# Highly Efficient Cu Catalyst System for the Radical Reactions of α-Bromocarbonyls

Yushi Noda, Takashi Nishikata\*

*Graduate School of Science and Engineering, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan* 

Corresponding Author: nisikata@yamaguchi-u.ac.jp

# **Supporting Information**

## Table of Contents

| 1. | General Procedures            | <b>S2</b> |
|----|-------------------------------|-----------|
| 2. | Spectral charts for compounds | <b>S9</b> |

# 1. General procedures General Information

All reactions were carried out under nitrogen (99.95%) atmosphere. For TLC analyses precoated Kieselgel 60 F254 plates (Merck, 0.25 mm thick) were used; for column chromatography Silica *Flash*® P60 (SiliCycle, 40-63 µm) was used. Visualization was accomplished by UV light (254 nm), <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained using a JEOL 400 MHz NMR spectrometer. Chemical shifts for 1H NMR were described in parts per million (chloroform as an internal standard  $\delta = 7.26$ ) in CDCl<sub>3</sub>, unless otherwise noted. Chemical shifts for <sup>13</sup>C NMR were expressed in parts per million in CDCl<sub>3</sub> as an internal standard ( $\delta = 77.16$ ), unless otherwise noted. High resolution mass analyses were obtained using an ACQUITY UPLC/ TOF-MS for ESI. Anhydrous solvents were purchased from Kanto Chemical Co., Ltd. Other chemicals were purchased from TCI, Aldrich and Wako and directly used from the bottles.

#### Typical experimental procedure for radical reactions

Cu salt (5 x  $10^{-4}$  M in MeCN), ligand (0.1 mmol), **1** (1.0 mmol), and **2** (0.50 mmol) [or **4** (Scheme 2) or **6** (Scheme 3)] were sequentially added under air to a dram vial equipped with a stir bar. amine (0.6 mmol), and dried solvent (0.5 mL) were added by syringe, and the resulting mixture was vigorously stirred under nitrogen atmosphere [charged by general N<sub>2</sub> (99.95%) gas flow] for 20 h at the temperature, as shown in the tables. After this time, the contents of the flask were filtered through a plug of silica gel and then concentrated by rotary evaporation. The residue was purified by flash chromatography, eluting with hexane/EtOAc to afford the product **3**.



Compounds  $3a-3e^{[1]}$ ,  $3j-3n^{[2]}$  and  $5^{[3]}$  are known.

[Reference]

- [1]. Nishikata, T.; Noda, Y.; Fujimoto, R.; Sakashita, T. J. Am. Chem. Soc. 2013, 135, 16372
- [2]. Nihiskata, T.; Nakamura, K.; Itonaga, K.; Ishikawa, S. Org. Lett, 2014, 16, 5816
- [3]. Ackermann, L.; Vicente, R.; Hofmann, N. Org Lett, 2009, 11, 4274



Following the general procedure above, using 1a (1.0 mmol, 198 mg), 2a (0.50 mmol, 59 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.1 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 100 °C, yielded the product 3a (64 mg, 55%); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.25 (t, J = 7.2 Hz, 3H), 1.40 (s, 6H), 2.33 (s, 3H), 4.14 (q, J = 7.1 Hz, 2H), 6.35 (d, J = 16.2 Hz, 1H), 6.41 (d, J = 16.2 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 14.20, 21.18, 30.80, 44.38, 60.80, 126.35, 127.89, 129.35, 133.62, 134.52, 137.26, 176.53.



Following the general procedure above, using 1a (1.0 mmol, 198 mg), 2b (0.50 mmol, 67 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.1 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 60 °C, yielded the product 3b (110 mg,89%); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ :1.25 (t, J = 7.1 Hz, 3H), 1.39 (s, 6H), 3.79 (s, 3H), 4.13 (q, J = 7.1 Hz, 2H), 6.26 (d, J = 16.1 Hz, 1H), 6.38 (d, J = 16.1 Hz, 1H), 6.84 (d, J = 8.8 Hz, 2H), 7.31 (d, J = 8.8 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ :14.16, 25.11, 44.26, 55.26, 60.74, 113.90, 127.26, 127.43, 129.88, 132.33, 159.02, 176.45



Following the general procedure above, using 1b (1.0 mmol, 207 mg), 2b (0.50 mmol, 67 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.1 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 60 °C, yielded the product 3c (87 mg, 70%); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.27 (t, J = 7.2 Hz, 3H), 1.90-19.4 (m, 2H),

2.22-2.27 (m, 2H), 2.56-2.62 (m, 2H), 3.81 (s, 3H), 4.17 (q, J = 7.2 Hz, 2H), 6.15 (d, J = 16.1 Hz, 1H), 6.55 (d, J = 16.1 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 14.46, 16.17, 31.16, 50.17, 55.57, 61.03, 114.29, 127.79, 128.57, 129.63, 130.15, 159.47, 176.14.



Following the general procedure above, using 1c (1.0 mmol, 221 mg), 2b (0.50 mmol, 67 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.1 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1,2-dimethoxyethane (0.5 mL) at 60 °C, yielded the product 3d (127 mg, 88%); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.30-1.44 (m, 3H), 1.55-1.65 (m, 5H), 2.18 (m, 2H), 3.69 (s, 3H), 3.80 (s, 3H), 6.02 (d, J = 16.3 Hz, 1H), 6.37 (d, J = 16.3 Hz, 1H), 6.84 (d, J = 8.7 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ :23.47, 25.99, 34.36, 49.24, 52.28, 55.63, 114.31, 127.80, 129.11, 130.26, 132.13, 159.54, 176.17.



Following the general procedure above, using 1d (1.0 mmol, 187 µl), 2b (0.50 mmol, 67 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.1 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 60 °C, yielded the product 3e (124 mg, 81%); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.26 (t, J = 7.1 Hz, 6H), 1.65 (s, 3H), 3.80 (s, 3H), 4.19-4.23 (m, 4H), 6.43 (d, J = 16.2 Hz, 1H), 6.54 (d, J = 16.2 Hz, 1H), 6.58 (d, 8.7 Hz, 2H), 7.34 (d, J = 8.7 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>) 14.11, 20.46, 55.41, 55.71, 61.74, 114.12, 125.59, 127.98, 129.52, 130.36, 159.63, 171.51.



Following the general procedure above, using 1a (1.0 mmol, 198 mg), 2c (0.50 mmol, 73 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.1 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 100 °C, yielded the product 3f (90 mg, 69%); IR (neat) v 1727, 1611, 973 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.25 (t, J

= 7.3 Hz, 3H), 1.42 (s, 6H), 2.24 (s, 6H), 2.27 (s, 3H), 4.15 (q, J = 7.1 Hz, 2H), 5.82 (d, J = 16.6 Hz, 1H), 6.35 (d, J = 16.6 Hz, 1H), 6.86 (s, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 14.33, 20.76, 21.06, 25.13, 44.76, 60.82, 125.62, 128.54, 134.21, 135.96, 136.13, 139.37, 176.62; HREIMS calcd. for C<sub>17</sub>H<sub>25</sub>O<sub>2</sub> (M+H<sup>+</sup>): 261.1854; found 261.1853.



Following the general procedure above, using 1a (1.0 mmol, 198 mg), 2e (0.50 mmol, 97 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.1 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 60 °C, yielded the product 3e (134 mg, 87%); IR (neat) v 1722, 1236, 1120, 965 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.26 (t, J = 7.2 Hz, 3H), 1.40 (s, 6H), 3.83 (s, 3H), 3.88 (s, 6H), 4.15 (q, J = 7.1 Hz, 2H), 6.30 (d, J = 16.1 Hz, 1H), 6.36 (d, J = 16.1 Hz, 1H), 6.60 (s, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ :14.24, 25.20, 44.44, 56.19, 60.94, 61.03, 103.50, 128.10, 133.04, 134.13, 153.49, 176.49; HRESIMS calcd. for C<sub>17</sub>H<sub>25</sub>O<sub>5</sub> (M+H<sup>+</sup>): 309.1702; found 309.1707.



Following the general procedure above, using 1a (1.0 mmol, 198 mg), 2d (0.50 mmol, 111 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.1 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 100 °C, yielded the product 3c (102 mg, 61%); IR (neat) v 2973, 1720, 1229, 1124, 1023 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.28 (t, J = 7.0 Hz, 3H), 1.42 (t, J = 7.3 Hz, 3H), 1.46 (s, 6H), 4.17 (q, J = 7.3 Hz, 2H), 4.6 (q, J = 7.2 Hz, 2H), 6.41 (d, J = 16.2 Hz, 1H), 6.62 (d, J = 16.2 Hz, 1H), 7.23-7.26 (m, 1H), 7.34 (d, J = 8.6 Hz, 1H), 7.40 (d, J = 7.9, 1H), 7.47 (dd, J = 7.1, and 8.2 Hz, 1H), 7.54 (d, J = 7.5 Hz, 1H), 8.11-8.12 (m, 2H) <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 13.82, 14.26, 25.32, 37.61, 44.46, 60.83, 108.56, 108.68, 118.56, 119.01, 120.58, 123.10, 123.29, 124.36, 125.85, 128.45, 128.78, 131.91, 139.68, 140.44, 176.82; HRESIMS calcd. for C<sub>22</sub>H<sub>26</sub>NO<sub>2</sub> (M+H<sup>+</sup>): 336.1963; found 336.1964.



Following the general procedure above, using 1e (1.0 mmol, 236 mg), 2f (0.50 mmol, 59 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.1 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 100 °C, yielded the product 3f (62 mg, 43%(exo:endo =9:1(the isomers are inseparable))); IR (neat) v 1726, 1130, 1075 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ :0.71 (t, J = 7.43 Hz, 3H), 0.81 (t, J = 7.40 Hz, 3H), 0.99-1.16 (m, 4H), 1.40-1.53 (m, 2H), 1.58-1.65 (m, 2H), 2.32 (s, 3H), 2.75 (s, 2H), 3.29 (s, 3H), 4.99 (d, J = 1.7 Hz, 1H), 5.14 (d, J = 1.8 Hz, 1H), 7.08 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 8.35, 14.04. 21.14, 23.14, 26.00, 26.51, 33.09, 40.66, 49.96, 51.11, 116.56, 126.86, 128.77, 136.95, 139.96, 146.36, 177.14; HRESIMS calcd. for C<sub>20</sub>H<sub>31</sub>O<sub>2</sub> (M+H<sup>+</sup>): 303.2324; found 303.2324.



Following the general procedure above, using 1d (1.0 mmol, 187 µl), 2f (0.50 mmol, 59 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.1 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 100 °C, yielded the product 3a (93 mg, 61%(exo:endo=9:1(the isomers are inseparable))); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ :1.15 (t, J =7.1 Hz, 6H), 1.27 (s, 3H), 2.32 (s, 3H), 3.14 (s, 2H), 3.86-3.92 (m, 2H), 3.95-4.02 (m, 2H), 5.06 (d, J = 0.8 Hz, 1H), 5.2 (d, J = 1.6 Hz, 1H), 7.08 (d, J = 7.9 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ :13.94, 19.94, 21.14, 40.04, 53.61, 61.19, 117.59, 126.82, 128.86, 137.32, 139.00, 144.56, 172.06.



Following the general procedure above, using 1a (1.0 mmol, 198 mg), 2a (0.50 mmol, 59 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.1 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 100 °C, yielded the product 3a (102 mg, 83%(exo:endo =9:1(the isomers are inseparable))); <sup>1</sup>H NMR (CDCl<sub>3</sub>)

δ: 1.10 (s, 6H), 1.11-1.14 (t, J = 7.0 Hz, 3H), 2.32 (s, 3H), 2.77 (s, 2H), 3.77 (J = 7.0 Hz, 2H), 5.01 (s, 1H), 5.21 (d, J = 1.76 Hz, 1H), 7.09 (d, J = 7.8 Hz, 2H), 7.23 (d, J = 7.8 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>) δ: 14.02, 21.13, 25.57, 42.60, 45.80, 60.25, 116.36, 126.73, 128.87, 137.07, 146.12, 177.51.



Following the general procedure above, using 1a (1.0 mmol, 198 mg), 2a (0.50 mmol, 76 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.2 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 100 °C, yielded the product 3a (65 mg, 49%(exo:endo =93:7(the isomers are inseparable))); IR (neat) v 1722, 1133, 835 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.01 (s, 6H), 1.12 (t, J = 7.1 Hz, 3H), 2.75 (s, 2H), 3.77 (q, J = 7.1 J, 2H), 5.07 (d, J = 1.3 Hz, 1H), 5.22 (d, J = 1.5 Hz, 1H), 7.20 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 14.03, 25.57, 42.57, 45.75, 60.36, 117.73, 121.35, 128.57, 131.30, 141.41, 145.26, 177.26; HRESIMS calcd. for C<sub>15</sub>H<sub>20</sub>ClO<sub>2</sub> (M+H<sup>+</sup>): 267.1151; found 267.1153.



Following the general procedure above, using 1a (1.0 mmol, 198 mg), 2a (0.50 mmol, 98 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.2 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 100 °C, yielded the product 3a (83 mg, 54%(exo:endo =93:7(the isomers are inseparable))); IR (neat) v 1722, 1193, 1008, cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.10 (s, 6H), 1.12 (t, J = 7.1 Hz, 3H), 2.75 (s, 2H), 3.76 (q, J = 7.1 Hz, 2H), 5.06 (J = 1.3 Hz, 1H), 5.22 (d, J = 1.5 Hz, 1H), 7.19 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 14.03, 25.57, 42.56, 45.81, 60.35, 117.68, 128.22, 128.33, 133.23, 140.93, 145.22, 177.27; HRESIMS calcd. for C<sub>15</sub>H<sub>20</sub>BrO<sub>2</sub> (M+H<sup>+</sup>): 311.0646; found 311.0645.



Following the general procedure above, using 1a (1.0 mmol, 198 mg), 2i (0.50 mmol, 98 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.2 ml), TPMA (0.02 mmol, 2.9 mg),

diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 100 °C, yielded the product 3a (85 mg, 73%); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ :1.11 (t, J = 7.2 Hz, 3H), 1.11 (s, 6H), 2.80 (s, 2H), 3.72 (q, J = 7.1 Hz, 2H), 5.05 (d, J = 1.6 Hz, 1H), 5.23 (d, J = 1.7 Hz, 1H), 7.23-7.32 (m, 5H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 14.02, 25.57, 42.55, 45.91, 60.25, 117.11, 126.90, 127.40, 128.20, 142.51, 146.35, 177.43.



Following the general procedure above, using 4 (0.5 mmol, 127 mg), CuI solution (5 x  $10^{-5}$  mmol, 5 x  $10^{-4}$  M in MeCN, 0.2 ml), TPMA (0.02 mmol, 2.9 mg), diisopropylmethylamine (0.75mmol, 131µl) and dried 1, 2-dimethoxyethane (0.5 mL) at 100 °C, yielded the product 5 (88 mg, 100%); 1H NMR (CDCl<sub>3</sub>)  $\delta$ : 1.37(s, 6H), 3.21 (s, 3H), 6.85 (d. J = 7.7 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 7.20 (d, J = 7.3 Hz, 1H), 7.26 (dt, J = 1.2, 7.6 Hz, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub>)  $\delta$ : 24.35, 26.16, 44.14, 108.07, 122.31, 122.54, 127.73, 135.89, 142.72, 181.46.





13C NMR













1H NMR





S12



















1H NMR



















   

































