Electronic Supplementary Information

Intense blue circularly polarized luminescence from helical aromatic esters

Dong-Qiang He,^a Hai-Yan Lu,^{a,*} Meng Li,^b and Chuan-Feng Chen^{a,b,*}

^aUniversity of Chinese Academy of Sciences, Beijing 100049, China.

^bBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of

Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of

Sciences, Beijing 100190, China.

haiyanlu@ucas.ac.cn; cchen@iccas.ac.cn

Contents

1. General information	S1
2. Synthetic procedures and characterized data	S2
Synthesized of racemic compound 3	S2
Optical resolution	S3
Synthesis of enantiomers 4	S3
General procedure for the synthesis of enantiomers 1a-e by suzuki-miyaur	a cross
coupling reactions	54
3. Crystal structure and crystal data of (+)- <i>P</i> -4	S11
4. HPLC charts	S12
Optical resolution conditions	S12
Analysis of the enantiomer excess of 3	S13
Analysis of the enantiomer excess of (+)-P-1a-e and (-)-M-1a-e	S14
Optical stability analysis of the enantiomers	S18
5. Photophysical properties of enantiomers (+)- <i>P</i> -1a-e and (+)- <i>P</i> -3	S22
UV-vis absorption and fluorescence spectra	S22
CD and CPL spectra	S24
Absorption dissymmetry factors (g_{abs}) and luminescence dissymmetry fact of the enantiomers 1a-e and 3	ors (g _{lum}) S24
6. Copies of ¹ H NMR and ¹³ C NMR spectra of new compounds	S25

1. General information

All the reagents and solvents were commercially available and used without further purification. Reactions were carried out under inert and anhydrous conditions unless otherwise noted. ¹H, ¹³C NMR spectra were recorded on Brucker® Avance III 400 MHz and Brucker® AVIII 500 MHz NMR spectrometers in CDCl₃ solutions at 298 K. All the melting points were not calibrated and determined on YuHua X-5 digital melting point apparatus. High resolution mass spectra were obtained on the Thermo Fisher[®] Exactive high-resolution LC-MS spectrometer. The X-ray crystallographic data were collected by Rigaku[®] X-ray diffraction apparatus RAPID IP, MM007HF Saturn 724+, ST Saturn 724+. Optical resolutions were carried out on Semi-preparative chromatography using the column (Chiralpak[®] IE, 0.46 cm I.D. × 15 cm L) and the mobile phase of Hexane/DCM (40:60, v/v). HPLC analysis were performed on Agilent 1260 Infinity. Analytical injections were performed on chiral stationary phase using the column (Chiralpak[®] IE, 5 μ m, 4.6 mm × 250 mm) and the mobile phase of hexane and dichloromethane (60:40, 50:50 and 74:26, v/v). The UV-vis spectra were recorded on PerkinElmer[®] UV/Vis/NIR spectrometer (Lambda 950), and the fluorescence spectra were recorded on HITACHI[®] F-7000 Fluorescence Spectrometer at room temperature. Absolute fluorescence quantum yield, measured by Hamamatsu Absolute PL Quantum Yield Spectrometer C11347. Fluorescence lifetimes were measured by Quantaurus Tau C11367-11. CD spectra were recorded on a JASCO J810 spectropolarimeter, and CPL spectra were performed with a JASCO CPL-200 spectrometer at room temperature. The optical rotation was determined by Rudolph Autopol VI Automatic polarimeter. The starting diene 2 was synthesized by reported method.¹

2. Synthetic procedures and characterized data

Synthesized of racemic compound 3

Compound 3. A solution of diene 2 (5 g, 10.6 mmol) and acetylenedicarboxylic acid dimethyl ester (15.1 g, 106 mmol) in xylene (300 mL) was refluxed overnight. After cooling, the reaction mixture was concentrated under reduced pressure, and subjected to flash column chromatography with ethyl acetate, dichloromethane and petroleum ether (1:3:15, v/v/v) as eluent. After rotatory evaporation, the rude product was dissolved in anhydrous xylene (300 mL), and DDQ (22.7 g, 100 mmol) was added to the solution. The mixture was refluxed for 12 h. After cooling, the solution was subjected to column chromatography with ethyl acetate, dichloromethane and petroleum ether (1:3:15, v/v/v) as eluent to give pure product 3 (5.5 g, 86%) as palewhite powder. $R_f = 0.39$ (EtOAc : PE, v/v ~ 1 : 4). M. p.: 262-264° C. ¹H NMR (500 MHz, CDCl₃): δ 7.03 (tt, *J* = 7.3, 1.4 Hz, 2H), 6.97 (td, *J* = 7.6, 1.6 Hz, 2H), 6.85 (dt, *J* = 7.7, 1.4 Hz, 4H), 6.77 (d, J = 8.2 Hz, 2H), 6.56 (dt, J = 7.8, 1.6 Hz, 2H), 6.12 (dt, J = 7.8, 1.6 Hz, 2H), 7.8, 1.6 Hz, 7.8, 1.6 Hz, 7.8, 1.6 Hz, 7.8 7.8, 1.5 Hz, 2H), 3.88 (s, 6H), 3.57 (s, 6H), 2.64 (ddd, *J* = 15.4, 4.0, 2.4 Hz, 2H), 2.35 (td, J = 15.0, 4.2 Hz, 2H), 2.14 (ddd, J = 14.1, 4.1, 2.4 Hz, 2H), 1.35-1.27 (m, 2H).¹³C NMR (126 MHz, CDCl₃): δ 169.0, 155.5, 138.3, 137.3, 136.4, 136.0, 134.1, 130.9, 130.7, 129.9, 128.5, 127.2, 127.0, 126.8, 125.7, 111.2, 56.3, 52.4, 29.4, 28.1. HRMS (APCI): m/z calcd for C₄₀H₃₅O₆ [M + H]⁺ 611.2389, found 611.2328.

Optical resolution

Efficiently semi-preparative optical resolution of *rac*-3 was performed by semipreparative chromatography, which provided the pair of enantiomers *P*-3 and *M*-3 (ee > 99%) in gram scale (for detail, see *HPLC charts*)

Synthesis of enantiomers 4

A mixture of compound *P*-**3** or *M*-**3** (1.5g, 2.46 mmol), *N*-bromosuccinimide (0.96 g, 5.4 mmol), and anhydrous aluminum chloride (0.75g, 5.66 mmol) in dry dichloromethane (100 mL) was stirred at room temperature for 3 h. The organic layer was washed with saturated brine (3×150 mL), dried over anhydrous MgSO4, and then concentrated in *vacuo*. The residue was purified by flash column chromatography with ethyl acetate and petroleum ether (1:5, *v*/*v*) as eluent to afford pure product **4** (1.8g, 95%) as white powder.

Compound (+)-*P*-**4.** $R_f = 0.40$ (EtOAc : PE, $v/v \sim 1 : 4$). M. p.: >300 °C. [α]²⁵D = 593 °. ¹H NMR (500 MHz, CDCl₃): δ 7.11 (s, 2H), 7.09 (d, J = 6.0 Hz, 4H), 6.86 (s, 2H), 6.77

(s, 2H), 6.14 (d, J = 7.6 Hz, 2H), 3.89 (s, 6H), 2.97 (s, 6H), 2.69–2.61 (m, 2H), 2.36 (td, J = 15.4, 3.9 Hz, 2H), 2.14 (dt, J = 14.2, 3.1 Hz, 2H), 1.34 (td, J = 14.7, 4.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 168.6, 153.4, 140.2, 138.0, 136.1, 135.6, 135.5, 133.3, 131.3, 130.3, 130.0, 129.0, 128.0, 126.9, 126.6, 117.3, 59.4, 52.5, 29.3, 27.5. HRMS (APCI): m/z calcd for C₄₀H₃₃Br₂O₆ [M + H]⁺ 769.0545, found, 766.0603.

Compound (–)-*M*-**4.** R_f = 0.40 (EtOAc : PE, $v/v \sim 1$: 4). M. p.: >300 °C. [α]²⁵D = -631°. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (s, 2H), 7.11–7.04 (m, 4H), 6.86 (s, 2H), 6.76 (s, 2H), 6.14 (d, J = 7.6 Hz, 2H), 3.89 (s, 6H), 2.97 (s, 6H), 2.65 (dt, J = 15.1, 3.3 Hz, 2H), 2.36 (td, J = 15.3, 3.9 Hz, 2H), 2.14 (dt, J = 14.3, 3.2 Hz, 2H), 1.34 (td, J = 14.8, 4.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 168.6, 153.4, 140.2, 138.0, 136.1, 135.7, 135.5, 133.3, 131.3, 130.2, 130.0, 128.9, 128.0, 126.9, 126.5, 117.3, 59.4, 52.5, 29.3, 27.5. HRMS (APCI): m/z calcd for C₄₀H₃₃Br₂O₆ [M + H]⁺ 769.0545, found 766.0593.

General procedure for the synthesis of enantiomers 1a-e by suzuki-miyaura cross coupling reactions

To a mixture of compound (+)-*P*-**3** or (–)-*M*-**3** (320 mg, 0.42 mmol), K₂CO₃ (583 mg, 4.2 mmol), and arylboronic acid (2.8 mmol) in DMF (60mL) and toluene (40 mL) under argon atmosphere was added catalytic amount of [PdCl₂(PPh₃)₂] (5 mol %), followed

by stirring at 120 °C for 12h under argon atmosphere. After cooling, the reaction mixture was poured into ethyl acetate (50 mL). The organic layer was washed with saturated brine (3×50 mL), dried over anhydrous MgSO4, and then concentrated in *vacuo*. The residue was purified by flash column chromatography with ethyl acetate, dichloromethane and petroleum ether (1:3:15, v/v/v) as eluent to afford pure product (+)-*P*-1a-e or (–)-*M*-1a-e.

Compound (+)-*P*-**1a.** According to the general method, (+)-*P*-**1a** (271 mg, 80%) was obtained as white powder. $R_f = 0.21$ (EtOAc : PE, $v/v \sim 1 : 4$). M. p.: >300 °C. $[\alpha]^{25}D = 589^{\circ}$. ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, J = 8.4 Hz, 4H), 7.76 (d, J = 8.4 Hz, 4H), 7.06 – 6.98 (m, 2H), 6.94 (s, 2H), 6.88 (td, J = 7.3, 1.3 Hz, 4H), 6.82 (d, J = 7.9 Hz, 2H), 6.23 (d, J = 7.5 Hz, 2H), 3.92 (s, 6H), 2.73 (ddd, J = 15.6, 4.1, 2.2 Hz, 2H), 2.62 (s, 6H), 2.46 (td, J = 15.4, 3.9 Hz, 2H), 2.26 (ddd, J = 14.4, 4.0, 2.2 Hz, 2H), 1.45 (td, J = 14.7, 4.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 168.7, 153.9, 143.3, 139.2, 138.3, 136.3, 136.0, 134.7, 134.5, 132.9, 132.1, 130.4, 129.9, 129.8, 129.1, 128.8, 127.6, 127.1, 126.3, 119.0, 111.9, 59.7, 52.5, 29.6, 27.7. HRMS (APCI): m/z calcd for C₅₄H₄₁N₂O₆ [M + H]⁺ 813.2920, found 813.2933.

Compound (–)-*M*-1a. According to the general method, (–)-*M*-1a (264 mg, 78%) was obtained as white powder. $R_f = 0.21$ (EtOAc : PE, v/v ~ 1 : 4). M. p.: >300 °C. $[\alpha]^{25}D = -593^{\circ}$. ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, J = 7.9 Hz, 4H), 7.77 (d, J = 8.0 Hz, 4H), 7.03 (t, J = 7.4 Hz, 2H), 6.95 (s, 2H), 6.89 (t, J = 7.6 Hz, 4H), 6.83 (d, J = 7.9 Hz, 2H), 6.23 (d, J = 7.8 Hz, 2H), 3.93 (s, 6H), 2.79 – 2.70 (m, 2H), 2.63 (s, 6H), 2.47 (td, J = 15.5, 3.9 Hz, 2H), 2.31 – 2.23 (m, 2H), 1.46 (td, J = 14.7, 4.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 168.7, 153.9, 143.2, 139.2, 138.3, 136.3, 136.0, 134.7, 134.5, 132.9, 132.1, 130.4, 129.9, 129.8, 129.1, 128.8, 127.6, 127.0, 126.3, 119.0, 110.9, 59.7, 52.5, 29.6, 27.7. HRMS (APCI): m/z calcd for C₅₄H₄₁N₂O₆ [M + H]⁺ 813.2920, found 813.2959.

Compound (+)-*P*-**1b.** According to the general method, (+)-*P*-**1b** (251mg, 75%) was obtained as white powder. $R_f = 0.30$ (EtOAc : PE, $v/v \sim 1 : 4$). M. p.: 162-164 °C. $[\alpha]^{25}D = 654^{\circ}$. ¹H NMR (500 MHz, CDCl₃): δ 7.64 (s, 2H), 7.62 (s, 2H), 7.02–6.98 (m, 6H), 6.93 (d, J = 4.9 Hz, 4H), 6.89–6.81 (m, 4H), 6.23 (d, J = 7.6 Hz, 2H), 3.91 (s, 6H), 3.88 (s, 6H), 2.71 (s, 6H), 2.68 (d, J = 3.4 Hz, 2H), 2.46 (td, J = 15.4, 4.0 Hz, 2H), 2.22 (dt, J = 13.9, 3.1 Hz, 2H), 1.42 (td, J = 14.7, 4.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 168.9, 158.9, 153.8, 138.7, 138.2, 136.7, 136.6, 134.5, 134.2, 132.9, 131.0, 130.4, 130.2, 128.9, 128.5, 127.5, 126.7, 125.9, 113.7, 59.4, 55.3, 52.4, 29.6, 27.8. HRMS (APCI): m/z calcd for C₅₄H₄₇O₈ [M + H]⁺ 823.3226, found 823.3265.

Compound (–)-*M*-**1b.** According to the general method, (–)-*M*-**1b** (271mg, 84%) was obtained as white powder. $R_f = 0.30$ (EtOAc : PE, $v/v \sim 1$: 4). M. p.: 162-164 °C. [α]²⁵D = -646°. ¹H NMR (500 MHz, CDCl₃): δ 7.64 (d, J = 2.2 Hz, 2H), 7.63 (d, J = 2.1 Hz, 2H), 7.02–6.98 (m, 6H), 6.93 (d, J = 4.6 Hz, 4H), 6.84 (t, J = 6.0 Hz, 4H), 6.23 (d, J = 7.6 Hz, 2H), 3.91 (s, 6H), 3.88 (s, 6H), 2.71 (s, 6H), 2.71–2.66 (m, 2H), 2.47 (td, J = 15.3, 4.0 Hz, 2H), 2.22 (dt, J = 12.0, 2.4 Hz, 2H), 1.42 (td, J = 14.7, 4.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 169.0, 158.9, 153.8, 138.8, 138.2, 136.7, 136.6, 134.5, 134.2, 132.9, 131.0, 130.5, 130.2, 129.0, 128.6, 127.5, 126.7, 125.9, 113.7, 59.4, 55.3, 52.4, 29.6, 27.8. HRMS (APCI): m/z calcd for C₅₄H₄₇O₈ [M + H]⁺ 823.3226, found 823.3245.

Compound (+)-*P*-1c. According to the general method, (+)-*P*-1c (221 mg, 70%) was obtained as white powder. $R_f = 0.42$ (EtOAc : PE, $v/v \sim 1 : 4$). M. p.: 162-164 °C. $[\alpha]^{25}D = 627^{\circ}$. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 1.4 Hz, 2H), 7.68 (t, J = 1.2 Hz, 2H), 7.49–7.43 (m, 4H), 7.40–7.34 (m, 2H), 7.00 (tt, J = 7.3, 1.4 Hz, 2H), 6.97–6.91 (m, 4H), 6.90–6.83 (m, 4H), 6.24 (d, J = 7.6 Hz, 2H), 3.92 (s, 6H), 2.71 (s, 6H), 2.70–2.66 (m, 2H), 2.48 (td, J = 15.2, 3.8 Hz, 2H), 2.23 (ddd, J = 14.3, 4.0, 2.3 Hz, 2H), 1.45 (dd, J = 15.2, 4.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 168.9, 153.9, 138.8, 138.7, 138.2, 136.7, 136.5, 134.7, 134.5, 133.3, 130.5, 130.2, 129.2, 129.1, 128.7, 128.2, 127.5,

127.1, 126.8, 126.0, 59.6, 52.4, 29.6, 27.8. HRMS (APCI): *m*/*z* calcd for C₅₂H₄₃O₆ [M + H]⁺ 763.3015, found 763.3028.

Compound (–)-*M*-1**c.** According to the general method, (–)-*M*-1**c** (232 mg, 73%) was obtained as white powder. $R_f = 0.42$ (EtOAc : PE, $v/v \sim 1$: 4). M. p.: 162-164 °C. $[\alpha]^{25}$ D = -642°. ¹H NMR (500 MHz, CDCl₃): δ 7.71 (s, 2H), 7.69 (s, 2H), 7.47 (t, J = 7.5 Hz, 4H), 7.38 (t, J = 7.4 Hz, 2H), 7.01 (t, J = 7.3 Hz, 2H), 6.96 (s, 4H), 6.88 (d, J = 8.1 Hz, 4H), 6.25 (d, J = 7.6 Hz, 2H), 3.92 (s, 6H), 2.78–2.72 (m, 2H), 2.72 (s, 6H), 2.49 (td, J = 15.4, 4.0 Hz, 2H), 2.25 (dt, J = 13.8, 3.2 Hz, 2H), 1.45 (td, J = 14.7, 4.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 168.9, 153.9, 138.8, 138.7, 138.2, 136.6, 136.5, 134.7, 134.5, 133.3, 130.4, 130.2, 129.2, 129.1, 128.7, 128.2, 127.5, 127.1, 126.7, 125.9, 59.5, 52.4, 29.6, 27.8. HRMS (APCI): m/z calcd for C₅₂H₄₃O₆ [M + H]⁺ 763.3015, found 763.3031.

Compound (+)-*P*-**1d.** According to the general method, (+)-*P*-**1d** (253 mg, 76%) was obtained as white powder. R_f = 0.44 (EtOAc : PE, $v/v \sim 1$: 4). M. p.: 170-172 °C. [α]25D = 685°. ¹H NMR (400 MHz, CDCl₃): δ 7.69–7.64 (m, 4H), 7.15 (t, *J* = 8.7 Hz, 4H), 7.01 (tt, *J* = 7.4, 1.4 Hz, 2H), 6.95–6.82 (m, 8H), 6.23 (d, *J* = 7.6 Hz, 2H), 3.92 (s, 6H), 2.75–2.69 (m, 2H), 2.68 (s, 6H), 2.47 (td, *J* = 15.3, 4.1 Hz, 2H), 2.23 (ddd, *J* = 14.3,

4.1, 2.3 Hz, 2H), 1.49–1.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 168.9, 163.5, 161.0, 153.8, 138.9, 138.2, 136.5, 136.4, 134.6, 134.5, 134.5, 133.7, 133.4, 130.7, 130.6, 130.4, 130.1, 129.0, 128.8, 127.5, 126.8, 126.0, 59.4, 52.4, 29.6, 27.8. HRMS (APCI): *m/z* calcd for C₅₂H₄₁F₂O₆ [M + H]⁺ 799.2827, found 799.2831.

Compound (–)-*M*-1**d.** According to the general method, (–)-*M*-1**d** (236 mg, 71%) was obtained as white powder. $R_f = 0.44$ (EtOAc : PE, v/v ~ 1 : 4). M. p.: 170-172 °C. $[\alpha]^{25}$ D = -663°. ¹H NMR (500 MHz, CDCl₃): δ 7.66 (dd, J = 8.5, 5.5 Hz, 4H), 7.15 (t, J = 8.6 Hz, 4H), 7.01 (t, J = 7.3 Hz, 2H), 6.95–6.82 (m, 8H), 6.23 (d, J = 7.7 Hz, 2H), 3.92 (s, 6H), 2.75–2.70 (m, 2H), 2.68 (s, 6H), 2.47 (td, J = 15.4, 4.0 Hz, 2H), 2.23 (dt, J = 13.7, 3.2 Hz, 2H), 1.44 (td, J = 14.7, 4.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 168.9, 163.2, 161.2, 153.8, 138.9, 138.2, 136.5, 136.4, 134.6, 134.5, 134.5, 133.7, 133.4, 130.7, 130.4, 130.1, 129.0, 128.8, 127.5, 126.8, 126.0, 115.2, 115.1, 76.8, 59.4, 52.5, 29.6, 27.8. HRMS (APCI): m/z calcd for C₅₂H₄₁F₂O₆ [M + H]⁺ 799.2827, found 799.2865.

Compound (+)-*P*-1e. According to the general method, (+)-*P*-1e (244 mg, 74%) was obtained as white powder. $R_f = 0.46$ (EtOAc : PE, $v/v \sim 1 : 4$). M. p.: 202-204 °C. $[\alpha]^{25}$ D

= 385°. ¹H NMR (500 MHz, CDCl₃): δ 7.59 (d, *J* = 7.8 Hz, 4H), 7.28 (s, 4H), 6.99 (t, *J* = 7.3 Hz, 2H), 6.93 (s, 4H), 6.86 (s, 4H), 6.23 (d, *J* = 7.6 Hz, 2H), 3.91 (s, 6H), 2.71 (s, 6H), 2.70–2.65 (m, 2H), 2.49 (dd, *J* = 15.6, 4.0 Hz, 2H), 2.43 (s, 6H), 2.22 (dt, *J* = 13.8, 3.1 Hz, 2H), 1.43 (td, *J* = 14.7, 4.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 169.0, 153.9, 138.7, 138.2, 136.8, 136.7, 136.5, 135.7, 134.6, 134.5, 133.1, 130.4, 130.2, 129.1, 129.0, 128.6, 127.5, 126.7, 125.9, 59.5, 52.4, 29.6, 27.8, 21.3. HRMS (APCI): *m/z* calcd for C₅₄H₄₇O₆ [M + H]⁺ 791.3328, found 791.3345.

Compound (–)-*M*-**1e.** According to the general method, (–)-*M*-**1e** (208 mg, 63%) was obtained as white powder. $R_f = 0.46$ (EtOAc : PE, $v/v \sim 1 : 4$). M. p.: 202-204 °C. $[\alpha]^{25}D = -391^{\circ}$. ¹H NMR (500 MHz, CDCl₃): δ 7.59 (d, J = 7.7 Hz, 4H), 7.27–7.24 (m, 4H), 6.99 (t, J = 7.4 Hz, 2H), 6.93 (s, 4H), 6.85 (d, J = 6.3 Hz, 4H), 6.23 (d, J = 7.6 Hz, 2H), 3.91 (s, 6H), 2.71 (s, 6H), 2.70–2.65 (m, 2H), 2.48 (dd, J = 15.3, 4.0 Hz, 2H), 2.43 (s, 6H), 2.22 (dd, J = 13.7, 3.2 Hz, 2H), 1.42 (td, J = 14.8, 4.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 168.9, 153.8, 138.7, 138.2, 136.8, 136.7, 136.5, 134.6, 134.5, 133.1, 130.4, 130.2, 129.1, 129.0, 128.6, 127.5, 126.7, 125.9, 59.5, 52.4, 29.6, 27.8, 21.3. HRMS (APCI): m/z calcd for C₅₄H₄₇O₆ [M + H]⁺ 791.3328, found 791.3367.

3. Crystal structure and crystal data of (+)-P-4

Fig. S1. (a) X-ray crystal structure, (b) crystal packing, (c) dihedral angle of terminal rings, and (d) distance of methoxyl groups and methyl groups, carbonyl group and carbonyl group of (+)-*P*-**4**.

Empirical formula	$C_{40}H_{32}Br_2O_6$		
Formula weight	768.47		
Temperature	173.1500 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P 21 21 21		
	a = 10.3148(18) Å	= 90°.	
Unit cell dimensions	b = 14.552(3) Å	= 90°.	
	c = 23.285(4) Å	= 90°.	
Volume	3495.1(10) Å ³		
Z	4		
Density (calculated)	1.460 Mg/m ³		

Table S1. Crystal data and structure refinement for (+)-P-4 (CCDC 1536347)

Absorption coefficient	2.366 mm ⁻¹
F(000)	1560
Crystal size	0.164 x 0.067 x 0.033 mm ³
Theta range for data collection	1.650 to 27.486°.
Index ranges	-13<=h<=13, -18<=k<=18, -30<=l<=28
Reflections collected	27947
Independent reflections	7931 [R(int) = 0.0630]
Completeness to theta = 26.000°	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.56274
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7931 / 0 / 437
Goodness-of-fit on F ²	1.070
Final R indices [I>2sigma(I)]	$R_1 = 0.0634, wR_2 = 0.1573$
R indices (all data)	$R_1 = 0.0699, wR_2 = 0.1624$
Absolute structure parameter	0.016(6)
Extinction coefficient	n/a
Largest diff. peak and hole	1.710 and -0.728 e.Å ⁻³

4. HPLC charts

Optical resolution conditions

 Table S2. Semi-preparative chromatography conditions

Column	•	CHIRALPAK IE
Column size	:	0.46 cm I.D. × 15 cm L
Injection	:	0.2 ul
Mobile phase	:	Hexane/DCM=40/60(V/V)
Flow rate	:	1.0 ml/min
Wave length	:	UV 254 nm
Temperature	•	35 °C

Analysis of the enantiomer excess of 3

Fig. S2. HPLC profile of *rac*-3.

Table S3. The summary of HPLC profiles of *rac-3*.

Peak	Ret. Time	Area	Area%	T. Plate	Tailing F.	Resolution
1	3.009	9301533	48.3282	4720.025	1.466	
2	3.255	359835	1.8696	3338.207		1.226
3	5.172	9585228	49.8022	2835.433	2.582	6.245

Fig. S3. HPLC profile of (+)-*P*-**3**.

Peak	Ret. Time	Area	Area%	T. Plate	Tailing F.	Resolution	
1	2.989	6487488	96.7323	4948.355	1.374		
2	3.232	203521	3.0346	5161.724		1.388	
3 5.441 15630 0.2330 2654.274 1.295 7.334							
<i>ee</i> value of (+)- <i>P</i> -3: > 99%							

Table S4. The summary of HPLC profiles of (+)-*P*-3.

Fig. S4. HPLC profile of (-)-*M*-3.

Table S5. The summary of HPLC profiles of (-)-*M*-3.

Peak	Ret. Time	Area	Area%	T. Plate	Tailing F.	Resolution	
1	2.996	42712	0.4393	5287.737	1.227		
2	5.095	9680321	99.5607	2882.498	2.516	7.712	
<i>ee</i> value of (-) <i>M</i> -3: > 99%							

Analysis of the enantiomer excess of (+)-P-1a-e and (-)-M-1a-e

HPLC Analysis Conditions:

Column: Chiralpak® IE 5 µm, 4.6 mm × 250 mm

Mobile phase: hexane: dichloromethane = 40:60 for (+)-*P*-1a and (-)-*M*-1a

hexane: dichloromethane = 60:40 for (+)-*P*-1b and (-)-*M*-1b

hexane: dichloromethane = 74:26 for (+)-*P*-1c-e and (–)-*M*-1c-e

Flow rate: 1.0 mL/min

Fig. S5. HPLC profile of (+)-*P*-1a.

Table S6. The summary of HPLC profiles of (+)-P-1a.

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(+)-P-1a	1	20.69	3.49×10^{4}	100%	> 99.9 %

Fig. S6. HPLC profile of (–)-*M*-1a.

Table S7. The summary of HPLC profiles of (-)-*M*-1a.

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(–)- <i>M</i> -1a	1	27.40	9.82×10^4	100%	> 99.9 %

Fig. S7. HPLC profile of (+)-*P*-1b.

Table S8. The summary of HPLC profiles of (+)-P-1b.

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(+)-P-1b	1	10.95	3.00×10^{4}	99.76	99.52 %

	2	19.25	3.17	0.24	
--	---	-------	------	------	--

Fig. S8. HPLC profile of (–)-*M*-1b.

Table S9. The summary of HPLC profiles of (–)-*M*-1b.

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(-)- <i>M</i> -1b	1	16.92	1.92×10^{4}	100	>99.9 %

Fig. S9. HPLC profile of (+)-*P*-1c.

Table S10. The summary of HPLC profiles of (+)-P-1c.

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(+)-P-1c	1	18.90	4.00×10^{4}	100	>99.9 %

Fig. S10. HPLC profile of (–)-*M*-1c.

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(–)- <i>M</i> -1c	1	2996	1.18×10^{5}	100	>99.9 %

 Table S11. The summary of HPLC profiles of (-)-M-1c.

Fig. S11. HPLC profile of (+)-*P*-1d.

Table S12. The summary of HPLC profiles of (+)-P-1d.

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(+)-P-1d	1	34.00	6.94×10^4	100	>99.9 %

Fig. S12. HPLC profile of (–)-*M*-1d.

Table S13. The summary of HPLC profiles of (-)-*M*-1d.

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(–)- <i>M</i> -1d	1	55.22	3.47×10^{4}	100	>99.9 %

Fig. S13. HPLC profile of (+)-P-1e.

Table S14. The summary of HPLC profiles of (+)-P-1e.

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(+)-P-1e	1	16.52	361×10^{4}	100	>99.9 %

Fig. S14. HPLC profile of (–)-*M*-1e.

Table S15. The summary of HPLC profiles of (–)-*M*-1e.

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(–)- <i>M</i> -1e	3	55.22	5.56×10^4	96.1	>99.9 %

Optical stability analysis of the enantiomers

Time-dependent HPLC measurements were performed to determine the optical stability of the enantiomers. (+)-P-1c (5 mg) was dissolved in diethylene glycol dibutyl ether (6 mL). The solution was heated at 453 K continuously, and 0.2 mL of this solution was sampled for different time intervals to analyze immediately by HPLC to determine the initial enantiomeric excess depending on time. The HPLC measurements were performed keeping the column at 4 °C.

HPLC Analysis Conditions:

Column: Chiralpak® IE 5 μ m, 4.6 mm × 250 mm Mobile phase: hexane: dichloromethane = 75:25 Flow rate: 1.0 mL/min

Fig. S15. HPLC profile of (+)-P-1c (heated for 0 h at 453 K).

Table S16. The summ	ary of HPLC	profiles of (+)-P-1c ((heated 0 h at 453 K)).
---------------------	-------------	----------------	----------	-----------------------	----

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(+)-P-1c	1	19.56	105.96	1.55	>99.9 %
	2	21.607	6.74×10^{3}	98.45	

Fig. S16. HPLC profile of (–)-*M*-1c (heated for 0 h at 453 K).

Table S17. The summary of HPLC profiles of (–)-*M*-1c (heated 0 h at 453 K).

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(-)- <i>M</i> -1c	1	32.67	1.86×10^{4}	100	>99.9 %

Fig. S17. HPLC profile of (+)-*P*-1c (heated for 1 h at 453 K).

Table S18. The summary of HPLC profiles of (+)-*P*-1c (heated for 1 h at 453 K).

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(+)-P-1c	1	20.77	224.17	2.29	>99.9 %
	2	22.83	9.58×10^{3}	97.71	

Fig. S18. HPLC profile of (+)-*P*-1c (heated for 4 h at 453 K).

 Table S19. The summary of HPLC profiles of (+)-P-1c (heated for 4 h at 453 K).

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(+)-P-1c	1	21.63	1.04×10^{4}	100	>99.9 %

Fig. S19. HPLC profile of (+)-*P*-1c (heated for 8 h at 453 K).

Table S20. The summary of HPLC profiles of (+)-*P*-1c (heated for 8 h at 453 K).

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(+)-P-1c	1	21.41	9.25×10^{3}	100	>99.9 %

Fig. S20. HPLC profile of (+)-*P*-1c (heated 10 h at 453 K).

Table S21. The summary of HPLC profiles of (+)-*P*-1c (heated for 10 h at 453 K).

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(+)-P-1c	1	22.36	3.66×10^{3}	100	>99.9 %

Fig. S21. HPLC profile of (+)-*P*-1c (heated for12 h at 453 K).

Table S22. The summary of HPLC profiles of (+)-*P*-1c (heated for 12 h at 453 K).

Compound	Peak	Ret Time (min)	Area (mAU·s)	Area %	ee value
(+)-P-1c	1	21.78	6.15×10^{3}	100	>99.9 %

5. Photophysical properties of enantiomers (+)-P-1a-e and (+)-P-3

UV-vis absorption and fluorescence spectra

Fig. S22. UV/Vis spectra of (+)-*P*-1a-e and (+)-*P*-3 at room temperature (neat film).

Fig. S23. Emission spectra of (+)-*P*-1a-e and (+)-*P*-3 at room temperature (neat film).

Enantiomers	$\lambda_{abs} (nm)$	$\log \varepsilon$	$\lambda_{\rm em}({\rm nm})$	$arPhi_{ ext{PL}}$	τ (ns)	$SS(cm^{-1})$
(+)-P-1a	299, 347	4.71, 4.51	440	0.48	4.00	6091
(+)-P-1b	300, 349	4.52, 4.41	442	0.59	4.02	6029
(+)-P-1c	295, 344	4.58, 4.41	439	0.40	4.09	6291
(+)- <i>P</i> -1d	293, 344	4.60, 4.39	438	0.41	4.19	6239
(+)- <i>P</i> -1e	298, 345	4.54, 4.44	440	0.42	4.53	6258

Table S23. Photophysical properties of enantiomers (+)-P-1a-e and (+)-P-3 in solution

Table S24. Photophysical properties of enantiomers (+)-*P*-1a-e and (+)-*P*-3 (neat film)

465

0.03

2.53

8080

4.94, 4.85

(+)-P-**3**

286, 338

Enantiomers	$\lambda_{abs} (nm)$	log ε	$\lambda_{\rm em}({\rm nm})$	$arPhi_{ ext{PL}}$	τ (ns)	$SS(cm^{-1})$
(+)-P-1a	305, 348	4.66, 4.56	449	0.22	3.54	6464
(+)-P-1b	305, 350	4.42, 4.39	449	0.26	3.40	6300
(+)-P-1c	299, 346	4.57, 4.48	445	0.20	3.67	6430
(+)- <i>P</i> -1d	298, 346	4.61, 4.51	445	0.21	3.50	6430
(+)- <i>P</i> -1e	300, 347	4.51, 4.43	446	0.21	3.36	6397
(+)-P- 3	287, 339	4.60, 4.52	467	0.12	5.11	8085

CD and CPL spectra

Fig. S24. Mirror image CD and CPL spectra of (+)-*P*-1a and (–)-*M*-1a in THF at room temperature ($c = 5.0 \times 10^{-5}$ M).

Absorption dissymmetry factors (g_{abs}) and luminescence dissymmetry factors (g_{lum}) of the enantiomers 1a-e and 3

Enantiomers	$g_{ m abs}(imes 10^{-3})$	Enantiomers	$g_{ m abs}(imes 10^{-3})$
(+)-P-1a	2.63 (324nm)	(–)- <i>M</i> -1a	-2.73 (324nm)
(+)-P-1b	3.55 (323nm)	(–) - <i>M</i> -1b	-3.66 (323nm)
(+)-P-1c	4.34 (318nm)	(–)- <i>M</i> -1c	-4.77 (318nm)
(+)- <i>P</i> -1d	3.82 (318nm)	(–)- <i>M</i> -1d	-4.01 (318nm)
(+)-P-1e	3.21 (320nm)	(–)- <i>M</i> -1e	-3.42 (320nm)
(+)-P- 3	7.87 (316nm)	(–) - <i>M</i> -3	-7.73 (316nm)

Table S25. Absorption dissymmetry factor (g_{abs}) of enantiomers 1a-e and 3

Table S26. Luminescence dissymmetry factors (glum) of enantiomers 1a-e and 3

Enantiomers	$g_{lum}(\times 10^{-3})$	Enantiomers	$g_{lum}(\times 10^{-3})$
(+)-P-1a	5.63 (459nm)	(–)- <i>M</i> -1a	-5.04 (457nm)
(+)- <i>P</i> -1b	3.66 (453nm)	(–)- <i>M</i> -1b	-3.40 (463nm)
(+)-P-1c	6.32 (453nm)	(–)- <i>M</i> -1c	-5.84 (449nm)
(+)- <i>P</i> -1d	6.41 (459nm)	(–)- <i>M</i> -1d	-6.59 (439nm)

(+)-P-1e	4.58 (453nm)	(–)- <i>M</i> -1e	-4.68 (455nm)
(+)-P- 3	28.2 (455nm)	(–)- <i>M</i> - 3	-31.2 (463nm)

Reference

1. W.-B. Lin, M. Li, L. Fang, Y. Shen and C.-F. Chen, Chem. Asian J. 2017, 12, 86-94.

6. Copies of ¹H NMR and ¹³C NMR spectra of new compounds

Fig. S27. ¹H NMR spectrum (500 MHz, CDCl₃) of (+)-*P*-4.

Fig. S31. ¹H NMR spectrum (400 MHz, CDCl3) of (+)-*P*-1a.

Fig. S33. ¹H NMR spectrum (500 MHz, CDCl₃) of (-)-*M*-1a.

Fig. S35. ¹H NMR spectrum (500 MHz, CDCl₃) of (+)-*P*-1b.

Fig. S37. ¹H NMR spectrum (500 MHz, CDCl₃) of (-)-*M*-1b.

Fig. S41. ¹H NMR spectrum (500 MHz, CDCl₃) of (–)-*M*-1c.

Fig. S43. ¹H NMR spectrum (400 MHz, CDCl₃) of (+)-*P*-1d.

S37

Fig. S50. ¹³C NMR spectrum (126 MHz, CDCl₃) of (–)-*M*-1e.