ELECTRONIC SUPPORTING INFORMATION

Arene C-H activation by gold(III): Solvent-enabled proton shuttling, and observation of a pre-metallation Au-arene intermediate

Luca Rocchigiani,^a Julio Fernandez–Cestau,^a Peter H. M. Budzelaar^{b,*} and Manfred Bochmann^{a,*}

^aSchool of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK. ^bDepartment of Chemical Sciences, Federico II University of Naples, Via Cintia, 80126 Napoli, Italy. E-mail: <u>p.budzelaar@unina.it</u>.

- **1 General Considerations**
- 2 NMR Data
- 3 Relevant NMR spectra
- 4 Diffusion NMR experiments
- 5 EXSY NMR measurement
- 6 Details of computations

1. General Considerations

When required, manipulations were performed by using standard Schlenk techniques under dry N₂ or in a MBraun Unilab glovebox with a high capacity recirculator (<1.0 ppm O₂ and H₂O). All solvents were dried by means of the appropriate drying agent and distilled. Methylene chloride– d_2 and chlorobenzene– d_5 (Apollo Scientific) were stored in the glovebox over activated 4 Å molecular sieves. (C^N^C)AuCl (1a),¹ (C^N^C)AuOH,² (C^N^C)AuC₆F₅ (1b),² (C^N^C)Au(*p*–C₆H₄F) (1c),² and [H(OEt₂)₂][H₂N{B(C₆F₅)₃}₂]³ were synthesized according to literature procedures. (C^N^C)Au(C₆H₅) (1d) has been synthesized by adapting previously reported procedures in 87% yield.²

Protodeauration experiments were performed within the glovebox under an anaerobic and anhydrous atmosphere, by dissolving the desired gold complex (5 to 10 mg) and 1.0 molar equiv of $[H(OEt_2)_2][H_2N\{B(C_6F_5)_3\}_2]$ in approximately 0.6 mL of dry CD_2Cl_2 or chlorobenzene– d_5 within a J-Young NMR tube.

¹H, ¹H PGSE, ¹⁹F, ¹³C{¹H}, *J*-resolved ¹³C, ¹H COSY, ¹H NOESY, ¹H EXSY, ¹H,¹³C HMQC, coupled ¹H,¹³C HMQC and ¹H,¹³C HMBC NMR experiments have been recorded on a Bruker DPX–300 spectrometer equipped with a ¹H,BB smartprobe and Z-gradients. ¹H NMR spectra are referenced to the residual protons of the deuterated solvent. ¹³C NMR spectra are referenced to the D-coupled ¹³C signals of the solvent. ¹⁹F NMR spectra are referenced to an external standard of CFCl₃.

2. NMR data

 $(C^N^C)Au(C_6H_5)$ 1d. ¹H NMR (300.13 MHz, CD₂Cl₂, 297K, J values in Hz): 7.76 (t, ³J_{HH} = 7.9,

1H, H1), 7.69 (dd, ${}^{3}J_{HH} = 8.0$, ${}^{4}J_{HH} = 1.2$, 2H, H11), 7.52 (d, ${}^{3}J_{HH} = 8.2$, 2H, H5), 7.48 (d, ${}^{4}J_{HH} = 2.0$, 2H, H8), 7.41 (d, ${}^{3}J_{HH} = 7.9$, 2H, H2), 7.34 (m, 2H, H12), 7.24 (m, 3H, H6+H13), 1.26 ppm (s, 18H, -CMe₃). ${}^{13}C{}^{1}H$ NMR (75.47 MHz, CD₂Cl₂, 297K): 168.3 (s, C9), 163.1 (s, C3), 154.3 (s, C7), 147.8 (s, C10), 147.2 (s, C4), 141.6 (s, C1), 134.4 (s, C11), 132.3 (s, C7), 147.8 (s, C10), 2000 + 200

C8), 128.5 (s, C12), 124.7 (s, C5), 124.6 (s, C13), 123.3 (s, C6), 116.0 (s, C2), 35.1 (s, *C*Me₃), 30.9 ppm (s, *CMe₃*). Anal. Calcd. (Found) for C₃₁H₃₂AuN: C 60.49 (60.13), H 5.24 (5.13), N 2.28 (2.71). [(C^N^CH)AuCl(OEt₂)][H₂N{B(C₆F₅)₃}] **2a**

¹⁾ K.-H. Wong, K.-K. Cheung, M. C.-W. Chan, C.-M. Che, Organometallics 1998, 17, 3505.

²⁾ D. A. Rosca, D. A. Smith, M. Bochmann, Chem. Commun. 2012, 48, 7247.

³⁾ S. J. Lancaster, A. Rodriguez, A. Lara-Sanchez, M. D. Hannant, D. A. Walker, D. L. Hughes, M. Bochmann, *Organometallics* 2002, **21**, 453.

¹H NMR (300.13 MHz, CD₂Cl₂, 297K, J values in Hz): δ 8.27 (t, ³J_{HH} = 7.9, 1H, H1), 7.98 (d, ³J_{HH} = 7.9, 1H, H2), 7.76 (AB system, 4H, H5'+H6'), 7.71 (d, ⁴J_{HH} = 1.3, 1H, H8), 7.66 (d, ³J_{HH} = 7.9, 1H, H2'), 7.55 (dd, ³J_{HH} = 8.1, ⁴J_{HH} = 1.3, 1H, H6), 7.50 (³J_{HH} = 8.1, 1H, H5), 5.67

(br, NH₂), 1.40 (s, 9H, CMe₃'), 1.37 ppm (s, 9H, CMe₃). ¹⁹F NMR (282.4 MHz, CD₂Cl₂, 297K, J values in Hz): δ –132.9 (d, ³*J*_{FF} = 19.3, 2F, *o*–F H₂N{B(C₆F₅)₃}₂), –160.2 (7, ³*J*_{FF} = 20.8, 1F, *p*–F H₂N{B(C₆F₅)₃}₂), –165.6 (m, 2F, *m*–F H₂N{B(C₆F₅)₃}₂). Selected ¹³C{¹H} NMR (75.47 MHz, C₆D₅Cl, 297K): δ 162.1 (s, C3), 158.6 (s, C7), 157.3 (s, C3'), 157.0 (s, C7'), 143.5 (s, C1), 136.1 (s, C4), 134.4 (s, C4'), 130.9 (s, C6'), 129.7 (s, C8), 127.9 (buried under solvent, C6), 125.0 (buried under solvent, C2'+C5'), 119.5 (s, C2), 36.3 (s, CMe₃), 35.3 (s, CMe₃'), 30.6 ppm (s, C*Me₃+CMe₃'*).

$[(C^N^CHAu(C_6F_5)(Et_2O)][H_2N\{B(C_6F_5)_3\}_2]$ 2b

¹H NMR (300.13 MHz, CD₂Cl₂, 297K, J values in Hz): δ 8.30 (t, ${}^{3}J_{HH} =$ 7.9, 1H, H1), 8.06 (d, ${}^{3}J_{HH} =$ 7.9, 1H, H2), 7.88 (d, ${}^{3}J_{HH} =$ 8.5, 2H, H5'), 7.81 (br d, 3H H6'+H2'), 7.69 (d, ${}^{3}J_{HH} =$ 8.3, 1H, H5), 7.52 (brd, ${}^{3}J_{HH} =$ 8.3, 1H, H6), 6.54 (brs, 1H, H8), 5.68 (brs, NH₂), 1.37 (s, 9H, CMe₃'), 1.17 (s, 9H, CMe₃). ¹⁹F NMR (282.36 MHz, CD₂Cl₂, 297K, *J* values in

Hz): $\delta -121.6$ (br, o-F Au-C₆F₅), -133.0 (br d, ${}^{3}J_{FF} = 19.0$, o-F H₂N[B(C₆F₅)₃]₂⁻), -151.3 (br, p-F Au-C₆F₅), -158.1 (br, m-F Au-C₆F₅), -160.2 (t, ${}^{3}J_{FF} = 20.4$, p-F H₂N[B(C₆F₅)₃]₂⁻), -165.7 ppm (m, m-F H₂N[B(C₆F₅)₃]₂⁻). ${}^{13}C{}^{1}H{}$ NMR (75.47 MHz, CD₂Cl₂, 297K): $\delta 160.6$ (s, C3), 159.4 (br s, C3'), 158.0 (s, C7), 156.2 (s, C7'), 147.8 (br d, ${}^{1}J_{CF} = 240.0$, o-C H₂N[B(C₆F₅)₃]₂⁻), 143.9 (s, C1), 139.6 (br s, C9), 139.1 (br d, ${}^{1}J_{CF} = 248.0$, p-C H₂N[B(C₆F₅)₃]₂⁻), 137.7 (s, C4), 136.7 (br d, ${}^{1}J_{CF} = 246.0$, m-C H₂N[B(C₆F₅)₃]₂⁻), 134.6 (s, C4'), 130.2 (s, C8), 129.2 (br s, C6'), 127.9 (s, C6), 127.6 (s, C5), 127.0 (br s, C5'), 126.4 (s, C2'), 119.4 (s, C2), 35.6 (s, CMe_3), 35.2 (s, CMe_3'), 30.7 (s, CMe_3'), 30.4 ppm (s, CMe_3).

$[(C^N^CHAu(p-C_6H_4F)(Et_2O)][H_2N\{B(C_6F_5)_3\}_2]$ 2c

¹H NMR (300.13 MHz, CD₂Cl₂, 297K, J values in Hz): δ 8.21 (t, ³J_{HH}=7.9, 1H, H1), 8.07 (d, ³J_{HH}=7.9, 1H, H2), 7.78 (d, ³J_{HH}=8.6, 1H, H6'), 7.74 (d, ³J_{HH} = 8.6, 2H, H5'), 7.71 (m, 3H, H5+H2'), 7.51 (m, 2H, H11), 7.44 (dd, ³J_{HH} = 8.3, ⁴J_{HH} = 1.5, 1H, H6), 7.11 (m, 2H, H12), 6.60 (d, ⁴J_{HH} = 1.5, 1H, H8), 5.68 (br s, NH₂), 1.38 (s, 9H, CMe₃'), 1.11 ppm

(s, 9H, CMe₃). ¹⁹F NMR (282.36 MHz, CD₂Cl₂, 297K): -113.2 ppm (br, *p*-F), -133.0 (br d, ${}^{3}J_{FF}$ =

19.0, o-F H₂N[B(C₆F₅)₃]₂⁻), -160.2 (t, ³*J*_{FF} = 20.4, *p*-F H₂N[B(C₆F₅)₃]₂⁻), -165.7 ppm (m, *m*-F H₂N[B(C₆F₅)₃]₂⁻). ¹³C{¹H} NMR (75.47 MHz, CD₂Cl₂, 297K, J values in Hz): 162.5 (d, ¹*J*_{CF} = 247.7, C13), 160.1 (s, C3 or C3'), 160.0 (s, C3' or C3), 156.5 (s, C7), 155.1 (s, C7'), 147.8 (br d, ¹*J*_{CF} = 240.0, *o*-C H₂N[B(C₆F₅)₃]₂⁻), 142.5 (s, C1), 140.0 (d, ⁵*J*_{CF} = 2.9, C10), 139.0 (br d, ¹*J*_{CF} = 250.0, *p*-C H₂N[B(C₆F₅)₃]₂⁻), 138.1 (s, C4), 136.6 (br d, ¹*J*_{CF} = 250.0, *m*-C H₂N[B(C₆F₅)₃]₂⁻), 136.1 (br s, C9), 134.8 (s, C4'), 132.5 (d, ⁴*J*_{CF} = 7.0, C11), 132.0 (s, C8), 127.9 (s, C5'), 127.6 (s, C6'), 126.8 (s, C6), 126.5 (s, C2'), 126.2 (s, C5), 119.0 (s, C2), 117.2 (d, ⁴*J*_{CF}=21.0, C13), 35.4 (s, CMe₃), 35.0 (s, CMe₃'), 30.8 (s, -CMe₃'), 30.4 ppm (s, CMe₃).

$[(C^N^CHAu(C_6H_5)(Et_2O)][H_2N\{B(C_6F_5)_3\}_2]$ 2d

¹H NMR (300.13 MHz, CD₂Cl₂, 297K, *J* values in Hz): δ 8.19 (t, ${}^{3}J_{HH} =$ 8.0, 1H, H1), 8.06 (d, ${}^{3}J_{HH} =$ 8.0, 1H, H2), 7.77 (d, ${}^{3}J_{HH} =$ 8.4, 2H, H5'), 7.70 (m, 4H, H6'+H2+H5), 7.51 (br d, 2H, H11), 7.42 (dd, ${}^{3}J_{HH} =$ 8.2, ${}^{4}J_{HH} =$ 1.7, 1H, H6), 7.33 (br m, 3H, H12+H13), 6.64 (d, ${}^{4}J_{HH} =$ 1.7, 1H, H8), 5.70 (br, NH₂), 1.37 (s, 9H, CMe₃'), 1.08 ppm (s, 9H, CMe₃).

$[(C^N^CHAu(C_6F_5))][H_2N\{B(C_6F_5)_3\}_2]$ 3b

¹H NMR (300.13 MHz, CD₂Cl₂, 297K, J values in Hz: δ 8.42 (t, ³*J*_{HH} = 8.0, 1H, H1), 8.18 (br d, ³*J*_{HH} = 7.5, 2H, H5'), 8.07 (d, ³*J*_{HH} = 8.0, 1H, H2), 8.02 (m, 3H, H2'+H6'), 7.72 (d, ³*J*_{HH} = 7.8, 1H, H5), 7.54 (br d, ³*J*_{HH} = 7.8, 1H, H6), 6.74 (br d, 1H, H8), 5.67 (br s, -NH₂), 1.31 (s, 9H, CMe₃'), 1.21 ppm (s, CMe₃). ¹⁹F NMR (282.36 MHz, CD₂Cl₂, 297K, J

values in Hz): $\delta -120.2$ (br, o-F Au-C₆F₅), -133.0 (br d, ${}^{3}J_{FF}=19.0$, o-F H₂N[B(C₆F₅)₃]₂⁻), -151.0 (br, p-F Au-C₆F₅), -158.8 (br, m-F Au-C₆F₅), -160.2 (t, ${}^{3}J_{FF}=20.4$, p-F H₂N[B(C₆F₅)₃]₂⁻), -165.7 ppm (m, m-F H₂N[B(C₆F₅)₃]₂⁻). ${}^{13}C{}^{1}H$ NMR (75.47 MHz, CD₂Cl₂, 297K, J values in Hz): δ 159.5 (s, C7 or C3), 159.4 (s, C3 or C7), 157.3 (s, C7'), 156.0 (s, C3'), 152.5 (br s, C9), 147.8 (br d, ${}^{1}J_{CF} = 240.0$, o-C H₂N[B(C₆F₅)₃]₂⁻), 144.8 (s, C1), 139.7 (s, C4'), 139.0 (br d, ${}^{1}J_{CF} = 250.0$, p-C H₂N[B(C₆F₅)₃]₂⁻), 138.2 (br s, C6'), 136.6 (br d, ${}^{1}J_{CF} = 250.0$, m-C H₂N[B(C₆F₅)₃]₂⁻), 135.6 (s, C4), 130.5 (s, C8), 128.5 (s, C5), 128.3 (s, C6), 123.7 (s, C2'), 120.4 (s, C2), 119.6 (s, C5'), 36.1 (s, CMe_3), 35.3 (s, CMe_3'), 30.4 (s CMe_3 or CMe_3'), 30.3 ppm (s CMe_3' or CMe_3).

3. Relevant NMR spectra

Figure S1. ¹H NMR spectrum of **2b** (300.13 MHz, 297K, CD₂Cl₂).

Figure S2. ¹³C{¹H} NMR spectrum of **2b** (75.47 MHz, 297K, CD₂Cl₂); $AB_2^- = H_2N\{B(C_6F_5)_3\}_2^-$.

S6

Figure S5. A section of the ¹H NOESY spectrum of complex **2a** showing the presence of chemical exchange between cyclometallated and protodeaurated aryl moieties (τ_M =0.8 s, CD₂Cl₂, 297K).

Figure S6. A section of the ¹H NOESY spectrum of complex **2a** (τ_M =0.8 s, C₆D₅Cl, 297K); asterisks denote residual of protonated solvent.

Figure S7. A section of the ¹H NOESY spectrum of complex **2b** (τ_M =0.8 s, C₆D₅Cl, 297K); asterisks denote residual of protonated solvent.

Figure S8. A section of the coupled ¹H, ¹³C HMQC NMR spectrum of complex **2b** obtained after removal of Et₂O (CD₂Cl₂, 297K).

Figure S9. Temperature dependence of the aromatic region of the ¹H NMR spectrum of Et_2O -free **2b** complex (CD₂Cl₂).

Figure S10. Evolution of a section of the ¹³C{¹H} NMR spectrum of **2b** upon removal of Et₂O (297 K, methylene chloride– d_2); black dots indicate C–F signals due to the counterion.

Figure S11. Two sections of the ¹H NOESY spectrum of complex 2c (τ_M =0.8 s, C₆D₅Cl, 297K); asterisks denote residual of protonated solvent.

4. Diffusion NMR experiments

¹H PGSE measurements were performed by using a double stimulated echo sequence with longitudinal eddy current delay on a Bruker DRX 300 spectrometer equipped with a smartprobe and Z-gradient coil, at 297K without spinning. The obtained intensity (*I*) versus gradient (*G*) data were interpolated as reported elsewhere⁴ to estimate hydrodynamic volume values (V_H) of **2a** and **2b**.

2a:

 $V_{H}^{0} H_2 N[B(C_6F_5)_3]_2^- = 740 \text{ Å}^3 \text{ (derived from the X-Ray structure of } \{Na\} \{H_2 N[B(C_6F_5)_3]_2\}^3 V_{H}^{0} 2a^+ = 580 \text{ Å}^3 \text{ (derived from the DFT-optimized structure)}$ Approximate V_{H}^{0} of the ion pair = 1320 Å^3

2b:

 $V_{H}^{0} H_2 N[B(C_6F_5)_3]_2^- = 740 \text{ Å}^3 \text{ (derived from the X-Ray structure of } \{Na\} \{H_2 N[B(C_6F_5)_3]_2\}$ $V_{H}^{0} 2b^+ = 670 \text{ Å}^3 \text{ (derived from the DFT-optimized structure)}$ Approximate V_{H}^{0} of the ion pair = 1410 Å³

^{4) (}a) Macchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, C. *Chem. Soc. Rev.* **2008**, *37*, 479. (b) Zuccaccia, D.; Macchioni, A. *Organometallics* **2005**, *24*, 3476.

5. EXSY NMR Measurements

Two-dimensional ¹H EXSY measurements were performed by using the *pfg* version of the standard ¹H NOESY sequence (noesygptp). Different values of spectral width, relaxation delay, number of transients and mixing time were used according to the sample concentration and temperature. Microscopic first-order rate constant (k_1 , s⁻¹) at different mixing time values (τ_M , s) were obtained by integration of diagonal (I_{AA} , I_{BB}) and cross (I_{AB} , I_{BA}) peaks relative to the exchanging signals and applying the following relationship:

$$k_1 = \frac{1}{\tau_M} ln \frac{r+1}{r-1}$$

where $r=(I_{AA}+I_{BB})/(I_{AB}+I_{BA})$.⁵ At least two experiments with different τ_M were acquired and the rate constants were obtained as the average of all the values. Linearity of $\ln(r+1)/(r-1)$ versus τ_M has been verified at 298 and 312 K, where more data points were acquired.

Table S1. Microscopic rate constants obtained for the chemical exchange in complex 2a at different
temperatures (T) and mixing time values (τ_M) .

$\tau_{M}(s)$	$k_1(s^{-1})$	$\overline{k_1}(s^{-1})$
	T = 298.65 K	
1.4	0.48	
1.2	0.49	
1.0	0.48	
0.8	0.57	0.51 ± 0.05
	T = 312.45 K	
0.9	0.99	
0.8	1.06	
0.7	1.09	
0.55	1.16	
0.4	1.28	1.11 ± 0.10
	T = 323.45 K	
0.5	2.35	
0.4	2.24	
0.3	2.28	2.29 ± 0.06
	T = 333.75 K	
0.4	4.16	
0.3	4.24	4.20 ± 0.05
	T = 344.15 K	
0.2	6.75	
0.1	6.48	6.62 ± 0.18

⁵⁾ C. K. Perrin, T. J. Dwyer, Chem. Rev. 1990, 90, 935.

Figure S14. Eyring plot for the reversible protodeauration of **1a** in C₆D₅Cl. Linear fitting gave a ΔH^{\neq} =(11.0±0.2) kcal/mol and ΔS^{\neq} =(-23.0±1.0) cal mol⁻¹ K⁻¹.

Table S2. Microscopic rate constants obtained for the chemical exchange in complex 2b at different
temperatures (T) and mixing time values (τ_M) .

$\tau_{M}(s)$	$k_1(s^{-1})$	$\overline{k_1}(s^{-1})$
	T = 298.65 K	
1.6	0.20	
1.3	0.14	
1.0	0.14	0.16 ± 0.03
	T = 323.45 K	
0.6	1.27	
0.5	1.22	
0.4	1.27	1.25 ± 0.03
	T = 344.15 K	
0.15	5.75	
0.1	6.29	6.02 ± 0.38

6 – Details of computations

All calculations were carried out with Gaussian 09.⁶ Structures were optimized at the B3LYP⁷/SVP⁸ level (LANL2DZ with corresponding ECP at Au⁹) including a PCM(ChloroBenzene) solvent correction.¹⁰ The nature of stationary points was checked by vibrational analyses. Improved single-point energies were obtained with TPSSH¹¹/cc-pVTZ¹² including a PCM(ChloroBenzene) correction. These were combined with a DFT-D3 dispersion correction¹³ and with the thermal corrections (enthalpy and entropy) at 323 K, obtained from the B3LYP/SVP vibrational analyses; entropy contributions were scaled by 0.67 to account for reduced freedom in the condensed phase.¹⁴ Figure S15 (below) shows structures and relevant bond lengths for stationary points along the path for protonation of (C^N^C)AuCl (model ligand not bearing *t*Bu substituents) with H(OMe₂)₂⁺ (model for H(OEt₂)₂⁺). Chemical shifts were calculated using the GIAO method¹⁵ at the TPSSH/cc-pVTZ level, using Me₄Si as reference for ¹H and ¹³C, and CFCl₃ for ¹⁹F; calculated chemical shifts for (C^N^CH)Au(C₆F₅)⁺ species are collected in Figure S16. Table S3 contains total energies and thermal corrections for all species studied; an xyz archive containing all relevant coordinates is provided separately.

⁶ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morukuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Ciolowski, J.; Fox, D. J. *Gaussian 09*, B.01; Gaussian, Inc.: Wallingford CT, 2009.

⁷ (a) Becke, A. D., *J. Chem. Phys.* **1993**, *98*, 1372-1377; (b) Becke, A. D., *J. Chem. Phys.* **1993**, *98*, 5648-5652; (c) Lee, C. T.; Yang, W. T.; Parr, R. G., Phys. Rev. B **1988**, *37*, 785-789.

⁸ Schäfer, A.; Horn, H.; Ahlrichs, R., J. Chem. Phys. **1992**, 97, 2571-2577.

⁹ Hay, P. J.; Wadt, W. R., J. Chem. Phys. 1985, 82, 299-310

¹⁰ (a) Miertus, S.; Scrocco, E.; Tomasi, J., *Chem. Phys.* **1981**, 55, 117-129; (b) Miertus, S.; Tomasi, J., *Chem. Phys.*

¹⁹⁸², 65, 239-245; (c) Tomasi, J.; Mennucci, B.; Cammi, R., *Chem. Rev.* **2005**, *105*, 2999-3093; (d) Scalmani, G.; Frisch, M. J., J. Chem. Phys. **2010**, *132*

¹¹ Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E., *Phys. Rev. Lett.* **2003**, *91*, 146401

¹² (a) Dunning, T. H., *J. Chem. Phys.* **1989**, *90*, 1007-1023; (b) Woon, D. E.; Dunning, T. H., *J. Chem. Phys.* **1993**, *98*, 1358-1371; (c) Peterson, K. A.; Puzzarini, C., *Theor. Chem. Acc.* **2005**, *114*, 283-296

¹³ Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., J. Chem. Phys. 2010, 132, 154104

¹⁴ (a) Tobisch, S.; Ziegler, T., *J. Am. Chem. Soc.* **2004**, *126*, 9059-9071; (b) Raucoules, R.; de Bruin, T.; Raybaud, P.; Adamo, C., Organometallics **2009**, *28*, 5358-5367

¹⁵ Ditchfield, R., *Mol. Phys.* **1974**, *27*, 789-807; (b) Wolinski, K.; Hinton, J. F.; Pulay, P., J. Am. Chem. Soc. **1990**, *112*, 8251-8260

OMe2, H+_OMe2, H+_OMe2_2

LAuCl__H+_OMe2_2

LAuCl__H+_OMe2_2_TS

Figure S15. Calculated stationary points along the path for protonation of $(C^N^C)AuCl$ by $H(OMe_2)_2^+$. Bond lengths in Å.

LAuCl_H+_OMe2_TS

Figure S15 (cont'd). Calculated stationary points along the path for protonation of $(C^N^C)AuCl$ by $H(OMe_2)_2^+$. Bond lengths in Å.

LHAu+_Cl

LHAuCl_2_2+

Figure S15 (cont'd). Calculated stationary points along the path for protonation of $(C^N^C)AuCl$ by $H(OMe_2)_2^+$. Bond lengths in Å.

Figure S15 (cont'd). Calculated stationary points along the path for protonation of $(C^N^C)AuCl$ by $H(OMe_2)_2^+$. Bond lengths in Å.

 $\overline{(C^N^CH)Au(C_6F_5)(OMe_2)^+}$

Figure S16. Calculated ¹³C (left) and ¹H and ¹⁹F (right) chemical shifts for (C^N-CH)Au(C₆F₅)⁺ species.

Name	Formula	E _{elec} B3LVP	ΔH _{corr} 323 K	TΔS _{corr} 323 K	E _{elec} TPSSH	DFTD3	G	on scale	rel kcal/mol
TMS	C4H12Si	-449.00327	0.15764	0.04780	-449.29532	-0.00692	-449,17664	on scale	Kcal/ III01
OMe2	C2H6O	-154.91169	0.08508	0.03309	-155.09304	-0.00250	-155.03263		
H+ OMe2	C2H7O	-155.30356	0.09925	0.03517	-155.48704	-0.00324	-155.41459		
H+_OMe2_2	C4H13O2	-310.25180	0.18366	0.05216	-310.61118	-0.01008	-310.47255		
OEt2	C4H10O	-233.49343	0.14445	0.04137	-233.76290	-0.00616	-233.65233		
H+_OEt2	C4H11O	-233.88991	0.15834	0.04356	-234.16266	-0.00737	-234.04088		
H+_OEt2_2	C8H21O2	-467.41383	0.30360	0.06451	-467.95002	-0.02398	-467.71361		
PhH	C6H6	-232.08645	0.10661	0.03633	-232.34665	-0.00419	-232.26858		
ClPh	C6H5C1	-691.55304	0.09835	0.03947	-691.98175	-0.00573	-691.91558		
LAuCl {+ H+_OMe2_2}	C17H11AuClN	-1304.24069	0.25044	0.06753	-1305.45387	-0.02818	-1305.27685	-1305.27685	8.68
LAuCl_H+_OMe2_2	C21H24AuClNO2	-1614.49938	0.43734	0.10117	-1616.06852	-0.04609	-1615.74505	-1305.27250	11.41
LAuCl_H+_OMe2_2_TS	C21H24AuClNO2	-1614.47818	0.43807	0.09850	-1616.04795	-0.05626	-1615.73214	-1305.25959	19.51
LAuCl_H+_OMe2_OMe2	C21H24AuClNO2	-1614.48061	0.43889	0.10275	-1616.05036	-0.05111	-1615.73142	-1305.25887	19.97
LAuCl {+ H+_OMe2 + OMe2}	C17H11AuClN	-1304.24069	0.25044	0.06753	-1305.45387	-0.02818	-1305.27685	-1305.25152	24.58
LAuCl_H+_OMe2	C19H18AuClNO	-1459.56067	0.35114	0.08466	-1460.95323	-0.04208	-1460.70089	-1305.26097	18.65
LAuCl_H+_OMe2_TS	C19H18AuClNO	-1459.55580	0.34539	0.08223	-1460.94740	-0.04256	-1460.69966	-1305.25975	19.42
LHAu+_Cl	C17H12AuClN	-1304.66472	0.26267	0.07223	-1305.87230	-0.02935	-1305.68737	-1305.28008	6.65
LHAu+_Cl_ClPh	C23H17AuCl2N	-1996.22037	0.36321	0.09378	-1997.85275	-0.04569	-1997.59807	-1305.27520	9.72
LHAuCl_2_2+	C34H24Au2Cl2N2	-2609.33283	0.52757	0.12131	-2611.74508	-0.07652	-2611.37531	-1305.28037	6.48
LHAu+_Cl_OMe2	C19H18AuClNO	-1459.59489	0.35096	0.08454	-1460.98016	-0.04477	-1460.73060	-1305.29069	0.00
LAuCl	C17H11AuClN	-1304.24069	0.25044	0.06753	-1305.45387	-0.02818	-1305.27685	-1305.27685	5.06
LAuCl_H+_OEt2	C21H22AuClNO	-1538.14355	0.41061	0.09280	-1539.62495	-0.04843	-1539.32494	-1305.26366	13.34
LAuCl_H+_OEt2_TS	C21H22AuClNO	-1538.13543	0.40462	0.09050	-1539.61536	-0.05006	-1539.32144	-1305.26015	15.53
LHAu+_Cl	C17H12AuClN	-1304.66472	0.26267	0.07223	-1305.87230	-0.02935	-1305.68737	-1305.27841	4.08
LHAu+_Cl_ClPh	C23H17AuCl2N	-1996.22037	0.36321	0.09378	-1997.85275	-0.04569	-1997.59807	-1305.27353	7.14
LHAuCl_2_2+	C34H24Au2Cl2N2	-2609.33283	0.52757	0.12131	-2611.74508	-0.07652	-2611.37531	-1305.27869	3.90
LHAu+_Cl_OEt2	C21H22AuClNO	-1538.16861	0.41052	0.09071	-1539.64171	-0.05423	-1539.34620	-1305.28491	0.00
LbAuCl	C25H27AuClN	-1618.52246	0.48634	0.09586	-1620.09296	-0.05421	-1619.72506	-1619.72506	9.86

Table S3. Total energies and thermal corrections.

Name	Formula	E _{elec} B3LYP	ΔH _{corr} 323 K	TΔS _{corr} 323 K	E _{elec} TPSSH	DFTD3	G	on scale	rel kcal/mol
LbAuCl_H+_OMe2	C27H34AuClNO	-1773.84355	0.58715	0.11131	-1775.59341	-0.06974	-1775.15058	-1619.71066	18.89
LbAuCl_H+_OMe2_TS	C27H34AuClNO	-1773.83926	0.58122	0.11077	-1775.58827	-0.06951	-1775.15078	-1619.71086	18.77
LbHAu+_Cl	C25H28AuClN	-1618.94930	0.49856	0.10079	-1620.51478	-0.05540	-1620.13916	-1619.73187	5.58
LbHAuCl_2_2+	C50H56Au2Cl2N2	-3237.89860	0.99923	0.17310	-3241.02550	-0.13455	-3240.27679	-1619.73111	6.06
LbHAu+_Cl_OMe2	C27H34AuClNO	-1773.87810	0.58683	0.11263	-1775.62072	-0.07133	-1775.18068	-1619.74077	0.00
LbAuCl	C25H27AuClN	-1618.52246	0.48634	0.09586	-1620.09296	-0.05421	-1619.72506	-1619.72506	6.74
LbAuCl_H+_OEt2	C29H38AuClNO	-1852.42641	0.64684	0.11775	-1854.26507	-0.07662	-1853.77374	-1619.71245	14.65
LbAuCl_H+_OEt2_TS	C29H38AuClNO	-1852.41888	0.64046	0.11886	-1854.25621	-0.07704	-1853.77242	-1619.71114	15.48
LbHAu+_Cl	C25H28AuClN	-1618.94930	0.49856	0.10079	-1620.51478	-0.05540	-1620.13916	-1619.73019	3.52
LbHAuCl_2_2+	C50H56Au2Cl2N2	-3237.89860	0.99923	0.17310	-3241.02550	-0.13455	-3240.27679	-1619.72943	4.00
LbHAu+_Cl_OEt2	C29H38AuClNO	-1852.45187	0.64633	0.11936	-1854.28240	-0.08104	-1853.79709	-1619.73580	0.00
LAuI	C17H11AuIN	-855.56462	0.25022	0.07019	-1140.84533	-0.03004	-1140.67217	-1140.67217	6.87
LAuI_H+_OMe2	C19H18AuINO	-1010.88210	0.35098	0.08642	-1296.34448	-0.04418	-1296.09558	-1140.65566	17.23
LAuI_H+_OMe2_TS	C19H18AuINO	-1010.87708	0.34493	0.08537	-1296.33806	-0.04472	-1296.09505	-1140.65513	17.56
LHAu+_I	C17H12AuIN	-855.98727	0.26242	0.07443	-1141.26333	-0.03084	-1141.08161	-1140.67433	5.51
LHAuI_2_2+	C34H24Au2I2N2	-1711.96753	0.52648	0.12429	-2282.53169	-0.08093	-2282.16940	-1140.67742	3.58
LHAu+_I_OMe2	C19H18AuINO	-1010.91607	0.35101	0.08518	-1296.37010	-0.04687	-1296.12303	-1140.68312	0.00
LAuPh	C23H16AuN	-1075.62034	0.34353	0.07793	-1076.92246	-0.03759	-1076.66874	-1076.66874	15.64
LAuPhH+_OMe2	C25H23AuNO	-1230.94059	0.44384	0.09594	-1232.42358	-0.05311	-1232.09714	-1076.65722	22.87
LAuPh_H+_OMe2_TS	C25H23AuNO	-1230.93799	0.43890	0.09284	-1232.41953	-0.05345	-1232.09629	-1076.65637	23.40
LHAu+_Ph	C23H17AuN	-1076.05491	0.35614	0.08211	-1077.34953	-0.03762	-1077.08602	-1076.67873	9.37
LHAu+_Ph_OMe2	C25H23AuNO	-1230.98721	0.44465	0.09455	-1232.45980	-0.05508	-1232.13358	-1076.69367	0.00
LAuPh_H+_OMe2_phTS	C25H23AuNO	-1230.92519	0.43850	0.09195	-1232.40858	-0.05374	-1232.08543	-1076.64551	30.22
LAu+_PhH	C23H17AuN	-1076.02438	0.35639	0.08044	-1077.33173	-0.04116	-1077.07040	-1076.66312	19.17
LAuC6H4F	C23H15AuFN	-1174.78003	0.33639	0.08012	-1176.19497	-0.03813	-1175.95040	-1175.95040	15.15
LAuC6H4F_H+_OMe2	C25H22AuFNO	-1330.09949	0.43703	0.09596	-1331.69526	-0.05340	-1331.37593	-1175.93601	24.18
LAuC6H4F_H+_OMe2_TS	C25H22AuFNO	-1330.09673	0.43168	0.09527	-1331.69109	-0.05394	-1331.37719	-1175.93727	23.39
LHAu+_C6H4F	C23H16AuFN	-1175.21328	0.34898	0.08493	-1176.62065	-0.03821	-1176.36678	-1175.95949	9.45
LHAu+_C6H4F_OMe2	C25H22AuFNO	-1330.14541	0.43741	0.09753	-1331.73092	-0.05561	-1331.41446	-1175.97454	0.00
LAuC6F5	C23H11AuF5N	-1571.39489	0.30834	0.09043	-1573.25943	-0.03965	-1573.05134	-1573.05134	10.12

Name	Formula	E _{elec} B3LYP	ΔH _{corr} 323 K	TΔS _{corr} 323 K	E _{elec} TPSSH	DFTD3	G	on scale	rel kcal/mol
LAuC6F5_H+_OMe2	C25H18AuF5NO	-1726.71277	0.40931	0.10473	-1728.75681	-0.05485	-1728.47253	-1573.03261	21.87
LAuC6F5_H+_OMe2_TS	C25H18AuF5NO	-1726.70862	0.40379	0.10354	-1728.75111	-0.05569	-1728.47237	-1573.03246	21.97
LHAu+_C6F5	C23H12AuF5N	-1571.81933	0.32075	0.09509	-1573.67738	-0.04067	-1573.46100	-1573.05372	8.62
LHAu+_C6F5_perpTS	C23H12AuF5N	-1571.81542	0.31980	0.09225	-1573.67149	-0.04022	-1573.45372	-1573.04643	13.20
LHAu+_C6F5_OMe2	C25H18AuF5NO	-1726.75238	0.40943	0.10648	-1728.78703	-0.05843	-1728.50738	-1573.06746	0.00
LHAu+_C6F5_OMe2_a	C25H18AuF5NO	-1726.75238	0.40944	0.10590	-1728.78702	-0.05846	-1728.50699	-1573.06707	0.24
LbHAu+_C6F5	C31H28AuF5N	-1886.10330	0.55675	0.12135	-1888.31919	-0.06748	-1887.91123	-1887.91123	8.01
LbHAu+_C6F5_perpTS	C31H28AuF5N	-1886.09899	0.55566	0.12101	-1888.31286	-0.06692	-1887.90520	-1887.90520	11.79
LbHAu+_C6F5_OMe2	C33H34AuF5NO	-2041.03492	0.64545	0.13267	-2043.42722	-0.08596	-2042.95662	-1887.92399	0.00
LFAuCl	C17H9AuClF2N	-1502.56171	0.23589	0.07232	-1504.00068	-0.02922	-1503.84247	-1503.84247	4.81
LFAuCl_H+_OMe2	C19H16AuClF2NO	-1657.87894	0.33685	0.08857	-1659.49732	-0.04216	-1659.26197	-1503.82206	17.62
LFAuCl_H+_OMe2_TS	C19H16AuClF2NO	-1657.87178	0.33084	0.08687	-1659.48903	-0.04351	-1659.25991	-1503.81999	18.92
LFHAu+_Cl	C17H10AuClF2N	-1502.97790	0.24819	0.07614	-1504.41094	-0.03032	-1504.24409	-1503.83680	8.37
LFHAuCl_2_2+	C34H20Au2Cl2F4N2	-3005.96066	0.49861	0.13031	-3008.82402	-0.07902	-3008.49173	-1503.83858	7.25
LFHAu+_Cl_OMe2	C19H16AuClF2NO	-1657.91027	0.33658	0.08857	-1659.52146	-0.04582	-1659.29005	-1503.85014	0.00
LOMeAuCl	C19H15AuClNO2	-1533.12429	0.32103	0.08205	-1534.59901	-0.03554	-1534.36850	-1534.36850	8.54
LOMeAuCl_H+_OMe2	C21H22AuClNO3	-1688.44544	0.42174	0.09849	-1690.09972	-0.04896	-1689.79293	-1534.35301	18.25
LOMeAuCl_H+_OMe2_TS	C21H22AuClNO3	-1688.43956	0.41577	0.09732	-1690.09279	-0.04992	-1689.79215	-1534.35223	18.74
LOMeHAu+_Cl	C19H16AuClNO2	-1533.54874	0.33327	0.08542	-1535.01842	-0.03652	-1534.77890	-1534.37161	6.58
LOMeHAuCl_2_2+	C38H32Au2Cl2N2O4	-3067.10376	0.66876	0.14688	-3070.03794	-0.09565	-3069.56324	-1534.37434	4.87
LOMeHAu+_Cl_OMe2	C21H22AuClNO3	-1688.47829	0.42161	0.09874	-1690.12508	-0.05239	-1689.82202	-1534.38210	0.00
LCOMeAuCl	C21H15AuClNO2	-1609.31261	0.33267	0.08821	-1610.86761	-0.03861	-1610.63265	-1610.63265	5.69
LCOMeAuCl_H+_OMe2	C23H22AuClNO3	-1764.62987	0.43383	0.10320	-1766.36441	-0.05237	-1766.05209	-1610.61218	18.53
LCOMeAuCl_H+_OMe2_TS	C23H22AuClNO3	-1764.62338	0.42747	0.10266	-1766.35638	-0.05298	-1766.05068	-1610.61076	19.42
LCOMeHAu+_Cl	C21H16AuClNO2	-1609.73119	0.34466	0.09152	-1611.28059	-0.03963	-1611.03688	-1610.62960	7.60
LCOMeHAuCl_2_2+	C42H32Au2Cl2N2O4	-3219.47373	0.69219	0.15533	-3222.56646	-0.10302	-3222.08136	-1610.63340	5.22
LCOMeHAu+_Cl_OMe2	C23H22AuClNO3	-1764.66300	0.43318	0.10380	-1766.38997	-0.05529	-1766.08163	-1610.64171	0.00
ZAuCl	C16H10AuClN2	-1320.25187	0.23814	0.06752	-1321.48438	-0.02742	-1321.31889	-1321.31889	7.17
ZAuCl_H+_OMe2	C18H17AuClN2O	-1475.56982	0.33906	0.08457	-1476.98184	-0.04062	-1476.74007	-1321.30015	18.93
ZAuCl_H+_OMe2_TS	C18H17AuClN2O	-1475.56407	0.33307	0.08232	-1476.97491	-0.04169	-1476.73869	-1321.29877	19.80

		$\mathbf{E}_{\mathbf{elec}}$	ΔH_{corr}	$T\Delta S_{corr}$	$\mathbf{E}_{\mathbf{elec}}$				rel
Name	Formula	B3LYP	323 K	323 K	TPSSH	DFTD3	G	on scale	kcal/mol
ZHAu+_Cl	C16H11AuClN2	-1320.67226	0.25055	0.07161	-1321.89858	-0.02846	-1321.72447	-1321.31718	8.24
ZHAuCl_2_2+	C32H22Au2Cl2N4	-2641.34979	0.50339	0.11835	-2643.79986	-0.07465	-2643.45041	-1321.31792	7.78
ZHAu+_Cl_OMe2	C18H17AuClN2O	-1475.60511	0.33913	0.08360	-1477.00950	-0.04385	-1476.77023	-1321.33032	0.00
HZAuCl+	C16H11AuClN2	-1320.66511	0.25182	0.06829	-1321.90042	-0.02808	-1321.72245	-1321.72245	-9.18
HZAuCl_H2+_OMe2	C18H18AuClN2O	-1475.96659	0.35371	0.08192	-1477.38186	-0.04022	-1477.12325	-1321.68333	15.36
HZAuCl_H2+_OMe2_TS	C18H18AuClN2O	-1475.95472	0.34698	0.08226	-1477.36841	-0.04205	-1477.11859	-1321.67867	18.29
HZHAu2+_Cl	C16H12AuClN2	-1321.05600	0.26414	0.07126	-1322.28586	-0.02902	-1322.09848	-1321.69120	10.43
HZHAuCl_2_4+	C32H24Au2Cl2N4	-2642.09207	0.53133	0.11725	-2644.54767	-0.07537	-2644.17027	-1321.67785	18.81
HZHAu2+_Cl_OMe2	C18H18AuClN2O	-1475.99416	0.35334	0.08253	-1477.40151	-0.04426	-1477.14774	-1321.70782	0.00

^a For each block, reference: LHAuZ+_OR2

Tal	ole S4.	Predicted su	ubstituent	effects ((kcal/mol)) on (deprotonation	barriers	of [(C^N-	CH)AuX] ⁺ .	a
2	-										

Subst at			ΔG^{\dagger}	$\Delta G_{\rm rxn}$
C^N^C	X	Base	A-TS-D	$A-F+H(OR_2)_2^+$
-	Cl	OMe ₂	19.42	8.68
-	Cl	OEt ₂	15.53	5.06
<i>t</i> Bu	Cl	OMe ₂	18.77	9.86
<i>t</i> Bu	Cl	OEt ₂	15.48	6.74
F	Cl	OMe ₂	18.92	4.81
COMe	Cl	OMe ₂	19.42	5.69
OMe	Cl	OMe ₂	18.74	8.54
-	Ι	OMe ₂	17.56	6.87
-	C_6F_5	OMe ₂	21.97	10.12
-	C_6H_5	OMe ₂	23.40	15.64
-	$p-C_6H_4F$	OMe ₂	23.39	15.15

^{*a*} Free energies evaluated at 50 °C.