0 40 42 100 0 40 42 100 100 100 100 100 100 100 10	Area : : lier & Dilut Wavelength= Width	46 48 46 48 46 48 46 48 48 46 48 48 40 40 40 40 40 40 40 40 40 40	ISTDs . Area	676 26 52 54	56	58	min
200 100 0 40 42 100 0 40 42 100 40 100 40 40 40 40 40 40 40 40 40	Area : : lier & Dilut Wavelength= Width [min] [m	A Percent Report Signal 1.0000 1.0000 tion Factor with Area Height AU*s] [mAU]	ISTDs : Area %	676 26 52 54	56	58	min
200 100 0 40 42 100 0 40 42 100 100 100 100 100 100 100 10	Area : : lier & Dilut Wavelength= Width [min] [m	46 48 A Percent Report Signal 1.0000 1.0000 tion Factor with 210 nm Area Height AU*s] [mAU]	ISTDs - Area %	676 26 52 54	56	58	min
200 100 0 40 40 42 40 42 42 40 42 40 42 40 42 40 42 40 42 40 42 40 42 40 42 40 42 42 40 42 42 40 42 42 42 40 42 42 42 42 42 42 42 42 42 42	Area : : lier & Dilut Wavelength= Width [min] [m	46 48 A Percent Report Signal 1.0000 1.0000 tion Factor with 210 nm Area Height AU*s] [mAU] 2409e4 260.900	ISTDs Area % 	676 26 52 54	56	58	min
200 100 0 40 42 0 40 42 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Area : : lier & Dilut	A Percent Report Signal 1.0000 1.0000 tion Factor with		676 26 52 54	56	58	

Totals: 1.95423e4 265.60691

1260HPLC-VWD 11/19/2016 7:17:57 PM SYSTEM

Data File E:\DATA\GWC\GWC16-12\ATH-SOLVENT 2016-12-13 20-47-43\064-0701.D Sample Name: 3ME-RAC

Acq. Operator	: SYSTEM Seq. Line : 7
Acq. Instrument	: 1260HPLC-VWD Location : Vial 64
Injection Date	: 12/13/2016 11:40:18 PM Inj : 1
	Inj Volume : 10.000 µl
Acq. Method	: E:\DATA\GWC\GWC16-12\ATH-SOLVENT 2016-12-13 20-47-43\VWD-AD(1-6)-97-3-1ML- 10UL-85MIN.M
Last changed	: 12/13/2016 10:01:33 PM by SYSTEM
Analysis Method	: E:\DATA\GWC\GWC16-12\ATH-SOLVENT 2016-12-13 20-47-43\VWD-AD(1-6)-97-3-1ML-
	10UL-85MIN.M (Sequence Method)
Last changed	: 12/14/2016 9:15:55 AM by SYSTEM
	(modified after loading)
	: Peak(s) manually integrated
	velength=210 nm (E:\DATA\GWC\GWC16-12\ATH-SOLVENT 2016-12-13 20-47-43\064-0701.D)
mAU _ 700	
100	
-	0
600 -	
-	
500	(rac)- Me
-	\cdots \downarrow \checkmark \downarrow
400 -	
300 -	2b
300 -	ŝ
-	72.155
200 -	8
	ri i
-	12
100	ß
100-	³
100-	G
0	
0-1	62.5 65 67.5 70 72.5 75 77.5 80 m Area Percent Report
0-1	62.5 65 67.5 70 72.5 75 77.5 80 m
0-1	62.5 65 67.5 70 72.5 75 77.5 80 m Area Percent Report
0-1	62.5 65 67.5 70 72.5 75 77.5 80 m Area Percent Report
0 60 Sorted By	Area Percent Report : Signal
Sorted By Multiplier Dilution	Area Percent Report : Signal : 1.0000
Sorted By Multiplier Dilution	Area Percent Report : Signal : 1.0000 : 1.0000
Sorted By Multiplier Dilution Do not use Multi	Area Percent Report : Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs
Sorted By Multiplier Dilution Do not use Multi	Area Percent Report : Signal : 1.0000 : 1.0000
Sorted By Multiplier Dilution Do not use Multi	A, Wavelength=210 nm
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 #	A, Wavelength=210 nm
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 # Peak RetTime Tyy # [min]	A, Wavelength=210 nm pe Width Area Height Area
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 # Peak RetTime Typ # [min]	A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 2 Peak RetTime Typ # [min] 1 63.930 BB	A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mau] %
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 2 Peak RetTime Typ # [min] 1 63.930 BB	A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 2 Peak RetTime Typ # [min] 1 63.930 BB	A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 	A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 # Peak RetTime Typ # [min] 	A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %

1260HPLC-VWD 12/14/2016 9:15:59 AM SYSTEM

Data File E:\DATA\HZY\SUANGAN\ATH-SOLVENT 2016-12-14 09-31-45\043-0201.D Sample Name: 3ME

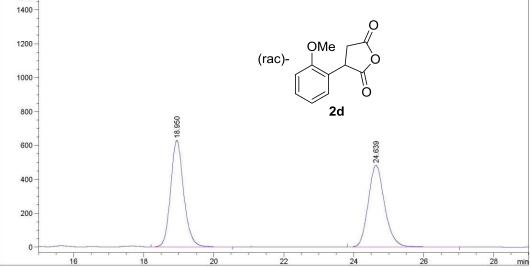
Acq. Operator	: SYSTEM			Seq. Line	••••••		
Acq. Instrument		C-VWD			: Vial 4	3	
Injection Date			AM		: 1		
anti de antoin anna anna anna anna anna				Inj Volume	: 10.000	ul	
Acq. Method	: E:\DATA	HZY\SUANGAN				45\VWD-AD(1-6)-9	7-3-1ML-
	10UL-85M						
Last changed	: 12/14/20	16 11:03:58	AM by SYST	EM			
	(modifie	ed after loa	ding)				
Analysis Method	: E:\DATA	HZY\SUANGAN	ATH-SOLVEN	IT 2016-12-	14 09-31-	45\VWD-AD(1-6)-9	7-3-1ML-
	10UL-85N	MIN.M (Seque	ence Method)				
Last changed	: 12/14/20)16 11:14:50	AM by SYSI	EM			
	(modifie	ed after loa	ding)				
Additional Info							
	velength=210 nm	(E:\DATA\HZY\SU)	ANGANVATH-SOLV	/ENT 2016-12-14	09-31-45\043-0	0201.D)	
mAU							
-							
500 -							
-						0	
-						A	
400 -							
				Me	\land	\checkmark	
-				Ì		//	
300-				l		0	
-					2b)	
3							
200 -			2				
-			65.792				
1			e				
100-			e		4		
100 -			e		5.214		
-					75.214		
		60				80	
0		60				80	85 mii
0	55	60		70		80	85 mi
0		60 Area Percent	+ + + + + + + + + + + + + + + + + + + +	70		80	1 , , , , , , , , , , , , , , , , , , ,
0			+ + + + + + + + + + + + + + + + + + + +	70			
0		Area Percent	+ + + + + + + + + + + + + + + + + + + +	70			
0 50 Sorted By		Area Percent Signal	+ + + + + + + + + + + + + + + + + + + +	70			1 , , , , , , , , , , , , , , , , , , ,
o 50 Sorted By Multiplier		Area Percent Signal 1.0000	+ + + + + + + + + + + + + + + + + + + +	70			1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,
o 50 Sorted By Multiplier Dilution	:	Signal 1.0000 1.0000	65				1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,
o 50 Sorted By Multiplier	:	Signal 1.0000 1.0000	65				85 mi
o 50 Sorted By Multiplier Dilution	:	Signal 1.0000 1.0000	65				85 mi
o 50 Sorted By Multiplier Dilution Do not use Mult:	: : iplier & Di	Signal 1.0000 1.0000 .lution Fact	65				85 mi
o 50 Sorted By Multiplier Dilution	: : iplier & Di	Signal 1.0000 1.0000 .lution Fact	65			<u>80</u>	85 mi
Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 2	: : iplier & Di A, Waveleng	Signal 1.0000 1.0000 lution Fact gth=210 nm	65 Report	Ds.		== ==	85 mi
o 50 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 2 Peak RetTime Typ	iplier & Di A, Waveleng De Width	Signal 1.0000 1.0000 lution Fact gth=210 nm Area	65 c. Report	Ds Area		== ==	85 mi
o 50 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 <i>i</i> Peak RetTime Typ # [min]	iplier & Di A, Waveleng De Width [min]	Signal 1.0000 1.0000 Lution Fact gth=210 nm Area [mAU*s]	65 Report For with IST Height [mAU]	'Ds Area		== ==	85 mi
o 50 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 <i>i</i> Peak RetTime Typ # [min]	iplier & Di A, Waveleng De Width [min]	Signal 1.0000 1.0000 Lution Fact gth=210 nm Area [mAU*s]	65 Report	'Ds Area %			85 mi
Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 # Peak RetTime Typ # [min] 	2.6866	Signal 1.0000 1.0000 lution Fact gth=210 nm Area [mAU*s] 	es Report for with IST Height [mAU] 113.46952	'Ds Area % 98.0013		== ==	85 mi
o 50 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 <i>i</i> Peak RetTime Typ # [min]	2.6866	Signal 1.0000 1.0000 lution Fact gth=210 nm Area [mAU*s] 	65 Report	'Ds Area % 98.0013		== ==	85 mi
o 50 Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 ; Peak RetTime Typ # [min] 	: iplier & Di A, Waveleng De Width [min] 	Signal 1.0000 1.0000 lution Fact gth=210 nm Area [mAU*s] 	65 Report or with IST Height [mAU] 113.46952 3.49540	'Ds Area % 98.0013		== ==	85 mir
Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 # Peak RetTime Typ # [min] 	: iplier & Di A, Waveleng De Width [min] 	Signal 1.0000 1.0000 lution Fact gth=210 nm Area [mAU*s] 	65 Report or with IST Height [mAU] 113.46952 3.49540	'Ds Area % 98.0013		== ==	85 mii
Sorted By Multiplier Dilution Do not use Mult: Signal 1: VWD1 ; Peak RetTime Typ # [min] 	: iplier & Di A, Waveleng De Width [min] 	Signal 1.0000 1.0000 lution Fact gth=210 nm Area [mAU*s] 	65 Report or with IST Height [mAU] 113.46952 3.49540	'Ds Area % 98.0013		== ==	85 mii

1260HPLC-VWD 12/14/2016 11:14:57 AM SYSTEM

Data File E:\DATA\HZY\SUANGAN\4ME-AS 2016-11-25 09-55-04\041-0301.D Sample Name: 4ME-RAC

Acq. Operator	: SYSTEM Seq. Line : 3
Acq. Instrument	: 1260HPLC-VWD Location : Vial 41
Injection Date	: 11/25/2016 11:51:34 AM Inj : 1
	Inj Volume : 10.000 µl
Acq. Method	: E:\DATA\HZY\SUANGAN\4ME-AS 2016-11-25 09-55-04\VWD-AS(1-2)-95-5-1-10UL-
	210NM-85MIN.M
Last changed	: 11/25/2016 11:36:33 AM by SYSTEM
Analysis Method	: E:\DATA\HZY\SUANGAN\4ME-AS 2016-11-25 09-55-04\VWD-AS(1-2)-95-5-1-10UL-
	210NM-85MIN.M (Sequence Method)
Last changed	: 11/25/2016 4:04:58 PM by SYSTEM
	(modified after loading)
Additional Info	: Peak(s) manually integrated
	avelength=210 nm (E:\DATA\HZY\SUANGAN\4ME-AS 2016-11-25 09-55-04\041-0301.D)
mAU -	
1	
80 -	
-	0
70	11
10	
-	(rac)-
60 -	
-	
50 -	
-	Me ²
40	2c
40	
1	4
30 -	70.134
-	70.791
20 -	\wedge
-	
10	
0	
60	65 70 75 80 85 90
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
	& Dilution Factor with ISTDs
Signal 1: VWD1	A, Wavelength=210 nm
bight i. Whit	N/ Wavelengen-zio ma
Peak RetTime Typ	pe Width Area Height Area
	-
# [min]	[min] [mAU*s] [mAU] %
1 70.134 BB	
2 80.791 BB	1.8465 2793.14331 20.85506 48.3504
Totals :	5776.88062 44.58245

1260HPLC-DAD 11/25/2016 4:05:03 PM SYSTEM


Data File E:\DATA\HZY\SUANGAN\YXG-305 2016-11-26 12-27-03\045-0201.D Sample Name: 4ME-EE

Acq. Operator	: SYSTEM Seq. Line : 2
Acq. Instrument	: 1260HPLC-VWD Location : Vial 45
Injection Date	: 11/26/2016 12:50:01 PM Inj: 1
	Inj Volume : 10.000 µl
Acq. Method	: E:\DATA\HZY\SUANGAN\YXG-305 2016-11-26 12-27-03\VWD-AS(1-2)-95-5-1-10UL-
	210NM-100MIN.M
Last changed	: 11/26/2016 12:27:05 PM by SYSTEM
Analysis Method	: E:\DATA\HZY\SUANGAN\YXG-305 2016-11-26 12-27-03\VWD-AS(1-2)-95-5-1-10UL-
	210NM-100MIN.M (Sequence Method)
Last changed	: 1/13/2017 10:47:13 AM by SYSTEM
	(modified after loading)
	: Peak(s) manually integrated avelength=210 nm (E\DATA\HZY\SUANGAN\YXG-305 2016-11-26 12-27-03\045-0201.D)
mAU]	1000010011-2101111 (E. DATATE LISOANGANTAG-303 2010-11-2012-21-03043-0201.D)
400	
400	0
1	
350 -	-4
-	Ò
300	
-	
250 -	
-	Me ^r
200 -	87 2c
200-	Ř (
-	
150 -	
-	
100-	
50 -	
-	8
0-	Ben 12.653
65	70 75 80 85 90 95 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
	& Dilution Factor with ISTDs
-	
Signal 1: VWD1	A, Wavelength=210 nm
Peak RetTime Ty	pe Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
1 70.433 BB	2.4415 3.25218e4 191.00113 99.6151
2 83.760 MM	1.2993 125.65295 1.61180 0.3849
Totals :	3.26474e4 192.61293

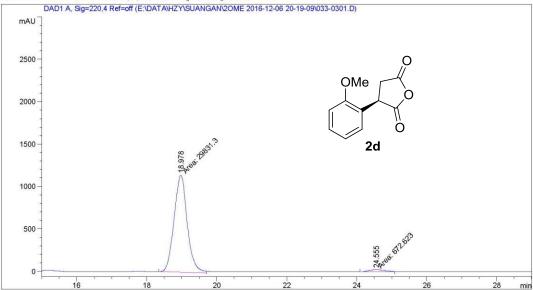
1260HPLC-VWD 1/13/2017 10:50:26 AM SYSTEM

Data File E:\DATA\HZY\SUANGAN\20ME-RAC 2016-12-06 16-11-08\032-0701.D Sample Name: 20ME-PDC-90

Acq. Operator	: SYSTEM	Seq. Line	: 7
Acq. Instrument	: 1260HPLC-DAD	Location	: Vial 32
Injection Date	: 12/6/2016 7:18:18 PM	Inj	: 1
		Inj Volume	: 5.000 µl
Acq. Method	: E:\DATA\HZY\SUANGAN\20ME-RAU -ALL-60MIN.M	C 2016-12-06 1	.6-11-08\DAD-AD(1-2)-950-10-1.0ML-5
Last changed	: 12/6/2016 7:21:34 PM by SYS (modified after loading)	TEM	
Analysis Method	: E:\DATA\HZY\SUANGAN\20ME-RA -ALL-60MIN.M (Sequence Meth		.6-11-08\DAD-AD(1-2)-950-10-1.0ML-5
Last changed	: 12/6/2016 9:32:27 PM by SYS (modified after loading)	TEM	
Additional Info	: Peak(s) manually integrated		

Area Percent Report

Sorted By	:	Sigr	nal		
Multiplier	:	1.00	000		
Dilution	:	1.00	000		
Do not use Multiplier	&	Dilution	Factor	with	ISTDs


Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.950	BB	0.3952	1.63472e4	629.07904	50.9966
2	24.639	BB	0.4957	1.57083e4	482.61929	49.0034
Tota:	ls :			3.20555e4	1111.69833	

1260HPLC-DAD 12/6/2016 9:32:31 PM SYSTEM

Data File E:\DATA\HZY\SUANGAN\20ME 2016-12-06 20-19-09\033-0301.D Sample Name: 20ME-EE

Acq. Operator	: SYSTEM	Seq. Line : 3
Acq. Instrument	: 1260HPLC-DAD	Location : Vial 33
Injection Date	: 12/6/2016 9:01:57 PM	Inj: 1
		Inj Volume : 5.000 µl
Acq. Method	: E:\DATA\HZY\SUANGAN\20ME 2 -60MIN.M	016-12-06 20-19-09\DAD-AD(1-2)-950-10-1.0ML-5-ALL
Last changed	: 12/6/2016 9:30:24 PM by SY (modified after loading)	STEM
Analysis Method	: E:\DATA\HZY\SUANGAN\20ME 2 -60MIN.M (Sequence Method)	016-12-06 20-19-09\DAD-AD(1-2)-950-10-1.0ML-5-ALL
Last changed	: 12/6/2016 9:35:44 PM by SY (modified after loading)	STEM
Additional Info	: Peak(s) manually integrate	d

Area Percent Report

Sorted By	:	Sigr	nal		
Multiplier	:	1.00	000		
Dilution	:	1.00	000		
Do not use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.978	MM	0.4341	2.98313e4	1145.43665	97.7950
2	24.555	MM	0.4879	672.62268	22.97658	2.2050
Tota:	ls :			3.05040e4	1168.41322	

1260HPLC-DAD 12/6/2016 9:35:58 PM SYSTEM

Data File E:\DATA\HZY\SUANGAN\SUBSTRATE-161021-2 2016-10-21 13-42-13\087-0201.D Sample Name: H-7-RAC

Acq. Operator	: SYSTEM Seq. Line : 2
Acq. Instrument	: 1260HPLC-VWD Location : Vial 87
Injection Date	: 10/21/2016 1:53:46 PM Inj: 1
	Inj Volume : 10.000 µl
Acq. Method	: E:\DATA\HZY\SUANGAN\SUBSTRATE-161021-2 2016-10-21 13-42-13\VWD-AD(1-6)-98-2
	-1ML-85MIN-10UL-210NM.M
Last changed	: 10/21/2016 1:42:14 PM by SYSTEM
Analysis Method	: E:\DATA\HZY\SUANGAN\SUBSTRATE-161021-2 2016-10-21 13-42-13\VWD-AD(1-6)-98-2
	-1ML-85MIN-10UL-210NM.M (Sequence Method)
Last changed	: 11/19/2016 6:56:06 PM by SYSTEM
	(modified after loading)
Additional Info	: Peak(s) manually integrated
	avelength=210 nm (E:\DATA\HZY\SUANGAN\SUBSTRATE-161021-2 2016-10-21 13-42-13\087-0201.D)
mAU	
-	
-	O
-	_ //
800 -	F T
-	(rac)- l l Ö
-	
600 -	2e ² ² ²
	N 2e 1
	480 480 480 480 480 480 480 480 480 480
	94 60 6 7
100	
400	
-	
200 -	
-	
-	
-	
0	
35	40 45 50 55 60 65 mir
	Area Percent Report
	Area reroent Report
Control Der	Circuit 1
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Do not use Mult	iplier & Dilution Factor with ISTDs
Signal 1: VWD1 .	A, Wavelength=210 nm
Peak RetTime Ty	pe Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
1 46.082 BB	
2 56.019 MM	
2 00.019 111	
Matala .	C 40000-4 DCE 05000
Totals :	6.46029e4 865.85822

1260HPLC-VWD 11/19/2016 6:56:27 PM SYSTEM

Data File E:\DATA\HZY\SUANGAN\3F-161118 2016-11-19 13-05-46\035-0601.D Sample Name: 2F

Acq. Operator	: SYSTEM	Seq. Line	: 6		
Acq. Instrument	: 1260HPLC-VWD	Location	: Vial 35		
Injection Date	: 11/19/2016 4:39:51 PM	Inj	: 1		
		Inj Volume	: 10.000 µl		
Acq. Method	: E:\DATA\HZY\SUANGAN\3F-16 -210-85MIN.M	1118 2016-11-19	13-05-46\VWD-AI	0(1-6)-98-2-1ML-100	JL
Last changed	: 11/19/2016 1:05:46 PM by	SYSTEM			
Analysis Method	: E:\DATA\HZY\SUANGAN\3F-16 -210-85MIN.M (Sequence Me		13-05-46\VWD-AI	0(1-6)-98-2-1ML-100	JL
Last changed	: 11/19/2016 6:57:32 PM by				
	(modified after loading)				
Additional Info	: Peak(s) manually integrat	ed			
	velength=210 nm (E:\DATA\HZY\SUANGAN\3F		-46\035-0601.D)		
mAU					
1					
700 -					
1				0	
-					
600 -			F 🦯	4	
-			· · · · · · · · · · · · · · · · · · ·	Ò	
500	0			(
-	45.902			Ĭ	
-	> 45			5	
400 -	\wedge		∼ 2e		
-					
300 -					
-					
-					
200 -					
1					
100 -					
100			03		
-			55.753		
0			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	· · · · · · · ·	
35	40 45	50	55	60	min
	Area Percent Repor				
Contod Dur					
Sorted By	: Signal				
Multiplier Dilution	: 1.0000				
	: 1.0000	h TOMD-			
Do not use Muit.	iplier & Dilution Factor wit	n ISTDS			
Signal 1: VWD1 /	A, Wavelength=210 nm				
	pe Width Area Heig				
# [min]	[min] [mAU*s] [mAU				
1 45.902 BB					
2 55.753 BB	0.8410 161.47997 2.4	7223 0.5708			
Totals :	2.82895e4 428.1	3495			

1260HPLC-VWD 11/19/2016 6:57:47 PM SYSTEM

Data File E:\DATA\HZY\SUANGAN\4F-RAC 2016-12-05 15-01-51\013-1201.D Sample Name: 3F-ER

Acq. Operator	: SYSTEM Seq. Line : 12
Acq. Instrument	: 1260HPLC-DAD Location : Vial 13
Injection Date	: 12/5/2016 9:32:26 PM Inj: 1
	Inj Volume : 10.000 µl
Acq. Method	: E:\DATA\HZY\SUANGAN\4F-RAC 2016-12-05 15-01-51\DAD-AD(1-2)-93-7-1.0ML-10-
	ALL-50MIN.M
Last changed	: 12/5/2016 5:38:50 PM by SYSTEM
Analysis Method	: E:\DATA\HZY\SUANGAN\4F-RAC 2016-12-05 15-01-51\DAD-AD(1-2)-93-7-1.0ML-10-
	ALL-50MIN.M (Sequence Method)
Last changed	: 12/6/2016 9:53:48 AM by SYSTEM
	(modified after loading)
	: Peak(s) manually integrated
	=210,4 Ref=off (E:\DATA\HZY\SUANGAN\4F-RAC 2016-12-05 15-01-51\013-1201.D)
mAU	
-	Q
-	
800 -	
-	(rac)- F, (rac)
-	
-	
600 -	
	2f
-	21
_	
400	
400	22
	> 27.872
200 -	
200	
0	
24	26 28 30 32 34 36 38 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Do not use Mult:	iplier & Dilution Factor with ISTDs
Signal 1: DAD1 (C, Sig=210,4 Ref=off
Peak RetTime Typ	-
# [min]	[min] [mAU*s] [mAU] %
1 27.872 BB	
2 33.765 BB	0.7060 1.20258e4 258.84329 49.9913
Totals :	2.40558e4 546.63693

1260HPLC-DAD 12/6/2016 9:53:51 AM SYSTEM

Data File E:\DATA\HZY\SUANGAN\3CL-15MIN-161203 2016-12-03 19-21-18\063-1001.D Sample Name: 3F

-	: SYSTEM	Seq. Line :	
Acq. Instrument		Location :	
Injection Date	: 12/3/2016 10:37:02 PM	Inj :	
Acq. Method	: E:\DATA\HZY\SUANGAN\3CL-15MI .0ML-10UL-210NM-50MIN.M	Inj Volume : N-161203 2016-1.	10.000 pl 2-03 19-21-18\VWD-AD(1-2)-93-7-1
Last changed	: 12/3/2016 10:56:38 PM by SYS' (modified after loading)	TEM	
Analysis Method	: E:\DATA\HZY\SUANGAN\3CL-15MI .0ML-10UL-210NM-50MIN.M (Seq		2-03 19-21-18\VWD-AD(1-2)-93-7-1
Last changed	: 12/6/2016 9:50:12 AM by SYST (modified after loading)	EM	
	: Peak(s) manually integrated		
VWD1 A, Wa	velength=210 nm (E:\DATA\HZY\SUANGAN\3CL-15	WIN-161203 2016-12-03 1	9-21-18\063-1001.D)
mAU 2000 1750 1500 1250 750 500 250	27.928	F	
-			34.
0			
24	26 28 30	32	34 36 38 min
	Area Percent Report		
Sorted By	: Signal		
Multiplier	: 1.0000		
Dilution	: 1.0000 plier & Dilution Factor with I:	Supe	
Lo not use muiti	prier a Dirución factor With I.	0100	
Signal 1: VWD1 A	, Wavelength=210 nm		
Peak RetTime Typ # [min]	[min] [mAU*s] [mAU]	Area %	
1 27.928 BB 2 34.490 BB	0.7088 5.54647e4 1172.7188 0.7224 1425.90808 30.3374	7 97.4936	
Totals :	5.68906e4 1203.0563	5	

1260HPLC-DAD 12/6/2016 9:50:21 AM SYSTEM

Data File E:\DATA\SLY\SLY-A-62\WSW-2-21 2017-01-13 16-58-38\002-0701.D Sample Name: 4F-RAC-90

Acq. Operator	
Acq. Instrument	: 1260HPLC-DAD Location : Vial 2
Injection Date	: 1/13/2017 8:23:07 PM Inj: 1
	Inj Volume : 2.000 µl
Acq. Method	: E:\DATA\SLY\SLY-A-62\WSW-2-21 2017-01-13 16-58-38\DAD-0J(1-2)-90-10-2UL-1ML -20MIN.M
Last changed	: 1/13/2017 7:28:27 PM by SYSTEM
Analysis Method	: E:\DATA\SLY\SLY-A-62\WSW-2-21 2017-01-13 16-58-38\DAD-0J(1-2)-90-10-2UL-1ML
	-20MIN.M (Sequence Method)
Last changed	: 1/14/2017 11:06:06 AM by SYSTEM
Additional Info	<pre>(modified after loading) : Peak(s) manually integrated</pre>
	=230,4 Ref=360,100 (E:\DATA\SLY\SLY-A-62\WSW-2-21 2017-01-13 16-58-38\002-0701.D)
mAU]	
-	
1	
8-	COOMe
-	
7-	(rac)-
	COOMe
-	
6-	F Y
-	3g
1	
5-	
-	16.185 19.10 19.185
4	£ * * *
4	19 19 19
-	\wedge
3-	
-	
2-	
13.5	14 14.5 15 15.5 16 16.5 17 17.5 18 mi
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
	iplier & Dilution Factor with ISTDs
bo not upo nare.	spirer a principle radio and response
Signal 1: DAD1 1	D, Sig=230,4 Ref=360,100
	na - polar polara u regula para polara.
Peak RetTime Typ	pe Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
1 15.117 MM	0.2936 28.49981 1.61779 48.0550
2 16.185 BB	0.2859 30.80683 1.56365 51.9450
Totals :	59.30663 3.18143

1260HPLC-DAD 1/14/2017 11:06:32 AM SYSTEM

Data File E:\DATA\SLY\SLY-A-62\WSW-2-21 2017-01-13 16-58-38\001-0801.D Sample Name: 4F-EE-90

Acq. Operator	: SYSTEM	Seq. Line	
Acq. Instrument	: 1260HPLC-DAD	Location	: Vial 1
Injection Date	: 1/13/2017 8:44:01 PM	Inj	: 1
		Inj Volume	: 2.000 µl
Acq. Method	: E:\DATA\SLY\SLY-A-62\WSW-2- -20MIN.M	-21 2017-01-13	16-58-38\DAD-0J(1-2)-90-10-2UL-1ML
Last changed	: 1/13/2017 7:28:27 PM by SYS	STEM	
			16-58-38\DAD-0J(1-2)-90-10-2UL-1ML
1	-20MIN.M (Sequence Method)		and the second of the second second second
Last changed	: 1/14/2017 11:08:13 AM by S	YSTEM	
	(modified after loading)		
Additional Info	: Peak(s) manually integrated	đ	
	=230,4 Ref=360,100 (E:\DATA\SLY\SLY-A-62\WS		58-38\001-0801.D)
mAU			
-			
175 -			00014
1			COOMe
150 -			
-			\land
-		Í	`COOMe
125 -		ļ	
-	2	F	
100	14.882		3g
100	~ 14		-9
-			
75 -			
-			
-			
50 -			
-			
25 -			100
-		213	1 ² .
1		500	4 ²⁷ . ¹⁸
0			
13.5	14 14.5 15 15.	5 16	16.5 17 17.5 18 min
	Area Percent Report		
Sorted By	: Signal		
Multiplier	: 1.0000		
Dilution	: 1.0000		
	iplier & Dilution Factor with	TSTDa	
Do not use huit	ipiter a bilación raccor wich	10105	
Signal 1: DAD1	D, Sig=230,4 Ref=360,100		
Deels Detmine Min	na Width Anan Unigh	Ducc	
Peak RetTime Typ			
# [min]	[min] [mAU*s] [mAU]		
1 14.882 BB	0.3185 1922.82996 91.765	545 98.9316	
1 14.882 BB 2 16.213 MM	0.3185 1922.82996 91.765	545 98.9316	
	0.3185 1922.82996 91.765	545 98.9316 e-1 1.0684	

1260HPLC-DAD 1/14/2017 11:08:20 AM SYSTEM

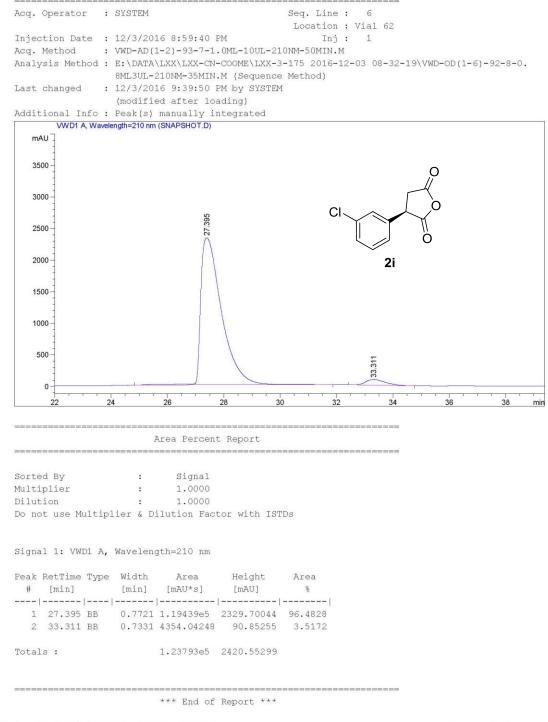
Data File E:\DATA\HZY\SUANGAN\4CL-EASTER 2016-12-21 11-18-59\072-0301.D Sample Name: 4CL-EASTER-RAC

Acq. Operator	: SYSTEM Seq. Line : 3
Acq. Instrument	
March	: 12/21/2016 12:31:13 PM Inj : 1
	Inj Volume : 2.000 µl
Acq. Method	: E:\DATA\HZY\SUANGAN\4CL-EASTER 2016-12-21 11-18-59\VWD-AD(1-6)-90-10-1ML-
	2UL-210NM-60MIN.M
Last changed	: 12/21/2016 11:18:59 AM by SYSTEM
Analysis Method	: E:\DATA\HZY\SUANGAN\4CL-EASTER 2016-12-21 11-18-59\VWD-AD(1-6)-90-10-1ML-
	2UL-210NM-60MIN.M (Sequence Method)
Last changed	: 12/21/2016 6:27:08 PM by SYSTEM
	(modified after loading)
	: Peak(s) manually integrated
	avelength=210 nm (E:\DATA\HZY\SUANGAN\4CL-EASTER 2016-12-21 11-18-59\072-0301.D)
mAU -	
1750 -	_COOMe
1750	
1500	(rac)-
1500 -	COOMe
1250 -	CI
	3h
1000	
-	ğ
750	13.858 ••••••••
3	
500	ate
-	
-	
250 -	
-	
0	
12	13 14 15 16 17 18 1
	Area Percent Report
	: Signal
Sorted By	
Sorted By Multiplier	: Signal : 1.0000
Sorted By Multiplier Dilution	: Signal : 1.0000 : 1.0000
Sorted By Multiplier Dilution	: Signal : 1.0000
Sorted By Multiplier Dilution	: Signal : 1.0000 : 1.0000
Sorted By Multiplier Dilution Do not use Multi	: Signal : 1.0000 : 1.0000
Sorted By Multiplier Dilution Do not use Multi	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 F	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 F	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=210 nm
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min]	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=210 nm pe Width Area Height Area
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 F Peak RetTime Typ # [min] 	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 F Peak RetTime Typ # [min] 1 13.858 BB	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %]]
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 F Peak RetTime Typ # [min] 1 13.858 BB	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 F Peak RetTime Typ # [min] 1 13.858 BB	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %
Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 A Peak RetTime Typ # [min] 1 13.858 BB 2 15.950 MM Totals :	: Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=210 nm pe Width Area Height Area [min] [mAU*s] [mAU] %

1260HPLC-VWD 12/21/2016 6:27:12 PM SYSTEM

Data File E:\DATA\HZY\SUANGAN\4CL-4BR-EST 2016-12-28 15-16-27\092-0201.D Sample Name: 4CL-EST

Acq. Operator	: SYSTEM	Seq. Line :	2	
Acq. Instrument	: 1260HPLC-DAD	Location :	Vial 92	
Injection Date	: 12/28/2016 3:28:34 PM	Inj :		
		Inj Volume :		
Acq. Method	: E:\DATA\HZY\SUANGAN\40 1ML-50MIN.M	CL-4BR-EST 2016-12-28	15-16-27\DAD-OJ(1-6)-98-	-2-1UL-
Last changed	: 12/28/2016 3:16:36 PM	by SYSTEM		
Analysis Method	: E:\DATA\HZY\SUANGAN\40 1ML-50MIN.M (Sequence		15-16-27\DAD-OJ(1-6)-98-	-2-1UL-
Last changed	: 1/15/2017 9:59:01 PM k	DY SYSTEM		
	(modified after loadir	ıg)		
	: Peak(s) manually integ			
DAD1 A, Sig= mAU]	220,4 Ref=off (E:\DATA\HZY\SUANGAN	4CL-4BR-EST 2016-12-28 15-16-2	7\092-0201.D)	
	21.563			
100 -	ñ		∠COOMe	
			COOME	
	()		.	
80 -			COOMe	
-				
-				
		CI	3h	
60 -			311	
]				
40				
	1			
22				
-				
20 -				
]	/		10	
_	/		24.901	
0				
18	19 20 21	22 23 24	4 25 26	27 min
	Area Percent Re	eport		
		•••••••••••••••••••••••••••••••••••••••		
Control Dec	1 1 1 1			
Sorted By	: Signal			
Multiplier	: 1.0000			
Dilution	: 1.0000	with TOWD-		
Do not use Muit:	iplier & Dilution Factor	with ISTDs		
Signal 1: DAD1 /	A, Sig=220,4 Ref=off			
Peak RetTime Tur	oe Width Area H	Height Area		
# [min]		[mAU] %		
		Records and the second second		
1 21.563 BB				
2 24.901 BB		3.06556 3.5480		
2 21.901 DD	2.101, 101.0001/	5.00000 0.0100		
Totals :	2856.57819 10	05.52924		


1260HPLC-VWD 1/15/2017 9:59:08 PM SYSTEM

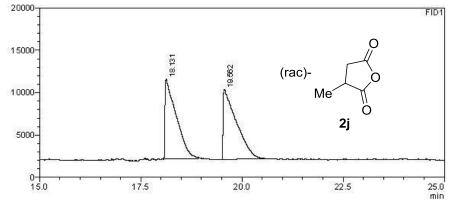
Data File E:\DATA\HZY\SUANGAN\CL-161201 2016-12-01 19-50-42\062-1601.D Sample Name: 3CL-RAC

Acq. Operator	
Acq. Instrument	: 1260HPLC-VWD Location : Vial 62
- March - Carlos - Carlos Andreas - Carlos - Car	: 12/2/2016 6:17:40 AM Inj : 1
	Inj Volume : 10.000 µl
Acq. Method	: E:\DATA\HZY\SUANGAN\CL-161201 2016-12-01 19-50-42\VWD-AD(1-2)-93-7-1.0ML-
	10UL-210NM-50MIN.M
Last changed	: 12/1/2016 7:50:43 PM by SYSTEM
Analysis Method	: E:\DATA\HZY\SUANGAN\CL-161201 2016-12-01 19-50-42\VWD-AD(1-2)-93-7-1.0ML-
	10UL-210NM-50MIN.M (Sequence Method)
Last changed	: 12/3/2016 9:37:21 PM by SYSTEM
	(modified after loading)
Additional Info	: Peak(s) manually integrated
VWD1 A, Wa	avelength=210 nm (E:\DATA\HZY\SUANGAN\CL-161201 2016-12-01 19-50-42\062-1601.D)
mAU	
-	
	0
	\bigcup_{II}
80 -	
1	rac-
-	
1.00	$\downarrow \downarrow \downarrow$
60 —	Ŭ
1. Carl	
	2 i
40 -	57
-	51
-	33.457
-	\land
20 -	
-	
-	
-	
0	
22	24 26 28 30 32 34 36 38 min
	Auge Devent Devent
	Area Percent Report
Grout and Dra	
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Do not use Mult.	iplier & Dilution Factor with ISTDs
Signal 1: VWD1 2	A, Wavelength=210 nm
Peak RetTime Typ	pe Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
1 28.262 BB	0.6506 1394.35962 32.42965 52.0825
2 33.457 BB	0.7101 1282.85388 27.71011 47.9175
Totals :	2677.21350 60.13976

1260HPLC-DAD 12/3/2016 9:37:27 PM SYSTEM

Data File C:\CHEM32\1\DATA\SNAPSHOT.D Sample Name:

1260HPLC-VWD 12/3/2016 9:40:09 PM SYSTEM


LabSolutions Analysis Report

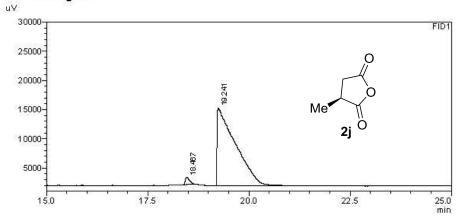
<Sample Information>

20,000,000,000,000	2010.000					
Sample № Sample I Data File Method F	D name	:sg-me-rac : sg-me-rac.gcd :b-dex 225-250-100-150-2	960. 20min.acm			
Batch File Vial # Injection	ename	: sg-me.gcb : 27 : 1 uL	1. 19. 19. 19. 19. 19. 19. 19. 19. 19. 1	iple Type	: Unknown	
Date Acq Date Pro	uired	: 2016-12-27 21:19:38 : 2016-12-27 21:49:43		uired by essed by	: System Administrator : System Administrator	

<Chrom atogram>

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	18.131	181465	9448	49.078	: 52.3475	M	0.000.000
2	19.562	188286	8233	50.922		M	
Total		369751	17681				


D:\DATA FILE\HZY\DATA\me\sg-me-rac.gcd

<Sample Information>

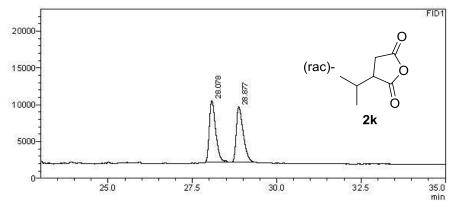
Sample Name Sample ID	sg-me-2			
Data Filename Method Filename	: sg-me-2.gcd : b-dex 225-250-100-150-260-30	Opein gene		
		onim.geni		
Batch Filename	: sg-me-2.gcb			
Vial#	: 26	Sample Type	: Unknown	
Injection Volume	1 uL	E CARACTER STATE		
Date Acquired	2016-12-27 22:08:50	Acquired by	: System Administrator	
Date Processed	: 2016-12-27 22:38:55	Processed by	: System Administrator	

<Chrom atogram>

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	18.467	9285	1258	2.163	: 58.08m3	M	-340 A282
2	19.241	420072	13349	97.837		M	
Total	8	429357	14607				

D:\DATA FILE\HZY\DATA\me\sg-me-2.gcd


Analysis Report

<Sample Information>

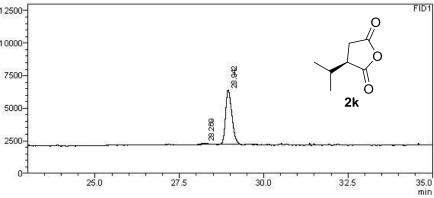
Sample Name Sample ID Data Filename Method Filename	: ipr-pdc ; ; ; sg-ipr-pdc-rare-1.gcd ; b-dex 120-250-100(0)-2-120(30)-	260-40min.gcm	
Batch Filename Vial #	: hzy-ipr-pdc-rare.gcb : 26	Sample Type	: Unknown
Injection Volume Date Acquired Date Processed	: 1 uL : 2016-12-29 12:11:30 : 2016-12-29 12:51:34	Acquired by Processed by	: System Administrator : System Administrator

<Chrom atogram>

<Peak Table>

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	28.078	109442	8392	50.552	: 52.3575	M	0.000.000
2	28.877	107050	7479	49.448		M	
Total	£	216492	15872				

D:\DATA FILE\HZY\DATA\ipr\sg-ipr-pdc-rare-1.gcd


Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename		60-40min.gcm	
Batch Filename Vial #	: hzy-ipr-2.gcb : 28	Sample Type	: Unknown
Injection Volume Date Acquired Date Processed	: 1 uL : 2016-12-29 9:21:12 : 2016-12-29 10:01:16	Acquired by Processed by	: System Administrator : System Administrator

<Chrom atogram>

<Peak Table>

Peak#∣	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	28.269	1369	100	2.457	: 52.3475	M	0.000002.000
2	28.942	54321	4146	97.543			
Total		55689	4246				

D:\DATA FILE\HZY\DATA\ipr\sg-ipr-ee.gcd

Data File E:\DATA\HZY\SUANGAN\BN-161209 2016-12-09 17-05-44\033-0401.D Sample Name: BN-RAC

Acq. Operator	: SYSTEM Seq. Line : 4
Acq. Instrument	: 1260HPLC-DAD Location : Vial 33
Injection Date	: 12/9/2016 5:58:53 PM Inj: 1
	Inj Volume : 5.000 µl
Acq. Method	: E:\DATA\HZY\SUANGAN\BN-161209 2016-12-09 17-05-44\DAD-AD(1-2)-950-10-1.0ML-
	5-ALL-60MIN.M
Last changed	: 12/9/2016 5:11:04 PM by SYSTEM
Analysis Method	: E:\DATA\HZY\SUANGAN\BN-161209 2016-12-09 17-05-44\DAD-AD(1-2)-950-10-1.0ML-
Teret shares d	5-ALL-60MIN.M (Sequence Method)
Last changed	: 12/10/2016 9:56:44 AM by SYSTEM
Additional Info	<pre>(modified after loading) : Peak(s) manually integrated</pre>
	=210,4 Ref=off (E:\DATAHZY\SUANGAN\BN-161209 2016-12-09 17-05-44\\033-0401.D)
mAU]	
-	
1000 -	
]	
-	Q
800	
-	(rac)-
-	
600 -	° ° ∥
600 -	0
	21
	N
400 -	0 15.842 16.962
-	Č v v
-	
200 -	
0	
13	14 15 16 17 18 19 20 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Do not use Mult.	iplier & Dilution Factor with ISTDs
Signal 1: DAD1 (C, Sig=210,4 Ref=off
Peak RetTime Ty	pe Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
1 15.842 BV	0.3619 8166.53027 335.55035 49.3572
0 10 000 110	0.4002 8379.24609 311.12848 50.6428
2 16.962 VB	
2 16.962 VB	

1260HPLC-DAD 12/10/2016 9:56:52 AM SYSTEM

Data File E:\DATA\HZY\SUANGAN\BN-161209 2016-12-09 17-05-44\054-0201.D Sample Name: BN-RAC

kcq. Operator	: SYSTEM S	Seq. Line : 2
-		Location : Vial 54
Are of a rest of the state of t	: 12/9/2016 5:10:55 PM	Ini: 1
injection bate		nj Volume : 5.000 µl
cq. Method		D16-12-09 17-05-44\DAD-AD(1-2)-950-10-1.0ML-
cy. Method	5-ALL-60MIN.M)16-12-09 17-05-44 (DAD-AD(1-2)-950-10-1.0ML-
ast changed	: 12/9/2016 5:11:04 PM by SYSTEM	
ast changed		
	(modified after loading)	
nalysis Method		016-12-09 17-05-44\DAD-AD(1-2)-950-10-1.0ML-
	5-ALL-60MIN.M (Sequence Method)	
ast changed	: 12/10/2016 10:00:47 AM by SYSTEM	4
	(modified after loading)	
	: Peak(s) manually integrated	
	=210,4 Ref=off (E:\DATA\HZY\SUANGAN\BN-161209 2016	j-12-09 17-05-44\054-0201.D)
mAU -		
2000		
1		
2		
1750 -		0
1		
1500 -		
-		
-		
1250 -		
-		2 ^O
1000	of the second se	21
-	893 60	
-	6.000 100 100 100 100 100 100 100 100 100	
750 -	\wedge	
-		
500		
-		
500 -		2 ⁴
-		E .Jos
500 -		E with the second
500		2 2 4 2015 25 2 2 2 4 2010

Area Percent Report

Sorted By	:	Sigr	nal		
Multiplier	:	1.00	000		
Dilution	:	1.00	000		
Do not use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 C, Sig=210,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-			-	
1	15.692	MM	0.4341	1.99556e4	766.11902	94.8868
2	17.173	MM	0.3986	1075.34766	44.96540	5.1132
Tota	ls :			2.10310e4	811.08442	

1260HPLC-DAD 12/10/2016 10:00:52 AM SYSTEM

Data File E:\DATA\HZY\SUANGAN\GYQ-170116-DI-OBN-EE 2017-01-16 15-34-34\051-0201.D Sample Name: BN-S

Acq. Operator	: SYSTEM Seq. Line : 2
Acq. Instrument	: 1260HPLC-DAD Location : Vial 51
Injection Date	: 1/16/2017 3:50:09 PM Inj : 1
	Inj Volume : 10.000 µl
Acq. Method	: E:\DATA\HZY\SUANGAN\GYQ-170116-DI-OBN-EE 2017-01-16 15-34-34\DAD-AD(1-6)-90
	-10-1ML-10UL-ALL-25MIN.M
Last changed	: 1/16/2017 3:34:34 PM by SYSTEM
Analysis Method	: E:\DATA\HZY\SUANGAN\GYQ-170116-DI-OBN-EE 2017-01-16 15-34-34\DAD-AD(1-6)-90
ant changed	-10-1ML-10UL-ALL-25MIN.M (Sequence Method)
Last changed	: 3/14/2017 9:34:29 AM by SYSTEM
Additional Info	(modified after loading)
	: Peak(s) manually integrated =210,4 Ref=off (E:\DATA\HZY\SUANGAN\GYQ-170116-DI-OBN-EE 2017-01-16 15-34-34\051-0201.D)
mAU 1	
400 -	0
-	
350 -	
-	○, ↓ ↓ ,○
300 -	
-	
250	2l (>99% ee)
200	
	16.165
200 -	110
	\sim
-	\wedge
150	\bigwedge
150 -	\bigwedge
150 -	
-	
100 -	5059
-	E
100 -	E tree 1, 52 PB
100 - 50 -	
100 -	* * * * * * * * * * * * * * * * * * * *
100 - 50 -	
100 - 50 -	
100 - 50 -	14 15 16 17 18 19 20 mi
	14 15 16 17 18 19 20 mi Area Percent Report
100- 50- 0- 13 Sorted By	14 15 16 17 18 19 20 mil Area Percent Report : Signal
100- 50- 0- 13 Sorted By Aultiplier	14 15 16 17 18 19 20 mil Area Percent Report
100- 50- 0- 	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000 : 1.0000
100- 50- 0- 	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000
100- 50- 0- 	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000 : 1.0000
100 50 0 13 Sorted By Aultiplier Dilution Jse Multiplier	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000
100 50 0 13 Sorted By Aultiplier Dilution Jse Multiplier	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000 : 1.0000
100 50 	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 B, Sig=210,4 Ref=off
100 50 	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000 : 1.0000 & Dilution Factor with ISTDs B, Sig=210,4 Ref=off pe Width Area Height
100 50 	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 © With ISTDs B, Sig=210,4 Ref=off pe Width Area Height Area [min] [mAU*s] [max] %
100 50 	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000 : 1.0000 & Dilution Factor with ISTDs B, Sig=210,4 Ref=off pe Width Area [min] [mAU] %
100 50 0 13 Sorted By Multiplier Dilution Jse Multiplier Signal 1: DAD1 Peak RetTime Typ # [min] 	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000 : 1.0000 & Dilution Factor with ISTDs B, Sig=210,4 Ref=off pe Width Area [min] [mAU] %
100 50 0 13 Sorted By Multiplier Dilution Jse Multiplier Signal 1: DAD1 Peak RetTime Typ # [min] 	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000 : 1.0000 & Dilution Factor with ISTDs B, Sig=210,4 Ref=off pe Width Area Height Area [min] [mAU*s] 0.4027 4970.44580 180.83931 99.7666
100 50 0 13 Sorted By Multiplier Dilution Jse Multiplier Signal 1: DAD1 Peak RetTime Typ # [min] 	14 15 16 17 18 19 20 mi Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 & Dilution Factor with ISTDs :

1260HPLC-DAD 3/14/2017 9:34:40 AM SYSTEM