$\mathrm{Hf}(\mathrm{OTf})_{4}$-catalyzed highly diastereoselective synthesis of 1,3-disubstituted tetralin derivatives by benzylic $\mathbf{C}\left(s p^{3}\right)-\mathrm{H}$ bond functionalization

Taira Yoshida, and Keiji Mori*

Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology,
2-24-16 Nakacho, Koganei, Tokyo
184-8588, Japan.

k_mori@cc.tuat.ac.jp

Supporting Information

Table of contents S1
General experimental procedures S2
Procedure and spectral data S3
Scanned images of ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-NMR of new compounds S19

General experimental procedures

All reactions utilizing air- and moisture-sensitive reagents were performed in dried glassware under an atmosphere of dry nitrogen. Ethereal solvents (THF, $\mathrm{Et}_{2} \mathrm{O}$) were distilled from benzophenone ketyl. Dichloromethane and 1,2-dichloroethane were distilled over CaH_{2}. Benzene and toluene were distilled over CaH_{2}, and stored over 4A molecular sieves. N, N-Dimethylformamide (DMF) was distilled over CaH_{2}, and stored over 4A molecular sieves.

For thin-layer chromatography (TLC) analysis, Merck pre-coated plates (silica gel $60 \mathrm{~F}_{254}$, Art $5715,0.25 \mathrm{~mm}$) were used. Column chromatography and preparative TLC (PTLC) were performed on PSQ 60B, Fuji Silysia Chemical Ltd. and Wakogel B-5F, Wako Pure Chemical Industries, respectively.

Melting point (mp) determinations were performed by using a AS ONE ATM-01 instrument and are uncorrected. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR were measured on a AL-300 MR (JEOL Ltd., 300 MHz) and ECX-400 (JEOL Ltd., 400 MHz) spectrometers. Chemical shifts are expressed in parts per million (ppm) downfield from internal standard (tetramethylsilane for ${ }^{1} \mathrm{H}, 0.00 \mathrm{ppm}$), and coupling constants are reported as hertz (Hz). Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; sep, septet; m, multiplet. Infrared (IR) spectra were recorded on a FTIR-8600PC instrument (Shimadzu Co.). Elemental analysis (EA) was carried out on Flash2000 instrument (Amco Inc.).

1. Preparation of starting materials.

Scheme 1. General synthetic route to triester 3. Preparation of 3a is shown as a representative example via modified procedure of the reported method. ${ }^{1}$

Synthesis of 1-bromo-2-(4-methoxystyryl)benzene (s2):
To a solution of $\mathbf{s} \mathbf{1}(2.30 \mathrm{~g}, 4.49 \mathrm{mmol})$ in DMF $(11.5 \mathrm{~mL})$ was added $\mathrm{NaH}(60 \%$ oil, $206 \mathrm{mg}, 5.15 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After being stirred for 20 min at $0^{\circ} \mathrm{C}$, p -anisaldehyde ($0.42 \mathrm{~mL}, 3.45 \mathrm{mmol}$) was added to the reaction mixture. After being stirred for 1 h at room temperature, the reaction was stopped by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with 1 M aqueous $\mathrm{HCl}(\mathrm{x} 6)$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 / 1)$ to give $\mathbf{s 2}(935 \mathrm{mg}, 94 \%, E / Z=3 / 2)$ as a colorless oil.

* shows the peaks of Z-isomer.

IR (neat) 3005, 2957, 2933, 2838, 1605, 1511, 1465, 1436, 1252, 1175, 1114, 1025, 958, $832 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.67$ (s, 3H), 3.75* (s, 3H), $6.42(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}$), $6.53(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 6.63(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.83 *(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) 6.88-7.65$ (m, 6+8*H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.1,76.6,113.5,114.1,123.9,125.2,126.4,127.0,127.5$,
$127.6,128.1,128.4,128.5,128.8,129.8,130.3,130.8,130.9,132.6,133.0,137.3,138.2$, 158.7, 159.6.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BrO}: \mathrm{C}, 62.30$; H, 4.53. Found: C, 62.16; H, 4.75.

Synthesis of 1-bromo-2-(4-methoxyphenethyl)benzene (s3):
The mixture of $\mathbf{s} 2(935 \mathrm{mg}, 3.24 \mathrm{mmol})$, $\mathrm{TsNHNH}_{2}(3.08 \mathrm{~g}, 16.5 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}$ ($2.84 \mathrm{~g}, 34.6 \mathrm{mmol}$), and THF (17.2 mL) were heated at reflux for 24 h . After cooling to room temperature, the reaction was stopped by adding $\mathrm{H}_{2} \mathrm{O}$. The crude mixture was extracted with $\mathrm{EtOAc}(x 3)$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 / 1$) to give $\mathbf{s 3}(858 \mathrm{mg}, 91 \%)$ as a colorless oil.

IR (neat) $3001,2931,2833,1611,1512,1469,1436,1301,1246,1177,1037,822 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.65-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.95(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 6.73$ $(\mathrm{d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.90-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.44(\mathrm{dd}, 1 \mathrm{H}, J=1.5,8.1 \mathrm{~Hz})$. ${ }^{13}{ }^{\text {C NMR }}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.2,38.6,55.2,113.7,124.4,127.3,127.6,129.3,130.5$, 132.7, 133.5, 140.9, 157.8.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrO}: \mathrm{C}, 61.87$; H, 5.19. Found: C, 61.62; H, 5.01.

Synthesis of methyl 2-(2-(4-methoxyphenethyl)phenyl)-2-oxoacetate (s4):

To a solution of $\mathbf{s} \mathbf{3}(858 \mathrm{mg}, 2.95 \mathrm{mmol})$ in THF $(12.0 \mathrm{~mL})$ was added $n-\operatorname{BuLi}(1.60 \mathrm{M}$ in hexane, $2.20 \mathrm{~mL}, 3.52 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After being stirred for 15 min , a solution of dimethyl oxalate ($503 \mathrm{mg}, 4.26 \mathrm{mmol}$) in THF (2.70 mL) was added to the reaction mixture. After the reaction temperature was gradually warmed up to $-20^{\circ} \mathrm{C}$ for 2 h , the reaction was stopped by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$. The crude
products were extracted with ether (x3) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc $=10 / 1$) to give s4 $(398 \mathrm{mg}, 45 \%)$ as a pale yellow oil.

IR (neat) 2954, 2836, 1749, 1611, 1571, 1513, 1454, 1302, 1252, 1205, 1117, 989, 914, $858 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.73-2.90(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.95$ (s, 3H), $6.82(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.25(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.32$ (dd, 1H, $J=7.8,7.8 \mathrm{~Hz}), 7.49(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.8 \mathrm{~Hz}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$.
${ }^{13}{ }^{\mathrm{C}} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.7,36.9,52.8,55.2,113.6,126.1,129.4,130.8,131.9$, 132.5, 133.6, 133.7, 145.0, 157.8, 164.6, 188.3.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$: C, 72.47; H, 6.08. Found: C, 72.71; H, 5.96.

Synthesis of trimethyl 2-(2-(4-methoxyphenethyl)phenyl)ethene-1,1,2-tricarboxylate (3a):

To a solution of $\mathbf{s 4}(396 \mathrm{mg}, 1.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.5 \mathrm{~mL})$ were successively added dimethyl malonate ($0,16 \mathrm{~mL}, 1.33 \mathrm{mmol}$) and $\mathrm{TiCl}_{4}\left(1.0 \mathrm{M}\right.$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.35 \mathrm{~mL}$, $1.35 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After being stirred for 2 h at $0^{\circ} \mathrm{C}$, the reaction was stopped by adding 1 M aqueous HCl at $0^{\circ} \mathrm{C}$. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with 1 M aqueous HCl (x6), brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc $=6 / 1$) to give $\mathbf{3 a}(363 \mathrm{mg}, 66 \%)$ as a Yellow amorphous.

IR (neat) 3061, 3005, 2953, 2838, 1732, 1673, 1635, 1611, 1584, 1513, 1484, 1435, $1301,1247,1179,1096,1083,1021,988,949,910,857,823,761,735 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.77-2.93$ (m, 4H), 3.52 ($\mathrm{s}, 3 \mathrm{H}$), 3.78 ($\mathrm{s}, 6 \mathrm{H}$), 3.87 (s , $3 \mathrm{H}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.10-7.35(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}{ }^{3} \mathrm{CNR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.6,35.9,52.4,53.0,55.2,113.7$, 126.0, 128.5, 129.3, 129.3, 130.9, 132.5, 133.7, 139.7, 146.4, 157.8, 163.6, 163.8, 166.5.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7}$: C, 66.98; $\mathrm{H}, 5.87$. Found: C, $66.71 ; \mathrm{H}, 5.99$.

Trimethyl 2-(2-(4-methylphenethyl)phenyl)ethene-1,1,2-tricarboxylate (3b).
Yellow Solid.
Yield: 82\%.
Mp. $80-82^{\circ} \mathrm{C}$.
IR (KBr) 3019, 2952, 2925, 2864, 1736, 1636, 1515, 1485, 1435, 1243, 1097, 1082, 1020, $904,806,762 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.31$ ($\mathrm{s}, 3 \mathrm{H}$), 2.74-2.94 (m, 4H), 3.50 ($\mathrm{s}, 3 \mathrm{H}$), 3.77 (s , $3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 7.01-7.27(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.0,29.7,35.4,36.4,52.5,53.0,126.0,128.3,128.5$, $129.0,129.3,129.3,130.9,132.5,135.3,138.6,139.8,146.5,163.6,163.9,166.6$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6}$: C, 69.68; H, 6.10. Found: C, 69.42; H, 6.32.

Trimethyl 2-(2-phenethylphenyl)ethene-1,1,2-tricarboxylate (3c).
Yellow solid.
Yield 60\%.
Mp. $73-76^{\circ} \mathrm{C}$.
IR (KBr) 3026, 2953, 1735, 1636, 1495, 1435, 1243, 1084, 1020, 906, 757, 701, 658 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.76-2.88(\mathrm{~m}, 4 \mathrm{H}), 3.45$ (s 3H), 3.72 (s, 3H), 3.80 (s, 3H), 7.10-7.25 (m, 9H).
${ }^{13}{ }^{1} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.3,36.8,52.5,53.0,125.9,126.1,128.4,128.5,128.6$,
129.3, 129.4, 131.0, 132.6, 139.7, 141.7, 146.5, 163.6, 163.9, 166.6.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{6}$: C, 69.10; $\mathrm{H}, 5.80$. Found: C, $68.85 ; \mathrm{H}, 5.71$.

Trimethyl 2-(2-(2-methoxyphenethyl)phenyl)ethene-1,1,2-tricarboxylate (3d).
Colorless oil.
Yield: 46%.
IR (neat) $3062,3005,2952,2838,1736,1637,1601,1587,1495,1436,1244,1095$, 1082, 1051, 1022, 907, $755 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.89(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, 3.88 (s, 3H), 6.85-6.92 (m, 2H), 7.16-7.33 (m, 6H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.5,33.3,52.3,52.8,55.0,110.0,120.2,125.7,127.1$, 128.2 , 129.1, 129.2, 129.8, 129.9, 131.3, 132.6, 140.2, 146.1, 157.4, 163.7, 163.8, 166.4.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7}$: C, 66.98; H, 5.87. Found: C, 67.26; H, 5.98.

Trimethyl 2-(2-(4-methoxyphenethyl)-5-methylphenyl)ethene-1,1,2-tricarboxylate (3e).
Orange solid.
Yield: 67\%.
Mp. $76-79^{\circ} \mathrm{C}$.
IR (KBr) 3005, 2952, 2828, 1736, 1612, 1513, 1435, 1297, 1243, 1179, 1082, 1028, 828, cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.29$ (s, 3H), 2.70-2.85 (m, 4H), 3.51 (s, 3H), 3.77 (s, 3 H), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 3.84 ($\mathrm{s}, 3 \mathrm{H}$), 6.81 (d, 2H, $J=8.4 \mathrm{~Hz}$), 6.96 ($\mathrm{s}, 1 \mathrm{H}), 7.06-7.15(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13}{ }^{1}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.8,35.1,36.0,52.4,52.9,52.9,55.2,113.7,128.8$, 129.2, 129.3, 130.1, 130.6, 132.3, 133.9, 135.5, 136.6, 146.8, 157.8, 163.6, 163.9,
166.7.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{7}$: C, 67.59; H, 6.15. Found: C, 67.40; H, 6.04.

Trimethyl 2-(5-methoxy-2-(4-methoxyphenethyl)phenyl)ethene-1,1,2-tricarboxylate (3f).

Yellow solid.
Yield: 54\%.
Mp. $88-90^{\circ} \mathrm{C}$.
IR (KBr) 3005, 2955, 2832, 1734, 1610, 1512, 1434, 1242, 1023, $828 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.70-2.84(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 6.78-6.86(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.15$ ($\mathrm{m}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.7,36.1,52.5,53.0,53.0,55.2,55.3,113.4,113.7$, $115.3,129.3,130.4,130.9,131.7,133.2$, 133.9, 146.2, 157.5, 157.8, 163.6, 163.8, 166.5.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8}$: C, 65.15; H, 5.92. Found: C, $64.89 ; \mathrm{H}, 6.21$.

Trimethyl 2-(5-fluoro-2-(4-methoxyphenethyl)phenyl)ethene-1,1,2-tricarboxylate (3g).
Yellow solid.
Yield: 60\%.
$\mathrm{Mp} 76-.80^{\circ} \mathrm{C}$.
IR (KBr) 3008, 2954, 2838, 1736, 1609, 1513, 1493, 1435, 1243, 1077, 1027, 829, 724 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.68-2.91$ (m, 4H), 3.55 (s, 3H), 3.77 (s, 6H), 3.86 (s , 3H), 6.78-7.20 (m, 7H).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.8,35.9,52.6,53.1,53.1,55.2,113.8,115.5(\mathrm{~d}, J=$ $22.2 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 129.4,130.9(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 131.8,133.4,133.9(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}), 135.5(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 144.6,157.9,159.0(\mathrm{~d}, J=244.2 \mathrm{~Hz}), 163.4,163.6$, 166.0.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FO}_{7}$: C, 64.18; H, 5.39. Found: C, 63.91; H, 5.17.

Trimethyl 2-(2-(4-methoxyphenethyl)-4-methylphenyl)ethene-1,1,2-tricarboxylate (3h).
Yellow solid.
Yield: 60\%.
Mp. $82-85^{\circ} \mathrm{C}$.
IR (KBr) 3005, 2952, 2837, 1736, 1610, 1513, 1435, 1244, 1171, 1081, 1021, $822 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.31$ ($\mathrm{s}, 3 \mathrm{H}$), 2.75-2.90 (m, 4H), 3.52 ($\mathrm{s}, 3 \mathrm{H}$), 3.76 (s , $3 \mathrm{H}), 3.78$ ($\mathrm{s}, 3 \mathrm{H}$), 3.85 ($\mathrm{s}, 3 \mathrm{H}$), 6.83 (d, 2H, $J=8.7 \mathrm{~Hz}$), 6.95-7.07 (m, 3H), 7.13 (d, 2H, $J=8.7 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.3,35.7,36.1,52.5,52.9,55.2,113.7,126.8,128.5$, 129.3, 129.7, 130.2, 130.8, 133.9, 139.3, 139.6, 146.8, 157.8, 163.7, 164.0, 166.8.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{7}$: C, 67.59; H, 6.15. Found: C, 67.73; H, 6.35.

Trimethyl 2-(4-methoxy-2-(4-methoxyphenethyl)phenyl)ethene-1,1,2-tricarboxylate (3i).

Yellow oil
Yield 46\%
IR (neat) 3008, 2952, 2917, 2833, 1734, 1603, 1512, 1440, 1304, 1241, 1180, 1109, 1077, 1038, 1013, 985, $818 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.74-2.86(\mathrm{~m}, 4 \mathrm{H}), 3.53(\mathrm{~s} 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$,
$3.84(\mathrm{~s}, 3 \mathrm{H}), 6.69-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 7.06-7.14(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 35.8,35.8,52.5,52.9,55.1,55.2,111.4,113.7,115.0$, 124.9, 129.4, 130.0, 130.8, 133.7, 141.6, 146.6, 157.8, 160.2, 163.6, 164.2, 166.9.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8}:$ C, $65.15 ; \mathrm{H}, 5.92$. Found: C, $65.41 ; \mathrm{H}, 5.75$.

Trimethyl 2-(3-(4-methoxyphenethyl)naphthalen-2-yl)ethene-1,1,2-tricarboxylate (3j).
Yellow solid.
Yield: 70\%.
Mp. $128-130{ }^{\circ} \mathrm{C}$.
IR (KBr) 3005, 2952, 1735, 1612, 1513, 1435, 1245, 1179, 1115, 1072, 1020, 982, 902, $822,752, \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.85-3.07(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.83(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.38-7.49(\mathrm{~m}, 2 \mathrm{H})$, 7.64-7.80 (m, 4H).
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.6,35.8,52.6,53.1,53.1,55.3,113.8,125.9,126.9$, $127.3,127.7,127.9,128.1,129.4,131.4,131.8,133.6,133.8,137.1,146.1,157.9,163.8$, 163.9, 166.5.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{7}$: C, 70.12; H, 5.67. Found: C, 70.36; H, 5.48.

2. Synthesis of $\mathbf{1 , 3}$-disubstituted tetralin derivatives.

General Procedure of the formation of $\mathbf{1 , 3}$-disubstituted tetralin derivatives.
To a solution of triester $\mathbf{3}(0.10 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1.0 \mathrm{~mL})$ was added $\mathrm{Hf}(\mathrm{OTf})_{4}$ ($0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$), and the mixture was heated at reflux. After completion of the reaction, the reaction was stopped by adding saturated aqueous NaHCO_{3}. The crude products were extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by preparative TLC to give 1,3-disubstituted tetralin derivatives 4 .

Trimethyl 3-(4-methoxyphenyl)-3,4-dihydronaphthalene-1,2,2(1H)-tricarboxylate (4a).
White solid.
Yield: 85\%.
Mp. 120-125 ${ }^{\circ} \mathrm{C}$
IR (KBr) 3001, 2952, 2838, 1734, 1610, 1513, 1433, 1252, 1034, 836, $753 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.25(\mathrm{dd}, 1 \mathrm{H}, J=6.6,16.8 \mathrm{~Hz}$), $3.37(\mathrm{dd}, 1 \mathrm{H}, J=9.0$, $16.8 \mathrm{~Hz}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.53(\mathrm{dd}, 1 \mathrm{H}, J=6.6,9.0$ $\mathrm{Hz}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.11-7.34(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.7,40.6,50.9,52.2,52.4,52.5,55.1,60.8,113.0,126.3$, 127.6, 128.7, 129.0, 130.6, 131.4, 133.1, 136.3, 158.4, 169.3, 170.4, 172.4.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7}$: C, 66.98; H, 5.87. Found: C, 66.71; H, 5.99.

Trimethyl 3-(p-tolyl)-3,4-dihydronaphthalene-1,2,2(1H)-tricarboxylate (4b).
Yellow solid.
Yield: 65\%.
Mp. $115-120{ }^{\circ} \mathrm{C}$

IR (KBr) 3023, 2952, 2922, 2848, 1735, 1514, 1433, 1257, 1239, 1216, 1159, 1113, 1062, 1021, 972, 826, $752 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dd}, 1 \mathrm{H}, J=6.6,17.1 \mathrm{~Hz}), 3.32-3.46$ $(\mathrm{m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.50-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 7.04$ (d, 2H, $J=8.1 \mathrm{~Hz}$), 7.10-7.35 (m, 6H).
${ }^{13}{ }^{\text {C NMR }}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.0,33.7,41.0,50.9,52.1,52.4,52.4,60.7,126.3,127.6$, 128.4, 128.6, 128.9, 129.4, 131.4, 136.3, 136.5, 138.1, 169.2, 170.3, 172.4.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6}$: C, 69.68; H, 6.10. Found: C, 69.39; H, 6.32.

Trimethyl 3-phenyl-3,4-dihydronaphthalene-1,2,2(1H)-tricarboxylate (4c) and (E)-trimethyl 2-(2-styrylphenyl)ethane-1,1,2-tricarboxylate (6).

These compounds were difficult to separate with silica-gel Chromatography and also GPC.

White solid.
Yield: 30% for $\mathbf{4 c}$ and 30% for $\mathbf{6}$.

* shows the peaks of $\mathbf{6}$.

IR (neat) $3061,3029,2952,2848,1735,1496,1434,1233,1158,1113,1005,966,763$, $701 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.27(\mathrm{dd}, 1 \mathrm{H}, J=6.3,17.1 \mathrm{~Hz}$), 3.35-3.48(m,1H), 3.38* (s, 3H), $3.40(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$, 3.64* ($\mathrm{s}, 3 \mathrm{H}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 3.77* ($\mathrm{s}, 3 \mathrm{H}$), 4.29* (d, 1H, $J=11.7 \mathrm{~Hz}$), 4.58 (dd, 1H, $J=6.3,9.0 \mathrm{~Hz}$), 4.63 (s, 1H), 4.79* (d, 1H, J $=11.7 \mathrm{~Hz}), 5.17^{*}(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 7.10-7.65(\mathrm{~m}, 9+10 * \mathrm{H})$.

Trimethyl 3-(2-methoxyphenyl)-3,4-dihydronaphthalene-1,2,2(1H)-tricarboxylate (4d). Colorless oil.

Yield: 52\%.
IR (neat) 3062, 2997, 2949, 2839, 1736, 1600, 1493, 1459, 1433, 1333, 1291, 1243, $1202,1155,1114,1030,912,750 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.10(\mathrm{dd}, 1 \mathrm{H}, J=6.3,17.1 \mathrm{~Hz}$), 3.38-3.45 (m, 7H), 3.66 (s, 3H), $3.72(\mathrm{~s} 3 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{dd}, 1 \mathrm{H}, J=6.3,9.9 \mathrm{~Hz}), 6.73-6.83(\mathrm{~m}, 2 \mathrm{H})$, 7.02-7.32 (m, 6H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,21.0,33.3,50.9,52.2,55.6,59.9,60.3,109.9,120.1$, $126.1,127.5,127.6,128.8,128.9,129.2,130.2,131.0,136.8,169.4,170.2,171.1$, 172.3.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7}$: C, 66.98; $\mathrm{H}, 5.87$. Found: C, 66.71; H, 5.99.

Trimethyl
3-(4-methoxyphenyl)-7-methyl-3,4-dihydronaphthalene-1,2,2(1H)-tricarboxylate (4e).
White solid.
Yield: 69\%.
Mp. $159-162^{\circ} \mathrm{C}$
IR (KBr) 3001, 2952, 2838, 1734, 1610, 1582, 1513, 1433, 1335, 1252, 1208, 1180, $1167,1034,1009,914,836,812,737 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.25(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, 1 \mathrm{H}, J=6.3,16.8 \mathrm{~Hz}), 3.28(\mathrm{dd}$, $1 \mathrm{H}, J=6.3,9.0 \mathrm{~Hz}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{dd}, 1 \mathrm{H}$, $J=6.3,9.0 \mathrm{~Hz}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.90-7.05(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.20(\mathrm{~m}$, 3H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.1,33.3,40.7,50.9,52.2,52.4,52.5,55.1,61.0,113.0$, 128.6, 128.8, 129.1, 130.7, 131.1, 133.2, 133.2, 135.8, 158.4, 169.3, 170.4, 172.5 .

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{7}$: C, 67.59; H, 6.15. Found: C, 67.43; H, 5.88.

Trimethyl

7-methoxy-3-(4-methoxyphenyl)-3,4-dihydronaphthalene-1,2,2(1H)-tricarboxylate (4f).
Yellow oil.
Yield: 71\%.
IR (neat) 3005, 2952, 2838, 1735, 1612, 1512, 1434, 1251, 1209, 1181, 1122, 1035, 917, $836 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.16(\mathrm{dd}, 1 \mathrm{H}, J=6.3,16.8 \mathrm{~Hz}$), $3.31(\mathrm{dd}, 1 \mathrm{H}, J=9.3$, 16.5 Hz), 3.35 ($\mathrm{s}, 3 \mathrm{H}$), 3.45 ($\mathrm{s}, 3 \mathrm{H}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 3.75 ($\mathrm{s}, 3 \mathrm{H}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}$), 4.48 (dd, $1 \mathrm{H}, J=6.6,9.3 \mathrm{~Hz}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 6.72-6.82(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.21(\mathrm{~d}$, $2 \mathrm{H}, J=8.7 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.9,40.8,51.1,52.2,52.4,52.5,55.1,55.2,60.9,113.0$, $113.4,113.9,128.3,129.9,130.7,132.3,133.2,157.9,158.5,169.3,170.3,172.3$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8}$: C, 65.15; H, 5.92. Found: C, 65.26; H, 6.06.

Trimethyl

7-fluoro-3-(4-methoxyphenyl)-3,4-dihydronaphthalene-1,2,2(1H)-tricarboxylate (4g).
Yellow solid
Yield 75\%.
Mp. $117-121^{\circ} \mathrm{C}$
IR (KBr) 3000, 2953, 2841, 1736, 1611, 1513, 1434, 1245, 1106, 1034, 923, 835, 733 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.22$ (dd, $1 \mathrm{H}, J=6.6,17.1 \mathrm{~Hz}$), 3.34 (dd, $1 \mathrm{H}, J=8.7$, 16.8 Hz), 3.48 ($\mathrm{s}, 3 \mathrm{H}$), 3.54 ($\mathrm{s}, 3 \mathrm{H}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}$), 3.78 (s, 3H), 4.49 (dd, 1H, J = 6.6, 9.0 $\mathrm{Hz}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.90-7.33(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.1,40.7,50.8,52.3$, 52.6, 55.1, $60.5,113.0,115.0(\mathrm{~d}, J$
$=21.6 \mathrm{~Hz}), 115.1(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 130.6,130.7,131.9(\mathrm{~d}, J=3.2$
$\mathrm{Hz}), 132.9,158.5,161.1(\mathrm{~d}, J=242.3 \mathrm{~Hz}), 169.2,170.1,171.9$.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FO}_{7}$: C, 64.18; H, 5.39. Found: C, 64.24; H, 5.09.

Trimethyl
3-(4-methoxyphenyl)-6-methyl-3,4-dihydronaphthalene-1,2,2(1H)-tricarboxylate (4h).
Colorless oil
Yield: 63\%.
IR (neat) $3002,2952,2838,1611,1513,1434,1253,1206,1035,834,732 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, 1 \mathrm{H}, J=6.6,16.8 \mathrm{~Hz}$), 3.35 (dd, $1 \mathrm{H}, J=9.3,16.8 \mathrm{~Hz}$), $3.45(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{dd}, 1 \mathrm{H}$, $J=6.6,9.3 \mathrm{~Hz}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, 2 \mathrm{H} J=8.4 \mathrm{~Hz}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ Hz) $7.15(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.1,33.6,40.6,50.6,52.2,52.4,52.5,55.1,60.9,113.1$, 127.3, 128.4, 128.5, 129.5, 130.7, 133.2, 136.1, 137.3, 158.4, 169.3, 170.4, 172.6.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{7}$: C, 67.59; H, 6.15. Found: C, $67.43 ; \mathrm{H}, 5.88$.

Trimethyl
6-methoxy-3-(4-methoxyphenyl)-3,4-dihydronaphthalene-1,2,2(1H)-tricarboxylate (4i).
Yellow solid.
Yield: 54\%.
Mp. $123-127^{\circ} \mathrm{C}$
IR (KBr) 3000, 2952, 2838, 1734, 1610, 1583, 1513, 1462, 1433, 1332, 1305, 1252, $1229,1212,1180,1159,1113,1090,1062,1037,969,916,835,814,786,732 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.17$ (dd, $1 \mathrm{H}, J=6.6,16.8 \mathrm{~Hz}$), $3.32(\mathrm{dd}, 1 \mathrm{H}, J=9.3$,
16.8 Hz), 3.39 ($\mathrm{s}, 3 \mathrm{H}$), $3.44(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 4.45(\mathrm{dd}, 1 \mathrm{H}, J=6.6,9.3$ $\mathrm{Hz}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 6.55-6.75(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.21(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.0,40.5,50.1,52.2,52.4,52.5,55.1,55.2,60.9,112.9$, 113.1, 113.4, 123.6, 129.7, 130.7, 133.1, 137.7, 158.5, 158.9, 169.3, 170.4, 172.7.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8}$: C, 65.15; H, 5.92. Found: C, 65.03; H, 5.75.

Trimethyl 3-(4-methoxyphenyl)-3,4-dihydroanthracene-1,2,2(1H)-tricarboxylate (4j).
Colorless solid (recrystallized from Hexane/EtOAc), which was subjected to X-ray crystal analysis.

Yield: 76\%.
Mp. $179-182{ }^{\circ} \mathrm{C}$
IR (KBr) 3055, 3002, 2952, 2838, 1735, 1610, 1582, 1513, 1459, 1434, 1328, 1252, $1207,1181,1155,1115,1035,1017,869,911,879,834 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.31$ ($\mathrm{s}, 3 \mathrm{H}$), 3.35-3.55 (m, 2H), 3.60 ($\mathrm{s}, 3 \mathrm{H}$), 3.70 (s , $3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.62-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 6.67-6.75(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.15(\mathrm{~m}$, $2 \mathrm{H}), 7.35-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.85(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.1,41.1,51.2,52.2,52.5,52.7,55.1,61.2,113.1,125.4$, $126.0,127.0,127.2,127.6,127.8,130.4,130.7,132.3,133.0,133.7,134.2,158.4,169.5$, 170.6, 172.3.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{7}$: C, 70.12; H, 5.67. Found: C, 69.98; H, 5.44.

Methyl
4-(4-methoxyphenyl)-1,3-dioxo-1,3,3a,4,5,9b-hexahydronaphtho[1,2-c]furan-3a-carbox ylate (5).

Colorless solid (recrystallized from Hexane/Et ${ }_{2} \mathrm{O}$), which was subjected to X-ray crystal
analysis.
Mp. $179-182{ }^{\circ} \mathrm{C}$
IR (KBr) 2953, 2933, 2925, 2847, 2840, 1789, 1737, 1610, 1583, 1514, 1499, 1452, 1439, 1254, 1232, 1205, 1184, 1119, 1087, 1034, $992 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.99$ (dd, $1 \mathrm{H}, J=3.2,16.4 \mathrm{~Hz}$), 3.20 (dd, $1 \mathrm{H}, J=5.6$, $16.4 \mathrm{~Hz}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{dd}, 1 \mathrm{H}, J=3.2,5.6 \mathrm{~Hz}), 5.07(\mathrm{~s}, 1 \mathrm{H})$, 6.62-6.68 (m, 2H), 6.76-6.83 (m, 2H), 7.04 (d, 1H, J = 7.6 Hz), 7.23-7.28 (m, 1H), $7.34(\mathrm{dd}, 1 \mathrm{H}, J=7.6,7.6 \mathrm{~Hz}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz})$).
${ }^{13}{ }^{1} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.7,33.9,41.5,46.6,54.0,55.1,61.9,113.9,127.1$, $127.8,128.9,128.9,129.0,129.8,130.8,133.1,158.8,166.4,168.8,169.5$.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}_{7}$: C, 68.85; H, 4.95. Found: C, 68.68; H, 5.11.

References

1) J. Yu, N. Li, D.-F. Chen, S.-W. Luo, Tetrahedron Lett. 2014, 55, 2859.
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s} \mathbf{2}$.
C: auto

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} \mathbf{2}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s 3}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s 3}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{s} \mathbf{4}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{s} \mathbf{4}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{b}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$ ．

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$.

	$\begin{aligned} & 300.40 \mathrm{MHz} \\ & 130.00 \mathrm{KHz} \end{aligned}$
	1150.00 Hz
	32768
	6006.01 Hz
	8
	5. 4559 sec
	1.5440 sec
	6.00 usec
1H	
	21.7 c
CDCL3	
	0.00 ppm
	0. 10 Hz

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 c}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{e}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 h}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 h}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 i}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{j}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 j}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 c}$ and $\mathbf{6}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 d}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 d}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 e}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 e}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 f}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 f}$.

${ }^{1}$ H NMR spectrum of $\mathbf{4 g}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 g}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 h}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 h}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 i}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 i}$.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{j}$.

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 j}$.

${ }^{1} \mathrm{H}$ NMR spectrum of 5 .

${ }^{13} \mathrm{C}$ NMR spectrum of 5 .

