Enhanced CO₂ uptake by intramolecular proton transfer reactions in

amino-functionalized pyridine-based ILs

Mingguang Pan,^{*ab*} R. Vijayaraghavan,^{*b*} Fengling Zhou,^{*b*} Mega Kar,^{*b*} Haoran Li,^{*a*} Congmin Wang^{**a*} and Douglas R. MacFarlane^{**b*}

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China. E-mail: <u>chewcm@zju.edu.cn</u>

^bDepartment of Chemistry, Monash University, Clayton VIC 3800, Australia. E-mail: Doug.MacFarlane@monash.edu

1. General procedures

2-amino-3-hydroxypyridine 2-amino-4-hydroxypridine (2-NH₂-3-OH-Py), (2-NH₂-4-OH-Py), 2-amino-6-hydroxypyridine (2-NH₂-6-OH-Py), 3-amino-4-hydroxypyridine (3-NH₂-4-OH-Py) were purchased from J&K Scientific Sigma-Aldrich. Trihexyl(tetradecyl)phosphonium chloride ([P₆₆₆₁₄][Cl]), and tri-n-butylphosphine, bromoethane were obtained from Sigma-Aldrich. Amberlite IRA-402(OH) (an anion-exchange resin) was obtained from Alfa. All chemicals were obtained in the highest purity grade possible, and were used as received unless otherwise stated. All ionic liquids (ILs) samples were dried under vacuum at 60°C for 24 h. CO₂ gas in ultra high purity grade was passed through a drying column to avoid moisture contamination before use. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance DMX-400 spectometer in DMSO-d₆ with tetramethylsilane as the standard. FT-IR spectra were obtained using a Cary 630 FT-IR spectrometer (Agilent Technologies). Low-resolution electrospray ionization (LRESI) mass spectra were obtained on a Bruker Esquire 3000 plus mass spectrometer (Bruker-Franzen Analytik GmbH Bremen, Germany) equipped with an ESI interface and an ion trap analyzer. The water contents of these ILs were determined through Karl Fisher titrations (Metrohm Ltd.).

2. Synthesis of ILs

These anion-functionalized ILs were prepared by neutralizing [P₆₆₆₁₄]OH (or

 $[P_{4444}]OH)$ and weak proton donors such as 2-amino-3-hydroxypyridine (2-NH₂-3-OH-Py) according to the literature method.^{S1} For example, a solution of $[P_{66614}]OH$ in ethanol was prepared from $[P_{66614}]Cl$ by using an anion-exchange resin such as Amberlite IRA-402(OH), and then equimolar 2-NH₂-3-OH-Py was added to the $[P_{66614}]OH$ solution in ethanol. The mixture was stirred at room temperature for 3 h. Subsequently, the ethanol and water was removed by distillation at 40 °C under reduced pressure. The product thus obtained was dried in high vacuum for 24 h at 50 °C.

Scheme S1. The anions used in this work.

[P₆₆₆₁₄][2-NH₂-3-O-Py]: ¹H NMR (DMSO-*d*₆): δ = 0.84–0.89 (m, 12 H, CH₃), 1.25–1.57 (m, 48 H, CH₂), 2.15–2.22 (m, 8 H, PCH₂), 4.70 (s, 2H, NH₂), 5.89 (dd, 1H, pyridyl-C3), 6.08–6.11 (q, 1H, pyridyl-C4), 6.56 (dd, 1H, pyridyl-C5); ¹³C NMR (DMSO-*d*₆): δ = 13.7, 13.8, 17.3, 17.8, 20.6, 21.8, 22.1, 28.2, 28.7, 29.0, 29.1, 29.7, 29.8, 29.9, 30.1, 30.4, 30.9, 31.3, 114.0, 114.3, 124.3, 154.2, 154.6; LR-ESI-MS: *m/z* = 483.4 [M]⁺ (100%), 109.0 [M]⁻ (100%); HR-ESI-MS: *m/z* cacld for [M]⁺ C₃₂H₆₈P 483.5053, found 483.5057, error 0.8 ppm, *m/z* cacld for [M]⁻ C₅H₅N₂O 109.0407, found 109.0408, error 0.9 ppm; IR: 3026, 2954, 2923, 2854, 1636, 1570, 1523, 1457, 1444, 1377, 1351, 1304, 1254, 1215, 1174, 1111, 1055, 986, 912, 882, 855, 810, 778, 749, 720.

[P₆₆₆₁₄][2-NH₂-4-O-Py]: ¹H NMR (DMSO-*d*₆): δ = 0.84–0.89 (m, 12 H, CH₃), 1.24–1.60 (m, 48 H, CH₂), 2.15–2.22 (m, 8 H, PCH₂), 4.12 (s, 2H, NH₂), 5.11 (d, 1H, pyridyl-C5), 5.33–5.35 (dd, 1H, pyridyl-C4), 7.08 (d, 1H, pyridyl-C2); ¹³C NMR (DMSO-*d*₆): δ = 13.7, 13.8, 17.2, 17.3, 17.7, 17.8, 20.6, 21.2, 21.8, 21.9, 22.1, 27.1, 27.7, 28.2, 28.7, 29.0, 29.1, 29.7, 29.8, 30.1, 30.2, 30.4, 30.8, 31.3, 97.2, 109.9, 146.2, 160.4, 176.8; LR-ESI-MS: *m*/*z* = 483.4 [M]⁺ (100%), 109.0 [M]⁻ (100%); HR-ESI-MS: *m*/*z* cacld for [M]⁺ C₃₂H₆₈P 483.5053, found 483.5061, error 1.7 ppm, *m*/*z* cacld for [M]⁻ C₅H₅N₂O 109.0407, found 109.0407, error 0.0 ppm; IR: 2954, 2922, 2853, 1583, 1492, 1458, 1412, 1375, 1291, 1242, 1206, 1162, 1109, 973, 823, 784, 720.

[P₆₆₆₁₄][2-NH₂-6-O-Py]: ¹H NMR (DMSO-*d*₆): δ = 0.84–0.89 (m, 12 H, CH₃), 1.24–1.60 (m, 48 H, CH₂), 2.13–2.20 (m, 8 H, PCH₂), 5.08–5.12 (m, 2 H, pyridyl-C2 and -C4), 6.47 (br, 2H, NH₂), 6.81 (t, 1H, pyridyl-C3); ¹³C NMR (DMSO-*d*₆): δ = 13.7, 17.2, 17.3, 17.7, 17.8, 20.7, 21.2, 21.8, 21.9, 22.1, 27.1, 27.7, 28.2, 28.7, 29.0, 29.1, 29.7, 29.9, 30.1, 30.3, 30.4, 30.5, 30.9, 31.3, 86.9, 101.4, 137.6, 158.3, 171.0; LR-ESI-MS: *m/z* = 483.4 [M]⁺ (100%), 109.0 [M]⁻ (100%); HR-ESI-MS: *m/z* cacld for [M]⁺ C₃₂H₆₈P 483.5053, found 483.5054, error 0.2 ppm, *m/z* cacld for [M]⁻ C₃H₅N₂O 109.0407, found 109.0403, error 3.7 ppm; IR: 2954, 2922, 2853, 1626, 1578, 1546, 1458, 1427, 1376, 1302, 1262, 1215, 1147, 1112, 1066, 988, 816, 772, 713.

[P₆₆₆₁₄][3-NH₂-4-O-Py]: ¹H NMR (DMSO-*d*₆): δ = 0.84–0.90 (m, 12 H, CH₃), 1.25–1.60 (m, 48 H, CH₂), 2.15–2.22 (m, 8 H, PCH₂), 5.76 (d, 1 H, pyridyl-C4), 7.18 (d, 1 H, pyridyl-C5), 7.28 (s, 1H, pyridyl-C1); ¹³C NMR (DMSO-*d*₆): δ = 13.7, 13.8, 17.2, 17.3, 17.6, 17.7, 20.6, 21.8, 22.1, 28.2, 28.7, 29.0, 29.1, 29.7, 29.8, 29.9, 30.1, 30.4, 30.9, 31.3, 111.1, 131.4, 136.8, 141.0, 166.0; LR-ESI-MS: *m/z* = 483.1 [M]⁺ (100%), 108.9 [M]⁻ (100%); HR-ESI-MS: *m/z* cacld for [M]⁺ C₃₂H₆₈P 483.5053, found 483.5060, error 1.4 ppm, *m/z* cacld for [M]⁻ C₅H₅N₂O 109.0407, found 109.0406, error 0.9 ppm; IR: 2954, 2922, 2853, 1590, 1577, 1502, 1458, 1420, 1368, 1314, 1249, 1213, 1168, 1111, 1034, 993, 877, 817, 720.

 $[P_{4444}][2-NH_2-3-O-Py]:$ ¹H NMR (DMSO-*d*₆): $\delta = 0.89-0.92$ (m, 12 H, CH₃), 1.35-1.49 (m, 16 H, CH₂), 2.15-2.22 (m, 8 H, 4 CH₂), 4.72 (s, 2 H, NH₂), 5.89 (dd, 1 H, pyridyl-C3), 6.09-6.12 (q, 1 H, pyridyl-C4), 6.57 (dd, 1 H, pyridyl-C5); ¹³C NMR (DMSO-*d*₆): $\delta = 13.2$, 17.1, 17.5, 22.6, 22.7, 23.2, 23.4, 113.5, 114.6, 123.3, 154.9, 155.3; LR-ESI-MS: m/z = 259.2 [M]⁺ (100%), 108.9 [M]⁻ (100%); HR-ESI-MS: m/zcacld for [M]⁺ C₁₆H₃₆P 259.2549, found 259.2551, error 0.8 ppm, m/z cacld for [M]⁻ C₅H₅N₂O 109.0407, found 109.0402, error 4.6 ppm; IR: 3025, 2957, 2930, 2870, 1571, 1522, 1465, 1441, 1379, 1350, 1305, 1252, 1215, 1121, 1096, 1054, 1004, 967, 915, 882, 809, 776, 747, 721.

3. CO₂ absorption results and analysis data based on FT-IR and NMR spectra

Figure S1. FT-IR spectra of $[P_{66614}][2-NH_2-3-O-Py]$ before (black) and after (red) CO₂ uptake.

Figure S2. Partial ¹H NMR spectra (400 MHz, room temperature, DMSO- d_6) of [P₆₆₆₁₄][2-NH₂-3-O-Py] before (a) and after (b) CO₂ uptake. The hydroxyl group shifted to 15.58 ppm may due to the formation of strong intramolecular hydrogen bonding.

Figure S3. Partial NMR integral area (400 MHz, room temperature, DMSO- d_6) of [P₆₆₆₁₄][2-NH₂-3-O-Py] after CO₂ uptake.

Figure S4. Partial ¹³C NMR spectra (100 MHz, room temperature, DMSO- d_6) of [P₆₆₆₁₄][2-NH₂-6-O-Py] before (a) and after (b) CO₂ uptake.

Figure S5. Partial ¹³C NMR spectra (100 MHz, room temperature, DMSO- d_6) of [P₆₆₆₁₄][3-NH₂-4-O-Py] before (a) and after (b) CO₂ uptake.

Figure S6. FT-IR spectra of $[P_{66614}][3-NH_2-4-O-Py]$ before (black) and after (red) CO₂ uptake.

Figure S7. The effect of temperature on CO₂ absorption by [P₆₆₆₁₄][2-NH₂-3-O-Py].

Figure S8. Cycles of CO₂ absorption and desorption by [P₆₆₆₁₄][2-NH₂-3-O-Py]. Dark gray, CO₂ absorption capacity; light gray, CO₂ desorption capacity.

Figure S9. FT-TR spectra of $[P_{66614}]$ [2-NH₂-3-O-Py]. Black, the fresh IL; red, the IL after CO₂ desorption (under N₂ bubbling at 80 °C for one hour).

Figure S10. CO₂ absorption by $[P_{66614}][2-NH_2-3-O-Py]$ with (red) and without (black) ~2.0 wt.% H₂O.

Figure S11. Partial ¹³C NMR spectra (100 MHz, room temperature, DMSO- d_6) of [P₄₄₄₄][2-NH₂-3-O-Py] before (a) and after (b) CO₂ uptake.

4. Orignal NMR spectra

Figure S12. ¹H NMR spectrum (400 MHz, room temperature, DMSO- d_6) of [P₆₆₆₁₄][2-NH₂-3-O-Py].

Figure S14. No-deterium ¹³C NMR spectrum (100 MHz, room temperature, DMSO- d_6) of [P₆₆₆₁₄][2-NH₂-3-O-Py].

 $[P_{66614}]$ [2-NH₂-3-O-Py] after CO₂ uptake.

 $[P_{66614}]$ [2-NH₂-3-O-Py] after CO₂ uptake.

DMSO-*d*₆) of [P₆₆₆₁₄][2-NH₂-3-O-Py].

Figure S18. ¹³C NMR spectrum (100 MHz, room temperature, DMSO- d_6) of [P₆₆₆₁₄][2-NH₂-6-O-Py].

Figure S21. Partial ¹³C NMR spectrum (100 MHz, room temperature, DMSO-*d*₆) of [P₆₆₆₁₄][3-NH₂-4-O-Py] after CO₂ uptake.

References:

S1. (a) K. Fukumoto, Y. Kohno and H. Ohno, *Chem. Lett.*, 2006, **35**, 1252; (b) M. Pan, N. Cao,
W. Lin, X. Luo, K. Chen, S. Che, H. Li and C. Wang, *ChemSusChem*, 2016, **9**, 2351.