Asymmetric [3+2] cycloaddition of 3-amino oxindole-based azomethine ylides with α,β-ynones: a straightforward approach to spirooxindoles incorporating 2,5-dihydropyrroles and pyrroles

Guodong Zhu, Shiqi Wu, Xiaoze Bao, Longchen Cui, Yanpeng Zhang, Jingping Qu, Hongbo Chen and Baomin Wang*

State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China bmwang@dlut.edu.cn

Table of contents

1.	General information	S3
2.	General procedure for the synthesis of products 5 and 6	S4
3.	Characterization data	5-S16
4.	Copies of ¹ H and ¹³ C NMR spectra	7- S51
5.	Copies of HPLC chromatographs	2- S 86
6.	Crystal data of 5f	S87
7.	References	S 88

1. General information

All reactions were carried out in Schlenk tube under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash chromatography was carried out utilizing silica gel 200-300 mesh. ¹H NMR, ¹⁹F NMR spectra were recorded on a Bruker Avance II 400 MHz and Bruker Avance III 471 MHz respectively, ¹³C NMR spectra were recorded on a Bruker Avance II 101 MHz or Bruker Avance III 126 MHz. The solvent used for NMR spectroscopy was CDCl₃, using tetramethylsilane as the internal reference. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, dd = double doublet, coupling constants in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm). HRMS (ESI) was determined by a HRMS/MS instrument (LTQ Orbitrap XL TM). Enantiomeric excess values were determined by HPLC employing a chiral column on Agilent 1100 series. Optical rotations were reported as follows: [α]^T_D(c g/100 mL, solvent). The absolute configuration of **5f** was assigned by the X-ray analysis. All the aldehydes were commercially obtained and recrystallized or distilled prior to use. 3-Amino oxindole hydrochlorides¹ and α , β -ynones² were prepared according to literature methods.

2. General procedure for the synthesis of products 5 and 6.

General procedure for the synthesis of spiro[dihydropyrrole-2,3'-oxindoles] (5)

In a Schlenk tube, 3-amino oxindole hydrochloride **2** (0.2 mmol), NaHCO₃ (0.3 mmol), α , β -ynone **4** (0.22 mmol), MgSO₄ (200 mg) and catalyst (0.02 mmol) were added into CH₂Cl₂ (2 mL) under a dry argon atmosphere at 25 °C. Then, aldehyde **3** (0.24 mmol) was added and the reaction solution was stirred at the same temperature. After the reaction was complete (monitored by TLC), the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/20 to 1/4) on silica gel to give the product **5**.

Synthesis of spiro[pyrrole-2,3'-oxindoles] (6)

A reaction tube was charged with 5 (0.1 mmol) and dioxane (1 mL), then DDQ (0.12 mmol) was added at room temperature. After the reaction was stirred for 2 h, the crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/8) on silica gel to give the product 6.

Procedure for gram-scale reaction

In a Schlenk tube, 3-amino oxindole hydrochloride **2c** (2.2 mmol), BPA **1g** (0.22 mmol), α,β -ynone **4a** (2.42 mmol), MgSO₄ (2.2 g) and NaHCO₃ (3.3 mmol) were added in CH₂Cl₂ (22 mL) under an argon atmosphere at 25 °C. Then, benzaldehyde **3a** (2.64 mmol) was added and the solution was stirred at the same temperature for 21 h. The crude product was purified by column chromatography (ethyl acetate/petroleum ether = 1/20 to 1/4) on silica gel to give the product **5c**.

3. Characterization data

(2R,5R)-4-Benzoyl-3,5-diphenyl-1,5-dihydrospiro[pyrrol-2,3'-oxindole]

White solid, mp: 88-90 °C, > 99% *ee*. $[\alpha]_{D}^{22} = 170.5$ (*c* 0.40, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.79 (d, *J* = 7.6 Hz, 2H), 7.61 (d, *J* = 7.3 Hz, 1H), 7.54 (d, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 6.8 Hz, 3H), 7.24 – 7.13 (m, 5H), 6.97 (t, *J* = 7.1 Hz, 1H), 6.89 (t, *J* = 7.4 Hz, 2H), 6.84 (d, *J* = 7.5 Hz, 2H), 6.79 (d, *J* = 7.7 Hz, 1H), 6.10 (s, 1H), 2.92 (br, 1H) ; ¹³C NMR (101 MHz, CDCl₃) δ 194.4, 180.1, 145.0, 144.4, 141.4, 141.3, 136.5, 133.0, 131.8, 130.7, 130.0,

129.4, 128.7, 128.5, 128.3, 128.1, 128.0, 127.8, 125.1, 123.4, 110.6, 79.1, 70.8; HRMS (ESI) for $C_{30}H_{23}N_2O_2$ [M+H]⁺ calcd 443.1754, found 443.1752. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 22.3 min, tR (minor) = 38.6 min.

(2R,5R)-4-Benzoyl-1'-methyl-3,5-diphenyl-1,5-dihydrospiro[pyrrol-2,3'-o xindole]

White solid, mp: 71-73 °C, 98% *ee*. $[\alpha]_{D}^{22} = 144.2$ (*c* 0.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.7 Hz, 2H), 7.59 (d, *J* = 7.4 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 2H), 7.39 - 7.30 (m, 4H), 7.30 - 7.23 (m, 3H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.01 - 6.95 (m, 1H), 6.92 (t, *J* = 7.4 Hz, 2H), 6.83 (d, *J* = 7.7 Hz, 2H), 6.74 (d, *J* = 7.8 Hz, 1H), 6.10 (s, 1H), 3.10 (s, 3H), 2.72 (s, 1H); ¹³C NMR

(101 MHz, CDCl₃) δ 194.3, 177.8, 145.1, 144.5, 144.1, 141.4, 136.6, 133.1, 131.9, 130.2, 130.0, 129.4, 128.7, 128.3, 128.2, 128.1, 127.9, 127.8, 124.8, 123.4, 108.5, 78.7, 70.9, 26.4; HRMS (ESI) for C₃₁H₂₅N₂O₂ [M+H]⁺ calcd 457.1911, found 457.1901. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 44.9 min, tR (minor) = 22.6 min.

(2R,5R)-4-Benzoyl-1'-benzyl-3,5-diphenyl-1,5-dihydrospiro[pyrrol-2,3'-ox indole]

White solid, mp: 86-88 °C, 99% *ee*. $[\alpha]_{D}^{22} = 214.1$ (*c* 0.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.8 Hz, 2H), 7.70 (d, *J* = 6.7 Hz, 1H), 7.58 (d, *J* = 7.7 Hz, 2H), 7.34 (t, *J* = 7.2 Hz, 3H), 7.26 – 7.17 (m, 5H), 7.12 (d, *J* = 7.0 Hz, 1H), 7.06 (t, *J* = 7.4 Hz, 3H), 6.92 (t, *J* = 7.5 Hz, 2H), 6.78 (d, *J* = 7.8 Hz,

5c 2H), 6.66 (d, J = 7.5 Hz, 2H), 6.54 (d, J = 7.2 Hz, 1H), 6.20 (s, 1H), 5.13 (d, J = 16.0 Hz, 1H), 4.43 (d, J = 16.0 Hz, 1H), 2.81 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 177.9, 145.7, 144.4, 143.3, 141.6, 136.7, 135.0, 133.0, 131.9, 130.3, 130.0, 129.3, 128.7, 128.6, 128.5, 128.3, 128.1, 127.8, 127.3, 126.6, 124.9, 123.4, 109.7, 79.0, 70.7, 43.8; HRMS (ESI) for $C_{37}H_{29}N_2O_2$ [M+H]⁺ calcd533.2224, found 533.2212. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 31.8 min, tR (minor) = 22.4 min.

(2R,5R)-4-Benzoyl-1'-benzyl-5-(4-fluorophenyl)-3-phenyl-1,5-dihydrospir o[pyrrol-2,3'-oxindole]

White solid, mp: 80-82 °C, 98% *ee.* $[\alpha]_{D}^{22} = 160.3$ (*c* 0.95, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.5 Hz, 2H), 7.69 (d, *J* = 6.5 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.31 (d, *J* = 7.3 Hz, 1H), 7.24 – 7.17 (m, 4H), 7.10 (d, *J* = 7.2 Hz, 1H), 7.07 – 6.97 (m, 5H), 6.89 (t, *J* = 7.4 Hz, 2H), 6.76 (d, *J* = 7.5 Hz, 2H), 6.64 (d, J = 7.5 Hz, 2H), 6.53 (d, *J* = 6.4 Hz, 1H), 6.21 (s, 1H), 5.11 (d, *J* = 16.0 Hz, 1H), 4.40 (d, *J* = 16.0 Hz, 1H), 2.86 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 177.9, 162.5 (*J* = 247.4 Hz), 145.7, 144.2, 143.3, 137.48 (*J* = 3.1 Hz), 136.7, 135.0, 133.1, 131.8, 130.3, 130.1, 129.4 (*J* = 8.1 Hz), 129.3,

128.7, 128.6, 128.3, 128.1, 127.3, 126.6, 124.9, 123.5, 115.6 (J = 21.2 Hz), 109.8, 78.9, 69.7, 43.8; ¹⁹F NMR (470 MHz, CDCl₃) δ -114.33; HRMS (ESI) for C₃₇H₂₈FN₂O₂ [M+H]⁺ calcd 551.2129, found 533.2215. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane: i-propanol = 70 : 30, 0.5 mL/min, $\lambda = 254$ nm) tR (major) = 17.1 min, tR (minor) = 15.8 min.

(2R,5R)-4-Benzoyl-1'-benzyl-5-(3,4-dichlorophenyl)-3-phenyl-1,5-dihydro spiro[pyrrol-2,3'-oxindole]

White solid, mp: 91-93 °C, 99% *ee*. $[\alpha]_D^{22} = 161.2$ (*c* 1.09, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.9 Hz, 4H), 7.43 – 7.29 (m, 3H), 7.21 (dd, *J* = 14.6, 8.1 Hz, 4H), 7.11 (t, *J* = 7.2 Hz, 1H), 7.04 (t, *J* = 7.2 Hz, 3H), 6.88 (t, *J* = 7.5 Hz, 2H), 6.71 (d, *J* = 7.6 Hz, 2H), 6.60 (d, *J* = 7.5 Hz, 2H), 6.53 (d, *J* = 3.5 Hz, 1H), 6.22 (s, 1H), 5.11 (d, *J* = 16.0 Hz, 1H), 4.38 (d, *J* = 16.0 Hz, 1H), 2.97 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.7, 177.8, 146.2, 143.3, 143.2, 142.3, 136.6, 134.9, 133.1, 132.7, 131.8, 131.5, 130.5, 130.2, 130.1, 129.8, 129.3, 128.8, 128.7, 128.3, 128.1, 127.3, 127.1, 126.5, 125.0, 123.6, 109.8,

78.9, 68.9, 43.9; HRMS (ESI) for $C_{37}H_{26}Cl_2N_2NaO_2$ [M+Na]⁺ calcd 623.1264, found 623.1255. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.5 mL/min, λ = 254 nm) tR (major) = 51.2 min, tR (minor) = 46.9 min.

(2R,5R)-4-Benzoyl-1'-benzyl-5-(4-bromophenyl)-3-phenyl-1,5-dihydrospi ro[pyrrol-2,3'-oxindole]

White solid, mp: 84-86 °C, 98% *ee*. $[\alpha]_{D}^{22} = 164.6$ (*c* 1.15, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.5 Hz, 2H), 7.69 (d, *J* = 6.2 Hz, 1H), 7.45 (m, 4H), 7.31 (t, *J* = 7.3 Hz, 1H), 7.22 – 7.18 (m, 4H), 7.14 – 7.08 (m, 1H), 7.04 (t, *J* = 7.5 Hz, 3H), 6.89 (t, *J* = 7.5 Hz, 2H), 6.74 (d, *J* = 7.5 Hz, 2H), 6.63 (d, *J* = 7.4 Hz, 2H), 6.53 (d, *J* = 6.7 Hz, 1H), 6.20 (s, 1H), 5.11 (d, *J* = 16.0 Hz, 1H), 4.39 (d, *J* = 16.0 Hz, 1H), 3.05 (br, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.0, 177.8, 146.0, 143.8, 143.2, 140.8, 136.6, 135.0, 133.1, 131.8, 131.7, 130.3, 130.1, 129.5, 129.3, 128.7, 128.6, 128.3, 128.1, 127.3, 126.6, 124.9,

123.5, 122.0, 109.8, 78.9, 69.7, 43.9; HRMS (ESI) for $C_{37}H_{28}BrN_2O_2$ [M+H]⁺ calcd 613.1314, found 613.1307. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane: i-propanol = 70 : 30, 0.5 mL/min, λ = 254 nm) tR (major) = 19.7 min, tR (minor) = 17.4 min.

(2R,5R)-4-Benzoyl-1'-benzyl-5-(4-nitrophenyl)-3-phenyl-1,5-dihydrospiro [pyrrol-2,3'-oxindole]

White solid, mp: 104-106 °C, 98% *ee*. $[\alpha]_D^{22} = 186.5$ (*c* 0.47, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.5 Hz, 2H), 7.81 (d, *J* = 8.5 Hz, 2H), 7.78 – 7.74 (m, 1H), 7.67 (d, *J* = 7.6 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 1H), 7.25 – 7.23 (m, 2H), 7.18 (t, *J* = 7.6 Hz, 2H), 7.12 (t, *J* = 7.3 Hz, 1H), 7.06 – 7.02 (m, 3H), 6.89 (t, *J* = 7.6 Hz, 2H), 6.70 (d, *J* = 7.7 Hz, 2H), 6.60 (d, *J* = 7.5 Hz, 2H), 6.58 – 6.54 (m, 1H), 6.39 (s, 1H), 5.12 (d, *J* = 16.0 Hz, 1H), 4.39 (d, *J* = 16.0 Hz, 1H), 3.11 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.7, 177.7, 149.3, 147.6, 146.5, 143.2, 142.9, 136.5, 134.8, 133.2, 131.3, 130.2, 129.2, 128.9,

128.7, 128.6, 128.3, 128.1, 127.4, 126.5, 125.0, 123.8, 123.6, 109.9, 79.0, 77.4, 69.1, 43.9; HRMS (ESI) for $C_{37}H_{27}N_3NaO_4$ [M+Na]⁺ calcd 600.1894, found 600.1880. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 68.0 min, tR (minor) = 46.9 min.

(2R,5R)-4-Benzoyl-1'-benzyl-3-phenyl-5-(m-tolyl)-1,5-dihydrospiro[pyrro l-2,3'-oxindole]

White solid, mp: 80-82 °C, 97% *ee*. $[\alpha]_{D}^{22}$ = 182.3 (*c* 0.26, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.6 Hz, 2H), 7.68 (d, *J* = 7.0 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.24 (d, *J* = 8.2 Hz, 3H), 7.21 – 7.17 (m, 2H), 7.12 (d, *J* = 7.1 Hz, 1H), 7.06 (t, *J* = 6.4 Hz, 4H), 6.92 (t, *J* = 7.6 Hz, 2H), 6.79 (d, *J* = 7.6 Hz, 2H), 6.66 (d, *J* = 7.5 Hz, 2H), 6.53 (d, *J* = 7.1 Hz, 1H), 6.15 (s, 1H), 5.13 (d, *J* = 16.0 Hz, 1H), 4.42 (d, *J* = 16.0 Hz, 1H), 2.75 (br, 1H), 2.32 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 194.1, 177.9, 145.8, 144.5, 143.3, 141.5, 138.3, 136.8, 135.0, 132.9, 131.9, 130.3, 130.0, 129.4, 128.9, 128.7, 128.6, 128.5, 128.2, 127.3, 126.6, 124.8, 124.7, 123.4, 109.7, 79.1, 70.8, 43.8, 21.5; HRMS (ESI) for C₃₈H₃₁N₂O₂ [M+H]⁺ calcd 547.2380, found 547.2378. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane: i-propanol = 90 : 10, 0.8 mL/min, λ = 254 nm) tR (major) = 22.1 min, tR (minor) = 19.1 min.

(2R,5R)-4-Benzoyl-1'-benzyl-5-(4-methoxyphenyl)-3-phenyl-1,5-dihydros piro[pyrrol-2,3'-oxindole]

White solid, mp: 92-94 °C, 97% *ee*. $[\alpha]_{D}^{22} = 180.5$ (*c* 0.85, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.4 Hz, 2H), 7.67 (d, *J* = 6.5 Hz, 1H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.22 (d, *J* = 7.7 Hz, 2H), 7.19 – 7.09 (m, 3H), 7.07–7.03 (m, 3H), 6.91 (t, *J* = 7.6 Hz, 2H), 6.86 (d, *J* = 8.2 Hz, 2H), 6.79 (d, *J* = 7.4 Hz, 2H), 6.67 (d, *J* = 7.4 Hz, 2H), 6.53 (d, *J* = 6.8 Hz, 1H), 6.14 (s, 1H), 5.12 (d, *J* = 16.0 Hz, 1H), 4.41 (d, *J* = 16.0 Hz, 1H), 3.72 (s, 3H), 2.73 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.3, 178.0, 159.4, 145.5, 144.7, 143.3, 136.7, 135.1, 133.7, 133.0, 132.1, 130.3, 130.0, 129.4, 128.9, 128.7,

128.6, 128.5, 128.3, 128.1, 127.3, 126.6, 124.8, 123.4, 114.2, 109.7, 78.9, 70.3, 55.2, 43.8; HRMS (ESI) for $C_{38}H_{31}N_2O_3$ [M+H]⁺ calcd 563.2329, found 563.2329. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 58.1 min, tR (minor) = 53.2 min.

(2R,5R)-4-Benzoyl-1'-benzyl-5-(naphthalen-2-yl)-3-phenyl-1,5-dihydrospi ro[pyrrol-2,3'-oxindole]

White solid, mp: 75-77 °C, 99% *ee*. $[\alpha]_{D}^{22} = 192.8$ (*c* 0.92, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.85–7.76 (m, 7H), 7.46 – 7.37 (m, 2H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.22 – 7.17 (m, 4H), 7.14 – 7.09 (m, 1H), 7.05 (t, *J* = 7.3 Hz, 3H), 6.91 (t, *J* = 7.4 Hz, 2H), 6.81 (d, *J* = 7.6 Hz, 2H), 6.65 (d, *J* = 7.4 Hz, 2H), 6.53 (d, *J* = 6.7 Hz, 1H), 6.38 (s, 1H), 5.13 (d, *J* = 16.0 Hz, 1H), 4.40 (d, *J* = 16.0 Hz, 1H), 2.90 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 178.0, 145.9, 144.4, 143.3, 138.9, 136.7, 135.1, 133.4, 133.3, 133.0, 131.9, 130.4, 130.1, 129.4, 128.7, 128.6, 128.3, 128.2, 128.1 127.7, 127.3, 127.2, 126.6,

126.1, 125.3, 125.0, 123.5, 109.8, 79.1, 70.8, 43.9; HRMS (ESI) for $C_{41}H_{31}N_2O_2$ [M+H]⁺ calcd 583.2380, found 583.2374. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column. (n-hexane: i-propanol = 90 : 10, 0.8 mL/min, λ = 254 nm) tR (major) = 43.9 min, tR (minor) = 31.8 min.

(2R,5S)-4-Benzoyl-1'-benzyl-3-phenyl-5-(thiophen-2-yl)-1,5-dihydrospiro[pyrrol-2,3'-oxindole]

White solid, mp: 58-60 °C, 98% *ee*. $[\alpha]_{D}^{22} = 191.1$ (*c* 0.64, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.78 (m, 1H), 7.72 (d, *J* = 7.8 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.24 – 7.14 (m, 5H), 7.09 (t, *J* = 7.3 Hz, 1H), 7.06 – 6.98 (m, 4H), 6.86 (t, *J* = 7.1 Hz, 3H), 6.67 (d, *J* = 7.8 Hz, 2H), 6.56 (s, 1H), 6.55 – 6.47 (m, 3H), 5.09 (d, *J* = 16.0 Hz, 1H), 4.33 (d, *J* = 16.0 Hz, 1H), 3.09 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.7, 177.6, 147.2, 145.6, 143.4, 143.1, 136.8, 135.0, 132.9, 131.6, 130.5, 130.0, 129.3, 128.7, 128.6, 128.1, 128.0, 127.2,

127.2, 126.5, 125.3, 125.3, 125.1, 123.6, 109.7, 79.1, 77.5, 77.1, 76.8, 66.1, 43.9; HRMS (ESI) for $C_{35}H_{27}N_2O_2S$ [M+H]⁺ calcd 539.1788, found 539.1779. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 36.8 min, tR (minor) = 27.2 min.

(2R,5R)-4-Benzoyl-1'-benzyl-5'-methyl-3,5-diphenyl-1,5-dihydrospiro[pyrrol-2,3'-oxindole]

White solid, mp: 91-93 °C, 94% *ee*. $[\alpha]_{D}^{22} = 212.7$ (*c* 0.22, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.7 Hz, 2H), 7.57 (d, *J* = 7.6 Hz, 2H), 7.47 (s, 1H), 7.38 – 7.33 (m, 3H), 7.25 (d, *J* = 6.0 Hz, 3H), 7.17 – 7.03 (m, 4H), 7.00 (d, *J* = 7.8 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, 2H), 6.81 (d, *J* = 7.7 Hz, 2H), 6.66 (d, *J* = 7.4 Hz, 2H), 6.43 (d, *J* = 7.9 Hz, 1H), 6.18 (s, 1H),

5.12 (d, J = 16.0 Hz, 1H), 4.41 (d, J = 16.0 Hz, 1H), 2.79 (s, 1H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 177.9, 145.9, 144.4, 141.6, 140.9, 136.7, 135.1, 133.0, 131.9, 130.3, 130.2, 129.4, 128.7, 128.6, 128.5, 128.3, 128.1, 127.8, 127.2, 126.6, 125.5, 109.4, 79.1, 70.8, 43.8, 21.3; HRMS (ESI) for C₃₈H₃₁N₂O₂ [M+H]⁺ calcd 547.2380, found 547.2377. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 26.0min, tR (minor) = 18.7 min.

(2R,5R)-4-Benzoyl-1'-benzyl-5'-fluoro-3,5-diphenyl-1,5-dihydrospiro[pyrrol-2,3'-oxindole]

White solid, mp: 74-76 °C, 98% *ee*. $[\alpha]_{D}^{22} = 168.1$ (*c* 0.21, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.8 Hz, 2H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 5.5 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 3H), 7.26 – 7.21 (m, 3H), 7.14–7.05 (m, 4H), 6.96 – 6.88 (m, 3H), 6.79 (d, *J* = 7.7 Hz, 2H), 6.63 (d, *J* = 7.6 Hz, 2H), 6.44 (dd, *J* = 8.5, 3.9 Hz, 1H), 6.22 (s, 1H), 5.13 (d, *J* =

16.0 Hz, 1H), 4.40 (d, J = 16.0 Hz, 1H), 2.90 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.9, 177.8, 159.7 (J = 243.4 Hz), 144.8, 144.7, 141.4, 139.1 (J = 2.0 Hz), 136.6, 134.7, 133.0, 132.1 (J = 7.3 Hz), 131.6, 129.3, 128.8, 128.7, 128.6, 128.3, 128.2, 127.7, 127.4, 126.6, 116.3 (J = 23.2 Hz), 112.9 (J = 25.3 Hz), 110.4 (d, J = 7.8 Hz), 79.1, 70.5, 44.0; ¹⁹F NMR (470 MHz, CDCl₃) δ -119.07; HRMS (ESI) for C₃₇H₂₈FN₂O₂ [M+H]⁺ calcd 551.2129, found 551.2120. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, $\lambda = 254$ nm) tR (major) = 26.0min, tR (minor) = 22.0 min.

(2R,5R)-4-Benzoyl-1'-benzyl-3-(4-fluorophenyl)-5-phenyl-1,5-dihyd rospiro[pyrrol-2,3'-oxindole]

White solid, mp: 81-83 °C, > 99% *ee*. $[\alpha]_{D}^{22} = 197.2$ (*c* 0.55, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.8 Hz, 2H), 7.69 (d, *J* = 6.8 Hz, 1H), 7.57 (d, *J* = 7.7 Hz, 2H), 7.33 (q, *J* = 7.7 Hz, 3H), 7.26 – 7.17 (m, 5H), 7.16 – 7.11 (m, 1H), 7.08 (t, *J* = 7.4 Hz, 2H), 6.73 (dd, *J* = 7.9, 5.7 Hz, 2H), 6.68 (d, *J* = 7.5 Hz, 2H), 6.58 (dd, *J* = 10.7, 7.0 Hz, 3H), 6.20

(s, 1H), 5.11 (d, J = 16.0 Hz, 1H), 4.39 (d, J = 16.0 Hz, 1H), 2.82 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.0, 177.8, 162.8 (J = 249.5 Hz), 144.7 (J = 14.2 Hz), 143.3, 141.4, 136.6, 135.0, 133.2, 130.6 (J = 8.3 Hz), 130.2, 130.1, 129.3, 128.8, 128.6, 128.4, 128.2, 127.9 (J = 4.0 Hz), 127.8, 127.5, 126.7, 124.9, 123.5, 115.2 (J = 21.2 Hz), 109.8, 79.0, 70.7, 43.8; ¹⁹F NMR (470 MHz, CDCl₃) δ -112.36; HRMS (ESI) for C₃₇H₂₇FN₂NaO₂ [M+Na]⁺ calcd 573.1949, found 573.1930. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, $\lambda = 254$ nm) tR (major) = 28.2 min, tR (minor) = 18.9 min.

(2R,5R)-4-Benzoyl-1'-benzyl-3-(4-chlorophenyl)-5-phenyl-1,5-dih ydrospiro[pyrrol-2,3'-oxindole]

White solid, mp: 85-87 °C, > 99% *ee*. $[\alpha]_{D}^{22}$ = 195.6 (*c* 0.61, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.8 Hz, 2H), 7.68 (d, *J* = 6.9 Hz, 1H), 7.55 (d, *J* = 7.7 Hz, 2H), 7.39 - 7.29 (m, 3H), 7.24 (dd, *J* = 16.1, 8.0 Hz, 4H), 7.18 - 7.08 (m, 4H), 6.87 (d, *J*

= 8.3 Hz, 2H), 6.68 (t, *J* = 7.0 Hz, 4H), 6.57 (d, *J* = 7.3 Hz, 1H), 6.19 (s, 1H), 5.13 (d, *J* = 16.0 Hz, 1H), 4.39 (d, *J* = 16.0 Hz, 1H), 2.82 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.9, 177.7, 145.1, 144.3, 143.2, 141.3, 136.6, 135.0, 134.7, 130.3, 130.0, 129.3, 128.8, 128.7, 128.5, 128.4, 128.2, 127.7, 127.6, 126.7, 124.9, 123.6, 109.8, 78.9, 70.8, 43.9; HRMS (ESI) for $C_{37}H_{28}CIN_2O_2$ [M+H]⁺ calcd 567.1834, found 567.1827. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 31.0 min, tR (minor) = 17.9 min.

(2R,5R)-4-Benzoyl-1'-benzyl-5-phenyl-3-(p-tolyl)-1,5-dihydrospiro[p yrrol-2,3'-oxindole]

White solid, mp: 86-88 °C, 98 % *ee*. $[\alpha]_{D}^{22} = 168.5$ (*c* 0.54, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.8 Hz, 2H), 7.68 (d, *J* = 6.8 Hz, 1H), 7.56 (d, *J* = 7.7 Hz, 2H), 7.34 – 7.29 (m, 3H), 7.22 (t, *J* = 7.6 Hz, 3H), 7.19 – 7.11 (m, 3H), 7.04 (t, *J* = 7.5 Hz, 2H), 6.72 – 6.65 (m, 6H), 6.53 (d, *J* = 7.1 Hz, 1H), 6.18 (s, 1H), 5.13 (d, *J* = 16.0 Hz, 1H), 4.40 (d,

J = 16.0 Hz, 1H), 2.80 (s, 1H), 2.12 (s, 3H) ¹³C NMR (101 MHz, CDCl₃) δ 194.3, 178.0, 145.8, 144.0, 143.3, 141.7, 138.3, 136.7, 135.1, 133.3, 130.4, 130.0, 129.4, 128.9, 128.8, 128.7, 128.5, 128.3, 128.1, 127.8, 127.3, 126.7, 124.9, 123.4, 109.7, 79.0, 70.8, 43.8, 21.2. HRMS (ESI) for C₃₈H₃₁N₂O₂ [M+H]⁺ calcd 547.2380, found 547.2366. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 25.8 min, tR (minor) = 17.0 min.

(2R,5R)-4-Benzoyl-1'-benzyl-5-phenyl-3-(m-tolyl)-1,5-dihydrospiro[pyr rol-2,3'-oxindole]

White solid, mp: 68-70 °C, 97 % *ee*. $[\alpha]_{D}^{22} = 166.7$ (*c* 0.49, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.5 Hz, 2H), 7.69 (d, *J* = 6.1 Hz, 1H), 7.58 (d, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 3H), 7.25 - 7.17 (m, 5H), 7.12 (d, *J* = 7.0 Hz, 1H), 7.05 (t, *J* = 7.3 Hz, 2H), 6.86 (d, *J* = 7.6 Hz, 1H), 6.78 (t, *J* = 7.5 Hz, 1H), 6.64 (d, *J* = 7.4 Hz, 2H), 6.57 - 6.52 (m, 3H), 6.19 (s, 1H),

5.15 (d, J = 16.0 Hz, 1H), 4.40 (d, J = 16.0 Hz, 1H), 2.84 (s, 1H), 1.94 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 178.0, 146.1, 144.0, 143.3, 141.7, 137.6, 136.9, 135.1, 132.9, 131.7, 130.5, 129.9, 129.4, 129.3, 128.8, 128.6, 128.2, 128.1, 128.0, 127.8, 127.3, 126.5, 125.6, 124.9, 123.4, 109.6, 79.1, 70.7, 43.8, 21.1; HRMS (ESI) for C₃₈H₃₁N₂O₂ [M+H]⁺ calcd 547.2380, found 547.2366. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, $\lambda = 254$ nm) tR (major) = 21.3 min, tR (minor) = 18.2 min.

(2R,5R)-4-Benzoyl-1'-benzyl-3-(4-methoxyphenyl)-5-phenyl-1,5dihydrospiro[pyrrol-2,3'-oxindole]

White solid, mp: 77-79 °C, 99 % *ee*. $[\alpha]_D^{22} = 203.3$ (*c* 0.54, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.9 Hz, 2H), 7.70 (d, *J* = 6.8 Hz, 1H), 7.57 (d, *J* = 7.7 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 3H), 7.24 – 7.15 (m, 5H), 7.11 (d, *J* = 7.0 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 2H), 6.67 – 6.64 (m, 4H), 6.54 (d, *J* = 7.2 Hz, 1H), 6.41 (d, *J* = 8.1 Hz, 2H), 6.18 (s, 1H), 5.13 (d, *J* = 16.0 Hz, 1H), 4.37 (d, *J* = 16.0 Hz, 1H),

3.56 (s, 3H), 2.80 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.4, 178.0, 159.8, 145.7, 143.6, 143.3, 141.8, 136.8, 135.1, 133.0, 130.5, 130.0, 129.4, 128.7, 128.5, 128.3, 128.1, 127.8, 127.3, 126.7, 124.9, 124.2, 123.4, 113.6, 109.7, 79.0, 70.6, 55.0, 43.8; HRMS (ESI) for C₃₈H₃₁N₂O₃ [M+H]⁺ calcd 563.2329, found 563.2316. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 37.6 min, tR (minor) = 24.8 min.

(2S,5R)-4-Benzoyl-1'-benzyl-5-phenyl-3-(thiophen-2-yl)-1,5-dihydrospiro [pyrrol-2,3'-oxindole]

White solid, mp: 92-94 °C, 97 % *ee*. $[\alpha]_{D}^{22}$ = 199.1 (*c* 0.22, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.6 Hz, 2H), 7.68 (d, *J* = 7.2 Hz, 1H), 7.52 (d, *J* = 7.4 Hz, 2H), 7.42 (d, *J* = 7.2 Hz, 1H), 7.34 – 7.28 (m, 5H), 7.24 – 7.12 (m, 5H), 6.97 (d, *J* = 4.9 Hz, 1H), 6.91 (d, *J* = 6.4 Hz, 2H), 6.69 (d, *J* = 7.8 Hz, 1H), 6.61 (t, *J* = 4.2 Hz, 1H), 6.53 (d, *J* = 3.1 Hz, 1H), 6.14 (s, 1H), 5.12

(d, J = 16.0 Hz, 1H), 4.59 (d, J = 16.0 Hz, 1H), 2.77 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.4, 177.7, 144.1, 144.0, 140.9, 137.6, 136.4, 135.2, 133.3, 132.2, 130.5, 129.9, 129.3, 129.0, 128.7, 128.5, 128.2, 127.9, 127.5, 127.0, 126.9, 125.2, 123.6, 109.8, 77.9, 71.0, 44.0; HRMS (ESI) for C₃₅H₂₇N₂O₂S [M+H]⁺ calcd 539.1788, found 539.1784. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 44.1 min, tR (minor) = 37.0 min.

(2R,5R)-1'-Benzyl-4-(4-fluorobenzoyl)-3,5-diphenyl-1,5-dihydros piro[pyrrol-2,3'-oxindole]

White solid, mp: 85-87 °C, 99 % *ee*. $[\alpha]_{D}^{22} = 172.0 (c \ 1.03, CH_2Cl_2);$ ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.78 (m, 2H), 7.69 (d, J = 6.5 Hz, 1H), 7.58 (d, J = 7.5 Hz, 2H), 7.33 (t, J = 7.4 Hz, 2H), 7.20 – 7.02 (m, 7H), 6.95 – 6.84 (m, 4H), 6.77 (d, J = 7.6 Hz, 2H), 6.66 (d,

J = 7.4 Hz, 2H), 6.54 (d, J = 7.2 Hz, 1H), 6.18 (s, 1H), 5.11 (d, J = 16.0 Hz, 1H), 4.41 (d, J = 16.0 Hz, 1H), 2.83 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.6, 177.9 (s), 165.5 (J = 255.5 Hz), 145.7, 144.2, 143.3, 141.5, 135.0, 133.1 (J = 3.0 Hz), 132.0 (J = 10.1 Hz), 131.8, 130.2, 130.1, 128.8, 128.7, 128.6, 128.2, 127.7, 127.3, 126.6, 124.9, 123.5, 115.5 (J = 20.2 Hz), 109.7, 79.0, 70.7, 43.9; ¹⁹F NMR (470 MHz, CDCl₃) δ -104.78; HRMS (ESI) for C₃₇H₂₈FN₂O₂ [M+H]⁺ calcd 551.2129, found 551.2124. Enantiomeric excess was determined by HPLC with a Chiralpak AS-H column. (n-hexane: i-propanol = 90 : 10, 0.8 mL/min, $\lambda = 254$ nm) tR (major) = 58.8 min, tR (minor) = 47.1 min.

(2R,5R)-1'-Benzyl-4-(3-chlorobenzoyl)-3,5-diphenyl-1,5-dihydrospi ro[pyrrol-2,3'-oxindole]

White solid, mp: 78-80 °C, 98 % *ee*. $[\alpha]_{D}^{22} = 171.8$ (*c* 1.22, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.75 7.69 (m, 1H), 7.64 (s, 2H), 7.59 (d, J = 7.4 Hz, 2H), 7.33 (t, J = 7.3 Hz, 2H), 7.25 – 7.17 (m, 4H), 7.12–7.01 (m, 5H), 6.91 (t, J = 7.5 Hz, 2H), 6.74 (d, J = 7.6 Hz, 2H), 6.61 (d, J = 7.4 Hz, 2H), 6.52 (d, J = 5.9 Hz, 1H), 6.21 (s, 1H), 5.10 (d, J = 16.0 Hz, 1H), 4.37 (d, J = 16.0 Hz, 1H), 2.84 (s, 1H); ¹³C NMR

(101 MHz, CDCl₃) δ 192.6, 177.7, 147.1, 143.8, 143.3, 141.6, 138.3, 135.0, 134.4, 132.7, 131.7, 130.1, 129.6, 129.1, 128.8, 128.7, 128.2, 127.7, 127.6, 127.3, 126.6, 124.9, 123.5, 109.8, 79.2, 70.4, 43.8; HRMS (ESI) for C₃₇H₂₈ClN₂O₂ [M+H]⁺ calcd 567.1834, found 567.1825. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 26.1 min, tR (minor) = 20.0 min.

(2R,5R)-1'-Benzyl-4-(4-bromobenzoyl)-3,5-diphenyl-1,5-dihydr ospiro[pyrrol-2,3'-oxindole]

White solid, mp: 90-82 °C, 99 % *ee*. $[\alpha]_{D}^{22}$ = 150.0 (*c* 1.20, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 6.6 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 2H), 7.57 (d, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 8.4 Hz, 4H), 7.22 – 7.02 (m, 7H), 6.92 (t, *J* = 7.5 Hz, 2H), 6.75 (d, *J* = 7.6 Hz, 2H), 6.66 (d, *J* = 7.4 Hz, 2H), 6.53 (d, *J* = 6.9 Hz, 1H), 6.18 (s, 1H), 5.11

(d, J = 16.0 Hz, 1H), 4.40 (d, J = 16.0 Hz, 1H), 2.82 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 193.1, 177.8, 146.1, 144.0, 143.3, 141.4, 135.5, 135.0, 131.7, 131.6, 130.8, 130.2, 130.1, 128.8, 128.7, 128.6, 128.2, 127.7, 127.3, 126.6, 124.9, 123.5, 109.8, 79.0, 70.6, 43.9; HRMS (ESI) for C₃₇H₂₈BrN₂O₂ [M+H]⁺ calcd 613.1314, found 613.1323. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, $\lambda = 254$ nm) tR (major) = 46.1 min, tR (minor) = 44.7 min.

(2R,5R)-1'-Benzyl-4-(4-nitrobenzoyl)-3,5-diphenyl-1,5-dihydr ospiro[pyrrol-2,3'-oxindole]

Pale yellow solid, mp: 99-101 °C, 92 % *ee*. $[\alpha]_{D}^{22} = 171.8$ (*c* 1.22, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.2 Hz, 2H), 7.80–7.74 (m, 3H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 2H), 7.24–7.20 (m, 3H), 7.14 – 7.01 (m, 4H), 6.89 (t, *J* = 7.5 Hz, 2H), 6.70 (d, *J* = 7.7 Hz, 2H), 6.61 (d, *J* = 7.5 Hz, 2H), 6.54 (d, *J*

= 7.2 Hz, 1H), 6.23 (s, 1H), 5.10 (d, *J* = 16.0 Hz, 1H), 4.38 (d, *J* = 16.0 Hz, 1H), 2.91 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.4, 177.6, 149.8, 148.4, 143.6, 143.3, 141.6, 141.5, 134.9, 131.4, 130.3, 130.0, 129.1, 128.8, 128.7, 128.3, 127.7, 127.3, 126.5, 124.9, 123.5, 123.3, 109.9, 79.1, 70.1, 43.8; HRMS (ESI) for $C_{37}H_{28}N_3O_4$ [M+H^{]+} calcd 578.2074, found 578.2054. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 44.5 min, tR (minor) = 35.6 min.

(2R,5R)-1'-Benzyl-4-(3-methylbenzoyl)-3,5-diphenyl-1,5-dihydrosspi ro[pyrrol-2,3'-oxindole]

White solid, mp: 79-81 °C, 97 % *ee*. $[\alpha]_{D}^{22} = 166.1$ (*c* 1.03, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.63 (m, 2H), 7.57 (d, *J* = 6.5 Hz, 3H), 7.32 (t, *J* = 7.2 Hz, 2H), 7.21–7.10 (m, 6H), 7.05 (t, *J* = 7.5 Hz, 3H), 6.91 (t, *J* = 7.4 Hz, 2H), 6.78 (d, *J* = 7.7 Hz, 2H), 6.65 (d, *J* = 7.4 Hz, 2H), 6.52 (d, *J* = 6.6 Hz, 1H), 6.20 (s, 1H), 5.12 (d, *J* = 16.0 Hz, 1H), 4.40 (d,

J = 16.0 Hz, 1H), 2.80 (s, 1H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.2, 177.9, 145.6, 144.5, 143.3, 141.7, 138.0, 136.6, 135.1, 133.8, 132.0, 130.4 130.0, 128.7, 128.6, 128.0, 128.2, 128.1, 128.0, 127.8, 127.3, 127.0, 126.6, 124.9, 123.4, 109.7, 79.1, 70.9, 43.8, 21.2; HRMS (ESI) for C₃₈H₃₁N₂O₂ [M+H]⁺ calcd 547.2380, found 547.2373. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 90 : 10, 0.8 mL/min, λ = 254 nm) tR (major) = 75.8 min, tR (minor) = 55.9 min.

(2R,5R)-4-(2-Naphthoyl)-1'-benzyl-3,5-diphenyl-1,5-dihydrospi ro[pyrrol-2,3'-oxindole]

White solid, mp: 95-97 °C, 99 % *ee.* $[\alpha]_{D}^{22} = 173.5$ (*c* 1.06, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.90–7.84 (m, 2H), 7.72–7.66 (m, 3H), 7.59 (d, J = 7.5 Hz, 2H), 7.51 – 7.42 (m, 2H), 7.31 (t, J = 7.3 Hz, 2H), 7.21 – 7.03 (m, 6H), 6.98 – 6.93 (m, 1H), 6.88–6.85 (m, 4H), 6.71 (d, J = 7.4 Hz, 2H), 6.55 (d, J = 6.5

Hz, 1H), 6.27 (s, 1H), 5.15 (d, J = 16.0 Hz, 1H), 4.46 (d, J = 16.0 Hz, 1H), 2.85 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.1, 178.0, 145.3, 144.7, 143.4, 141.5, 135.6, 135.1, 133.9, 132.4, 132.2, 132.0, 130.3, 123.0, 128.7, 128.7, 128.5, 128.3, 128.1, 127.8, 127.7, 127.3, 126.7, 126.6, 124.9 124.5, 123.5, 109.7, 79.0, 71.1, 43.9; HRMS (ESI) for $C_{38}H_{31}N_2O_2$ [M+H]⁺ calcd 547.2380, found 547.2373. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, $\lambda = 254$ nm) tR (major) = 53.8 min, tR (minor) = 31.1 min.

White solid, mp: 113-135 °C, 97 % *ee.* $[\alpha]_D^{22} = 115.9$ (*c* 0.49, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.7 Hz, 2H), 7.74 (d, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.3 Hz, 1H), 7.38–7.34 (m, 3H), 7.31–7.26 (m, 3H), 7.25–7.22 (m, 3H), 7.15–7.12 (m, 4H), 7.04–6.97 (m, 5H), 6.81 (d, *J* = 7.9 Hz, 1H), 5.27 (d, *J* = 16.0 Hz, 1H), 4.75 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.6, 175.6, 170.6, 162.7, 144.0, 140.6, 136.3, 135.1, 134.1, 133.1, 131.1,

130.8, 123.0, 129.9, 129.3, 128.9, 128.8, 128.6, 128.5, 128.4, 127.7, 127.3, 124.8, 124.4, 123.6, 110.1, 89.4, 44.8; HRMS (ESI) for $C_{37}H_{27}N_2O2$ [M+H]⁺ calcd 531.2067, found 531.2063. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, $\lambda = 254$ nm) tR (major) = 28.1 min, tR (minor) = 26.2 min.

(R)-4'-Benzoyl-1-benzyl-5'-(4-fluorophenyl)-3'-phenylspiro[pyrrol-2,3'-ox indole]

White solid, mp: 129-131 °C, 96 % *ee*. $[\alpha]_{D}^{22} = 103.0$ (*c* 0.24, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.0 Hz, 2H), 7.75 (dd, *J* = 8.4, 5.5 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.26 (s, 1H), 7.25–7.22 (m, 3H), 7.15 – 7.11 (m, 4H), 7.05 – 6.94 (m, 7H), 6.82 (d, *J* = 7.9 Hz, 1H), 5.26 (d, *J* = 16.0 Hz, 1H), 4.77 (d, *J* = 15.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.6, 174.4, 170.5, 164.3 (*J* = 252.5 Hz), 162.9, 144.0, 140.3, 136.2, 135.0, 134.3, 131.1, 130.7 (*J* = 8.8 Hz), 130.1, 129.9, 129.4, 129.3 (*J* = 3.3 Hz) 129.0, 128.8, 128.6, 127.8, 127.7, 127.3, 124.8, 124.3, 123.7, 115.6 (*J* =

21.2 Hz), 110.2, 89.4, 44.8; ¹⁹F NMR (470 MHz, CDCl₃) δ -108.91; HRMS (ESI) for C₃₇H₂₆FN₂O₂ [M+H]⁺ calcd 549.1973, found 549.1968. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 26.1 min, tR (minor) = 32.8 min.

(R)-4-Benzoyl-1'-benzyl-3-phenyl-5-(m-tolyl)spiro[pyrrol-2,3'-oxindole]

White solid, mp: 78-80 °C, 95 % *ee*. $[\alpha]_{D}^{22} = 92.8$ (*c* 0.65, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.7 Hz, 2H), 7.66 (s, 1H), 7.45 (t, *J* = 7.1 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.24–7.20 (m, 4H), 7.15–7.11 (m, 6H), 7.03–7.97 (m, 5H), 6.80 (d, *J* = 7.9 Hz, 1H), 5.27 (d, *J* = 16.0 Hz, 1H), 4.73 (d, *J* = 15.7 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.7, 175.8, 170.6, 162.6, 144.0, 140.8, 138.3, 136.4, 135.1, 134.1, 132.9, 131.7, 131.1, 130.0, 129.8, 129.3, 129.2, 128.9, 128.8, 128.6, 128.2, 127.7, 127.3, 125.6, 124.8, 124.4, 123.6, 110.1, 89.4, 44.8, 21.3; HRMS (ESI) for C₃₈H₂₉N₂O₂ [M+H]⁺

calcd 545.2224, found 545.2215. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 15.4 min, tR (minor) = 13.5 min.

(R)-4-Benzoyl-1'-benzyl-5-(naphthalen-2-yl)-3-phenylspiro[pyrrol-2,3'-o xindole]

White solid, mp: 92-94 °C, 98 % *ee*. $[\alpha]_{D}^{22} = 92.8$ (*c* 0.65, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.13 (d, *J* = 7.5 Hz, 2H), 7.89 (d, *J* = 8.5 Hz, 1H), 7.75 (d, *J* = 8.7 Hz, 3H), 7.49 – 7.38 (m, 3H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.24–7.21(m, 4H), 7.17 – 7.14 (m, 4H), 7.06 – 6.99 (m, 5H), 6.81 (d, *J* = 7.9 Hz, 1H), 5.29 (d, *J* = 16.0 Hz, 1H), 4.76 (d, *J* = 15.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.9, 175.5, 170.6, 162.7, 144.0, 140.8, 136.4, 135.1, 134.4, 134.2, 132.8, 131.1, 130.5, 130.1, 129.9, 129.4, 129.1, 129.0, 128.9,

128.6, 128.3, 127.7, 127.4, 127.3, 126.5, 125.3, 124.9, 124.4, 123.7, 110.2, 89.6, 44.8; HRMS (ESI) for $C_{41}H_{29}N_2O_2$ [M+H]⁺ calcd 581.2224, found 581.2219. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 43.8 min, tR (minor) = 32.4 min.

(R)-4-Benzoyl-1'-benzyl-3-phenyl-5-(thiophen-2-yl)spiro[pyrrol-2,3'-oxin dole]

White solid, mp: 146-148 °C, 95 % *ee*. $[\alpha]_{D}^{22}$ = 113.9 (*c* 0.74, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.8 Hz, 2H), 7.50 (t, *J* = 7.3 Hz, 1H), 7.39 (dd, *J* = 15.2, 6.5 Hz, 3H), 7.30 (d, *J* = 3.7 Hz, 1H), 7.24 – 7.18 (m, 4H), 7.17 – 7.07 (m, 4H), 7.03 – 6.94 (m, 5H), 6.91 (t, *J* = 4.4 Hz, 1H), 6.79 (d, *J* = 7.9 Hz, 1H), 5.27 (d, *J* = 15.7 Hz, 1H), 4.71 (d, *J* = 15.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.7, 170.6, 168.3, 162.1, 144.0, 139.4, 136.6, 136.3,

135.1, 134.5, 130.9, 130.5, 130.2, 130.1, 130.0, 129.4, 129.1, 128.8, 128.6, 127.8, 127.7, 127.4, 124.9, 124.5, 123.6, 110.1, 89.1, 44.8; HRMS (ESI) for $C_{35}H_{25}N_2O_2S$ [M+H]⁺ calcd 537.1631, found 537.1625. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, $\lambda = 254$ nm) tR (major) = 41.3 min, tR (minor) = 44.8 min.

(R)-4-Benzoyl-1'-benzyl-3-(4-fluorophenyl)-5-phenylspiro[pyrrol-2, 3'-oxindole]

White solid, mp: 146-148 °C, 98 % *ee*. $[\alpha]_{D}^{22} = 113.9$ (*c* 0.74, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.7 Hz, 2H), 7.74 (d, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.35 (dd, *J* = 15.3, 7.5 Hz, 3H), 7.28–7.22 (m, 6H), 7.16 – 7.10 (m, 3H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.95 (dd, *J* = 8.6, 5.4 Hz, 2H), 6.84 (d, *J* = 7.9 Hz, 1H), 6.68 (t, *J* = 8.6 Hz,

2H), 5.25 (d, J = 15.7 Hz, 1H), 4.73 (d, J = 15.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.5, 175.6, 170.4, 164.3, 161.1 (J = 251.6 Hz), 161.6, 144.0, 140.7, 136.2, 135.0, 134.3, 133.0, 130.9, 130.2, 129.8, 129.7, 129.0, 128.8, 128.5, 127.9, 127.4, 127.3 (J = 34.3 Hz), 124.8, 124.1, 123.7, 115.8 (J = 22.2 Hz), 115.7, 110.2, 89.5, 44.8; HRMS (ESI) for C₃₇H₂₆FN₂O₂ [M+H]⁺ calcd 549.1973, found 549.1972. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, $\lambda = 254$ nm) tR (major) = 35.5 min, tR (minor) = 22.3 min

White solid, mp: 141-143 °C, 97 % *ee*. $[\alpha]_{D}^{22}$ = 114.4 (*c* 0.32, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.8 Hz, 2H), 7.73 (d, *J* = 7.7 Hz, 2H), 7.46 (t, *J* = 7.3 Hz, 1H), 7.35 (dd, *J* = 15.9, 7.8 Hz, 3H), 7.31 – 7.25 (m, 4H), 7.25–7.21 (m, 2H), 7.19–7.17 (m, 2H), 7.11 (d, *J* = 7.4 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 2H), 6.83–6.80 (m, 3H),

5.27 (d, J = 15.7 Hz, 1H), 4.76 (d, J = 15.7 Hz, 1H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.9, 175.7, 170.7, 162.7, 144.0, 140.0, 139.5, 136.4, 135.1, 134.1, 133.2, 130.7, 123.0, 129.9, 129.3, 128.9, 128.8, 128.5, 128.4, 128.2, 127.7, 127.6, 127.4, 124.8, 124.7, 123.6, 110.1, 89.3, 44.8, 21.2; HRMS (ESI) for C₃₈H₂₉N₂O₂ [M+H]⁺ calcd 545.2224, found 545.2222. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 24.0 min, tR (minor) = 18.8 min

(S)-4-Benzoyl-1'-benzyl-5-phenyl-3-(thiophen-2-yl)spiro[pyrrol-2,3'-oxin dole]

White solid, mp: 132-135 °C, 97 % *ee*. $[\alpha]_{D}^{22} = 84.7$ (*c* 0.32, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 7.9 Hz, 2H), 7.74 (d, *J* = 7.9 Hz, 2H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.35–7.26 (m, 9H), 7.18 – 7.11 (m, 2H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 7.9 Hz, 1H), 6.71 (t, *J* = 4.4 Hz, 1H), 6.67 (d, *J* = 3.7 Hz, 1H), 5.19 (d, *J* = 15.6 Hz, 1H), 4.89 (d, *J* =

15.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 195.2, 175.2, 170.6, 154.4, 144.3, 138.1, 136.2, 135.2, 134.4, 133.1, 132.5, 130.8, 130.4, 129.9, 129.3, 129.1, 128.8, 128.5, 128.4, 127.9, 127.8, 125.5, 125.3, 123.8, 110.2, 88.6, 45.0; HRMS (ESI) for $C_{35}H_{25}N_2O_2S$ [M+H]⁺ calcd 537.1631, found 537.1628. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 56.7 min, tR (minor) = 53.8 min.

(R)-1'-Benzyl-4-(3-chlorobenzoyl)-3,5-diphenylspiro[pyrrol-2,3'-o xindole]

White solid, mp: 89-91 °C, 97 % *ee*. $[\alpha]_{D}^{22}$ = 109.7 (*c* 0.74, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.93 (d, *J* = 7.7 Hz, 1H), 7.73 (d, *J* = 7.9 Hz, 2H), 7.41–7.28 (m, 4H), 7.26 – 7.20 (m, 5H), 7.16 – 7.10 (m, 4H), 7.06 – 6.98 (m, 3H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.81 (d, *J* = 7.9 Hz, 1H), 5.26 (d, *J* = 15.6 Hz, 1H), 4.75 (d, *J* = 16.0 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 193.2, 175.4, 170.4, 163.6, 144.0, 139.9, 137.8, 135.2, 135.0, 134.1, 132.9, 131.0, 130.3, 130.1, 129.5, 129.0, 128.9, 128.7, 128.6, 128.5, 127.8, 127.6, 127.3, 124.8, 124.2, 123.7, 110.2, 89.6, 44.8; HRMS (ESI) for $C_{37}H_{26}CIN_2O_2$ [M+H]⁺ calcd 565.1677, found 565.1673. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 20.8 min, tR (minor) = 30.5 min.

(R)-4-(2-naphthoyl)-1'-Benzyl-3,5-diphenylspiro[pyrrol-2,3'-oxi ndole]

White solid, mp: 106-108 °C, 96 % *ee*. $[\alpha]_{D}^{22} = 109.7$ (*c* 0.74, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 8.14 (d, *J* = 8.6 Hz, 1H), 7.94 (d, *J* = 8.1 Hz, 1H), 7.86 – 7.73 (m, 4H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.32–7.23 (m, 7H), 7.21 – 7.14 (m, 3H), 7.09 – 6.94 (m, 6H), 6.82 (d, *J* = 7.9 Hz, 1H), 5.30 (d,

J = 15.7 Hz, 1H), 4.79 (d, J = 15.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 194.7, 175.6, 170.7, 162.5, 144.0, 140.7, 136.1, 135.1, 133.8, 133.5, 133.1, 132.6, 131.2, 130.9, 130.3, 130.1, 129.3, 129.1, 128.9, 128.6, 128.5, 127.8, 127.7, 127.4, 126.8, 124.9, 124.5, 124.2, 123.7, 110.2, 89.5, 44.8; HRMS (ESI) for C₄₁H₂₉N₂O₂ [M+H]⁺ calcd 581.2224, found 581.2226. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column. (n-hexane: i-propanol = 70 : 30, 0.8 mL/min, λ = 254 nm) tR (major) = 39.0 min, tR (minor) = 44.0 min.

4. Copies of ¹H NMR and ¹³C NMR spectra

-----0.000

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7 8915 7 8915 7 8915 7 8915 7 8915 7 915 7	√5.136 √5.097	~ 4.608 ~ 4.569	- 2.172	0.000
--	------------------	--------------------	---------	-------

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) B 4490
 Constraints
 Constraints

000.0 —

▲ 8.074 8.074 8.054 8.054 8.054 8.054 8.054 8.054 7.7.75 7.7.32 7.7.32 7.7.32 7.7.32 7.7.32 7.7.32 7.7.32 7.7.32 7.7.73 7.7.73 7.7.75 8.074 7.7.75 8.074 7.7.75 8.074 7.7.75 8.074 7.7.75 8.074 7.7.75 8.074 7.7.75 7.7.75 8.054 7.7.75 7.75 75 7.75 75 7.75 7.7 ----0.000

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-----0.000

-----0.000

----0.000

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

--- 0.000

- 2.164

8.183 8.163 8.163 8.163 7.777 7.745 7.745 7.745 7.445 7.7457 7.7457 7.7457 7.7457 7.7457 7.7457 7.7457 7.745

000.0 —

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

6.060 7.7.941 7.7.735 7.7.735 7.7.735 7.7.735 7.7.715 7.7.732 7.7.715 7.7.327 7.7.715 7.7.327 7.7.715 7.7.327 7.7.715 7.7.327 7.7.715 7.7.327 7.7.717 7.7.327 7.7.717 7.7.327 7.7.7142 7.7.1422 7.7.7122 7.7.1422 7.7.7122 7.7.1422 7.7.7122 7.7.1422 7.7.7122 7.7.1422 7.7.7122 7.7.1422 7.7.7122 7.7.1422 7.7.7122 7.7.1422 7.7.7122 7.7.1422 6.8147 5.5239 6.8177 5.5239 7.4773 7.333

----0.000

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

5. Copies of HPLC chromatographs

#	[min]		[min]	[mAU*s]	[mAU]	8
 1	15 0/5		0 5707	391 36603	11 13760	1 2422
2	17.133	MM	0.7352	3.03204e4	687.35046	98.7578

#	[min]		[min]	[mAU*s]	[mAU]	8
1	59.257	MM	1.9920	8441.62012	70.62825	99.0247
2	67.982	MM	2.1655	83.14337	6.39906e-1	0.9753

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1 2	19.027 22.465	 MM MM	0.8397 1.5464	4659.57959 4613.76709	92.48219 49.72622	50.2470 49.7530

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.081	BB	0.5422	132.67552	2.91943	1.5651
2	22.068	MM	1.4807	8344.54785	93.92825	98.4349

[min]	Type	[min]	[mAU*s]	[mAU]	8
52.261	BB	1.2653	1.77524e4	204.39128	50.0371
58.361	BV	1.2829	1.77261e4	201.77988	49.9629
	[min] 52.261 58.361	[min] 52.261 BB 58.361 BV	[min] [min] 52.261 BB 1.2653 58.361 BV 1.2829	[min] [min] [mAU*s] 52.261 BB 1.2653 1.77524e4 58.361 BV 1.2829 1.77261e4	[min] [min] [mAU*s] [mAU] 52.261 BB 1.2653 1.77524e4 204.39128 58.361 BV 1.2829 1.77261e4 201.77988

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	53.157	MM	1.2951	252.26978	3.24641	1.5243
2	58.136	BB	1.2200	1.62981e4	190.52280	98.4757

	[]		[]	[1110 0]	[1010]	0
1	21.984	BP	0.4294	93.85864	2.61072	0.9343
2	25.983	BB	0.6541	9951.53418	236.88171	99.0657

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	18.217	MM	0.5187	237.19234	7.62122	1.4291
2	21.301	BB	0.5978	1.63604e4	406.30286	98.5709

1	24.797	BB	0.6539	2291.73169	52.44054	50.3267
2	37.714	MM	1.1018	2261.97998	34.21627	49.6733

----|-----|-----|------|------|------| 1 24.790 BP 0.4816 134.86891 3.35092 0.7053 2 37.620 BB 1.0035 1.89871e4 290.91376 99.2947

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	37.037	BB	0.9237	4364.42773	69.97485	49.9776
2	43.676	BB		4368.34668	59.64691	50.0224

	[]		[]	[[0
1	37.033	BP	0.6812	227.29326	3.98616	1.4700
2	44.082	BB	1.1270	1.52347e4	195.09560	98.5300

1	44.698	VV	1.4906	7.01787e4	597.35236	99.3948
2	46.084	MM	0.8419	427.32391	8.45924	0.6052

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	34.952 41.997	MM MM	1.0274 1.3361	5969.23438 5937.89111	96.83535 74.07263	50.1316 49.8684

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1 2	35.553 43.469	BV BB	0.8133	 1102.25159 2.54602e4	16.62933 251.06267	4.1497 95.8503

reak #	[min]	туре	[min]	[mAU*s]	[mAU]	Area %
 1 2	56.126	MM MM	1.4736	3267.13696	36.95299	50.3567

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	55.939	MM	1.7980	677.14441	6.27676	1.4203
2	75.823	MM	3.0823	4.70002e4	254.14299	98.5797

#	[min]		[min]	[mAU*s]	[mAU]	8
1	26.246	MM	0.7808	6223.97412	132.85262	98.4865
2	28.128	MM	0.7308	95.64865	2.18122	1.5135

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
 1 2	31.384	MM PP	0.9803	2878.53711	48.94133	50.3338

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	32.382	MM	0.8941	175.15419	3.26497	1.2258
2	43.764	MM	1.5543	1.41136e4	151.34146	98.7742

1 41.291 MM 1.3002 5632.34521 72.19974 97.4159 2 44.750 MM 1.2489 149.40550 1.99389 2.5841

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	22.312	MM	0.5997	73.67406	2.04741	0.8987
2	35.450	BB	1.0590	8124.40918	107.34961	99.1013

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.207	MM	0.5928	1568.62817	44.10250	49.9080
2	24.532	BB		1574.41345	34.80036	50.0920

0.6870 5568.74316 126.63853

98.3249

24.011 BB

2

Ŧ	[min]		[mīn]	[mau^s]	[mao]	-6
1	54.659	MM	1.3162	5095.01611	64.51736	49.1175
2	57.783	MM	1.4631	5278.10059	60.12587	50.8825

#	[min]		[min]	[mAU*s]	[mau]	8
1	53.788	BV	0.7577	329.70859	5.15825	1.6712
2	56.690	VB	1.1843	1.93989e4	225.79892	98.3288

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	39.027	MM	1.5411	1.37089e4	148.25916	97.8418
2	43.994	MM	1.3447	302.38461	3.74787	2.1582

6. Crystal data of 5f

Empirical formula	C37 H27 Br N2 O2				
Formula weight	611.52				
Temperature (K)	297(2)				
Crystal system	Monoclinic				
Space group	P2(1)				
a (Å)	17.9007(6)				
b (Å)	13.4705(4)				
c (Å)	18.9244(7)				
α(°) 90.00					
β(°) 98.1603(16)					
γ(°) 90.00					
Volume (Å ³)	4517.1(3)				
Z	6				
Dcalcd $(g \text{ cm}^3) = 1.349$					
$\mu(\text{mm}^{-1}) = 1.401$					
F(000) = 1884					
Theta range for data collection 2.11 to 25.00					
Index ranges -21<=h<=21, -16<=k<=16, -20<=l<=22					
Reflections collected 101610					
Independent reflections $15834 [R(int) = 0.0434]$					
Data/restraints/parameters 15834/1/1135					
GOF (on F ²) 0.988					
Final R indexes [I>= 2σ (I)] R1 = 0.0391, wR2 = 0.0839					
Final R indexes [all data] $R1 = 0.0736$, wR2 = 0.0923					
Largest diff. peak and hole (e Å ⁻³) $0.273/-0.391$					
Flack parameter 0.009(4)					

7. References

- For the synthesis of 3-amino oxindole hydrochloride, see: W.-B. Chen, Z.-J. Wu, J. Hu., L.-F. Cun, X.-M. Zhang, W.-C. Yuan, *Org. Lett.* **2011**, *13*, 2472. For the synthesis of α , β -ynones, see: J. P. Waldo, R. C. Larock, *J. Org. Chem.* **2007**, *72*, 9643. 1.
- 2.