Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

## **Electronic Supplementary Information (ESI)**

Superior sodium storage performance of reduced graphene oxidesupported  $Na_{3.12}Fe_{2.44}(P_2O_7)_2/C$  nanocomposite

Hee Jo Song, a,b Kyeong-Ho Kim, a Jae-Chan Kim, b Seong-Hyeon Hong and Dong-Wan Kim\*b

<sup>a</sup> Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea

<sup>b</sup> School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-713, Republic of Korea

## **Corresponding Author**

\* E-mail: dwkim1@korea.ac.kr (D.W. Kim)

## **Experimental procedures**

Synthesis of NFP-NPs/C/rGO. All the chemicals used were reagent grade and employed without further purification. As mentioned above, NFP-NPs/C/rGO was synthesized by the solgel method; citric acid was used as the chelating agent as well as the carbon source. In a typical synthesis process, 8 g of a GO solution (2 wt% GO dispersion in water, Angstron Materials) was mixed with 42 ml of deionized water (total 50 ml). Next, 6.1 mmol of Fe(CH<sub>3</sub>COO)<sub>2</sub> (Fe 29.5%, Alfa Aesar) and 15 mmol of citric acid (CA; 99.5%, Sigma-Aldrich) were dissolved in the aqueous GO dispersion. Then, 7.8 mmol of Na(CH<sub>3</sub>COO) (99%, Sigma-Aldrich) and 10 mmol of NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> (98%, Sigma-Aldrich) were dissolved in another 50 ml of distilled water. The molar ratios of the Na/Fe/P/C sources were 3.12:2.44:4:6. The two solutions were then mixed in a three-neck round-bottom flask and refluxed at 80 °C for 12 h under magnetic stirring. After the reflux process, the solution was kept on a hotplate at 70 °C to evaporate the solvent. Next, the wet gel was completely dried in a vacuum oven. The resultant dried gel was then heat-treated in a tube furnace at 600 °C for 3 h in a flow of a 5% H<sub>2</sub>/Ar balance gas. The product was ball-milled with ZrO<sub>2</sub> balls and ethanol, dried and then heat-treated again under the same conditions. For comparison, NFP-NPs/C without rGO was also synthesized under the same conditions.

*Material characterization*. Transmission electron microscopy (TEM) imaging was performed using a JEOL JEM-2100F system. Field-emission scanning electron microscopy (FESEM) imaging was performed using a Hitachi SU-70 system. The X-ray diffraction (XRD) patterns of the powder samples were measured with a Bruker D8-Advance system using Cu K $\alpha$  radiation; the measurements were performed for 2 $\theta$  of 10–40°. The Na, Fe, and P concentrations in solutions of the samples in HCl were determined using inductively coupled

plasma-optical emission spectroscopy (ICP-OES; ICP-730 ES, Varian). X-ray photoelectron spectroscopy (XPS) was performed with a Thermo Scientific Sigma Probe using an Al Kα X-ray source. The infrared (IR) spectra were measured in the range of 1400-400 cm<sup>-1</sup> using an FT-IR spectrometer (Hyperion 3000, Bruker). The Brunauer–Emmett–Teller (BET) specific surface areas and pore size distributions of the products were determined based on their nitrogen adsorption–desorption isotherms, which were measured at 77 K using a Micromeritics ASAP 2010 system. The carbon contents of the powders were measured by thermogravimetric analysis (TGA; DTG-60H, Shimadzu Co.) and using an elemental analyzer (Flash EA 1112, Thermo Electron Co.).

Electrochemical measurements. The electrochemical properties of the NFP-NPs/C and NFP-NPs/C/rGO samples were evaluated using 2032 coin-type half cells, which were fabricated in an Ar-filled glove box. The NFP-NPs/C and NFP-NPs/C/rGO working electrodes were prepared using 70 wt% active material, 15 wt% Super P carbon black (MMM Carbon, Belgium), and 15 wt% polyvinylidene fluoride as binder (Sigma-Aldrich); this mixture was cast onto a piece of Al foil. The mass loading rate of the active material on the Al foil was 2~3 mg cm<sup>-2</sup>. The cells were assembled using the working electrode, a glass microfiber separator film (diameter 47 nm, Whatman), and a piece of Na metal foil as the counter electrode. A liquid electrolyte consisting of 1 M NaClO<sub>4</sub> dissolved in a solution of ethylene carbonate and propylene carbonate in a volume ratio of 1:1 was used in the cells. These cells were galvanostatically cycled at voltages of 2.0–4.0 V (versus Na/Na<sup>+</sup>) using an automatic battery cycler (WBCS3000, WonATech, Korea). Cyclic voltammetry (CV) measurements were performed for the same voltage range at a scan rate of 0.05 mV s<sup>-1</sup>. Electrochemical impedance spectroscopy (EIS) measurements were performed in the frequency range of 100 kHz to 10 mHz at an AC amplitude of 10 mV; an Ivium-n-Stat (Ivium Technologies, Netherlands)

electrochemical test system was employed for the purpose.

**Table S1.** Na/Fe/P atomic ratios of NFP-NPs/C and NFP-NPs/C/rGO samples as determined by ICP-OES.

| Sample        | Element | No. of Moles | Atomic<br>Ratio |
|---------------|---------|--------------|-----------------|
| NFP-NPs/C     | Na      | 1.306        | 3.22            |
|               | Fe      | 0.984        | 2.43            |
|               | P       | 1.620        | 4.00            |
| NFP-NPs/C/rGO | Na      | 1.338        | 3.29            |
|               | Fe      | 0.969        | 2.39            |
|               | P       | 1.624        | 4.00            |

**Table S2.** Results of C elemental analyses of NFP-NPs/C and NFP-NPs/C/rGO.

| Sample        | C content (wt%) |
|---------------|-----------------|
| NFP-NPs/C     | 16.1            |
| NFP-NPs/C/rGO | 19.5            |

**Table S3.** Comparison of electrochemical performances of previously reported  $Na_2FeP_2O_7$  and  $Na_{3.12}Fe_{2.44}(P_2O_7)_2$ -based cathodes for NIBs.

| Material                                                               |               | Voltage    | Cycle | Rate       | Capacity                | Ref. |
|------------------------------------------------------------------------|---------------|------------|-------|------------|-------------------------|------|
| Materiai                                                               |               | <b>(V)</b> | (No.) | <b>(C)</b> | (mA h g <sup>-1</sup> ) | Kei. |
| Na <sub>2</sub> FeP <sub>2</sub> O <sub>7</sub>                        | Submicron     | 2.0-4.0    | 10    | 0.05       | 82                      | [8]  |
| $Na_2FeP_2O_7$                                                         | Micro         | 2.0-4.5    | 80    | 0.05       | 92                      | [20] |
| $Na_2FeP_2O_7$                                                         | Micro         | 2.0-3.8    | 50    | 0.05       | 80                      | [21] |
| $Na_2FeP_2O_7$                                                         | CNT           | 2.0-4.0    | 140   | 1          | 86                      | [22] |
|                                                                        | composite     |            |       |            |                         |      |
| $Na_{3.12}Fe_{2.44}(P_2O_{7)2}$                                        | Micro         | 1.7-4.0    | 60    | 0.05       | 80                      | [9]  |
| $Na_{3.12}Fe_{2.44}(P_2O_{7)2}$                                        | Graphene      | 1.7-4.0    | 80    | 0.2        | 100                     | [23] |
|                                                                        | composite     |            |       |            |                         |      |
| $Na_{3.12}Fe_{2.44}(P_2O_{7)2}$                                        | CNT           | 1.7-4.0    | 120   | 0.15       | 100                     | [24] |
|                                                                        | composite     |            |       |            |                         |      |
| $Na_{3.12}Fe_{2.44}(P_2O_{7)2}$                                        | Coral-like    | 2.0-4.0    | 200   | 5          | 80                      | [15] |
| Na <sub>3.12</sub> Fe <sub>2.44</sub> (P <sub>2</sub> O <sub>7)2</sub> | Hollow porous | 1.5-4.0    | 500   | 10         | 60                      | [25] |
|                                                                        | microspheres  |            |       |            |                         |      |

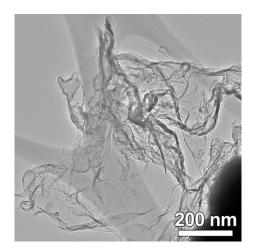



Fig. S1 TEM image of GO.

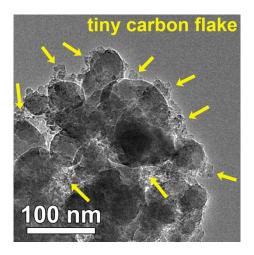
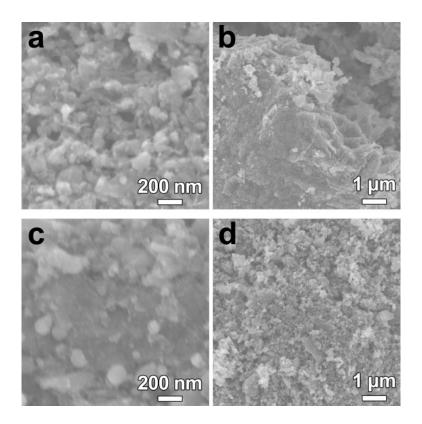




Fig. S2 TEM image of NFP-NPs/C (without rGO).



**Fig. S3** FESEM images of (a-b) NFP-NPs/C/rGO after first HT process and (c-d) after HT $\rightarrow$ BM  $\rightarrow$ HT process.

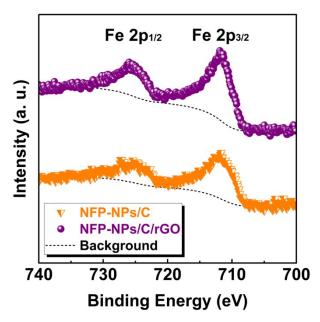
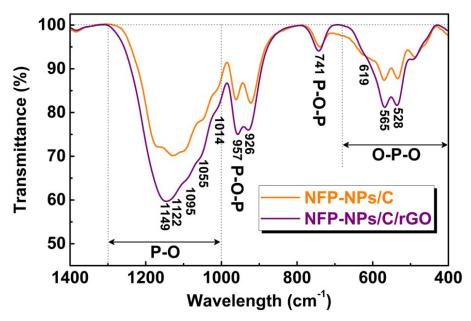




Fig. S4 Fe 2p levels XPS spectra of NFP-NPs/C and NFP-NPs/C/rGO.



**Fig. S5** FT-IR spectra of NFP-NPs/C and NFP-NPs/C/rGO in the range of 1400-400 wavelength (cm<sup>-1</sup>).

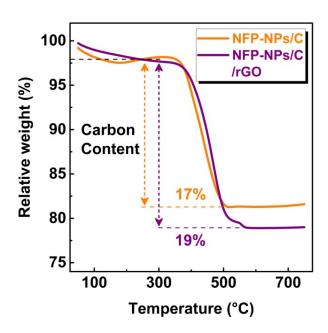



Fig. S6 TGA curves of NFP-NPs/C and NFP-NPs/C/rGO.



**Fig. S7** Galvanostatic voltage—capacity profiles of NFP-NPs/C at different rates.

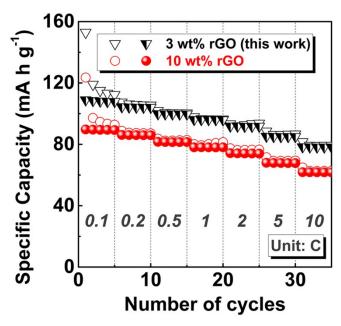



Fig. S8 Rate performance of NFP-NPs/C/rGO with different amount of rGO in nanocomposite.

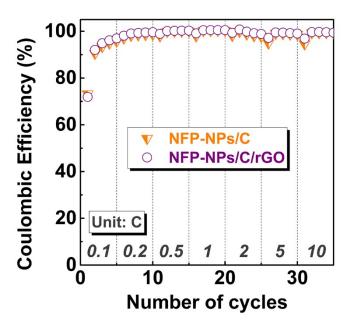
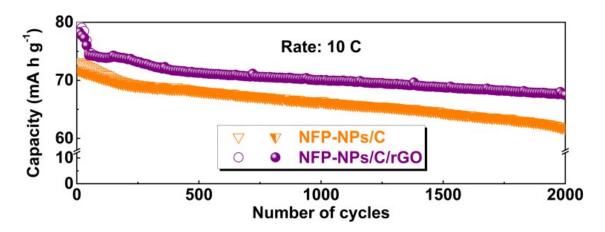




Fig. \$9 Coulombic efficiency of NFP-NPs/C and NPF/NPs/C/rGO.



**Fig. S10** Long-term cyclability of NFP-NPs/C and NFP-NPs/C/rGO at 10 C.