Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

For

Photoredox-catalysed chloro-, bromo- and trifluoromethylthio-

trifluoromethylation of unactivated alkenes with sodium triflinate

Jing Fang,^{†,#} Zhong-Kui Wang,^{†,#} Shu-Wei Wu,[†] Wei-Guo Shen,[†] Gui-Zhen Ao[†] and Feng Liu*,^{†,§}

[†]Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China

[§]Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China

[#]These authors contributed equally to this work.

E-mail: fliu2@suda.edu.cn

Table of Contents

1. General remarks	S2
2. Optimization of the reaction conditions	S2
3. Typical experimental procedure	S3
4. Fluorescence quenching experiments	S4
5. References for known products	S6
6. Characterization of the substrates and products	S6
7. NMR Spectra for the substrates and products	S20

1. General remarks

¹H NMR spectra were recorded on 400 or 600 MHz (100 or 150 MHz for ¹³C NMR, 376 or 564 MHz for ¹⁹F NMR) agilent NMR spectrometer with CDCl₃ as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts were reported in parts per million (ppm, δ scale) downfield from TMS at 0.00 ppm and referenced to the CDCl₃ at 7.26 ppm (for ¹H NMR) or 77.16 ppm (for ¹³C NMR). Mass spectroscopy data of the products were collected on a GCT PremierTM (CI) Mass Spectrometer. Infrared (FT-IR) spectra were recorded on a Varian 1000FT-IR, v_{max} in cm⁻¹. Melting points were measured using SGW, X-4B and values are uncorrected. All commercially available reagents and solvents were used as received unless otherwise specified. The substrates were purchased or readily prepared according to known methods (*J. Org. Chem.* **2009**, 74, 2854; *Org. Lett.* **2016**. 18, 5368; *Angew. Chem., Int. Ed.* **2011**. 50, 5541).

O N	$\frown \frown \frown$	Mes-Acr ⁺ (1 m CF ₃ SO ₂ Na (2 e	iol%) equiv)		
O		TsCl (1.2 equiv), DCE acid, rt, LEDs, 24 h O			
1a				3a	
Entry ^a	LEDs	Catalyst	Acid (equiv)	Solvent	Yield $(\%)^b$
1	White	Mes-Acr ⁺		DCE	34
2	White	Mes-Acr ⁺	$HCO_{2}H(2)$	DCE	42
3	White	Mes-Acr ⁺	PhCO ₂ H (2)	DCE	27
4	White	Mes-Acr ⁺	AcOH (2)	DCE	55
5	White	Mes-Acr ⁺	TsOH (2)	DCE	25
6	White	Mes-Acr ⁺	TfOH (2)	DCE	<5
7	White	Mes-Acr ⁺	TFA (2)	DCE	62
8	White	Mes-Acr ⁺	TFA (4)	DCE	55
9	White	Mes-Acr ⁺	TFA (8)	DCE	33
10	White	Mes-Acr ⁺	TFA (2)	DMSO	<5
11	White	Mes-Acr ⁺	TFA (2)	DMF	<5
12	White	Mes-Acr ⁺	TFA (2)	CH ₃ CN	23
13	White	Mes-Acr ⁺	TFA (2)	Acetone	27

2. Screening of organic acids and solvents

3. Typical experimental procedure

To a suspension of **1a** (80.4 mg, 0.4 mmol), CF₃SO₂Na (124.8 mg, 0.8 mmol) and *N*-Methyl-9-mesityl acridinium perchlorate (1.6 mg, 0.004 mmol) in DCE (4 mL) was added *N*-chlorophthalimide (87 mg, 0.48 mmol) and TFA (91.2 mg, 0.8 mmol) at rt. The resulting mixture was stirred upon 5W white LEDs irradiation under argon balloon. After the reaction was finished, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to give **3a** as a white solid (89.0 mg, 73% yield).

To a suspension of **1a** (80.4 mg, 0.4 mmol), CF₃SO₂Na (124.8 mg, 0.8 mmol) and *N*-Methyl-9-mesityl acridinium perchlorate (1.6 mg, 0.004 mmol) in DCE (4 mL) was added *N*-bromophthalimide (108.4 mg, 0.48 mmol) and TFA (91.2 mg, 0.8 mmol) at rt. The resulting mixture was stirred upon 5W white LEDs irradiation under argon balloon. After the reaction was finished, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to give **4a** as a white solid (100.6 mg, 72% yield).

To a suspension of 1r (78.4 mg, 0.4 mmol), CF₃SO₂Na (124.8 mg, 0.8 mmol) and *N*-Methyl-9-mesityl acridinium perchlorate (8 mg, 0.02 mmol) in DCE (4 mL) was added *N*-trifluoromethylthiosaccharin (170 mg, 0.6 mmol) and TsOH (137.6 mg, 0.8 mmol) at rt. The resulting mixture was stirred upon 5W white LEDs irradiation under argon balloon. After the reaction was finished, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to give **7b** as a white solid (105.4 mg, 72% yield).

4. Fluorescence quenching experiments

Emission intensities were recorded using LS55 Luminescence Spectrometer for all experiments. All Mes-Acr⁺ solutions were excited at 450 nm and the emission intensity was collected at 500-550 nm. In a typical experiment, the CH₃CN solution of Mes-Acr⁺ (0.1 mM) was added the appropriate amount of quencher in a screw-top 1.0 cm quartz cuvette. After degassing with nitrogen for 10 min, the emission spectra of the samples were collected. The results showed that CF_3SO_2Na quenched the photoexcited Mes-Acr⁺ effectively.

Entry	Reference	Compound
1	S. H. Oh; S. B. Han. Org. Lett., 2014, 16, 1310.	3a, 3k, 3q
2	W. An; S. B. Han. Adv. Synth. Catal., 2015, 18, 3949.	4a
3	S. Mizuta; V. Gouverneu; J. Am. Chem. Soc., 2013,	3s
	135, 2505.	

5. References for known products

6. Characterization of the substrates and products

2-(But-3-en-1-yl)isoindoline-1,3-dione (1a): ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.77 (m, 2H), 7.75 – 7.66 (m, 2H), 5.87 – 5.70 (m, 1H), 5.14 – 4.93 (m, 2H), 3.77 (t, *J* = 7.1 Hz, 2H), 2.52 – 2.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 134.6, 134.0, 132.2, 123.3, 117.7, 37.4, 33.0.

2-(Dec-9-en-1-yl)isoindoline-1,3-dione (**1b**): ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.77 (m, 2H), 7.75 – 7.63 (m, 2H), 5.87 – 5.69 (m, 1H), 5.03 – 4.82 (m, 2H), 3.66 (t, *J* = 7.3 Hz, 2H), 2.09 – 1.95 (m, 2H), 1.69 – 1.60 (m, 2H), 1.44 – 1.15 (m, 10H); ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 139.3, 133.9, 132.2, 123.2, 114.2, 38.2, 33.9, 29.4, 29.2, 29.1, 29.0, 28.7, 26.9.

Hex-5-en-1-yl 2-chlorobenzoate (1c): ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.6 Hz, 1H), 7.48 – 7.35 (m, 2H), 7.30 (t, J = 7.3 Hz, 1H), 5.90 – 5.71 (m, 1H), 5.00 (dd, J = 22.4, 13.7 Hz, 2H), 4.34 (t, J = 6.5 Hz, 2H), 2.12 (q, J = 7.0 Hz, 2H), 1.87 – 1.71 (m, 2H), 1.64 – 1.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 138.4, 133.7, 132.5, 131.4, 131.1, 130.6, 126.7, 115.0, 65.6, 33.4, 28.1, 25.4.

Hex-5-en-1-yl 3-chlorobenzoate (1d): ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.92 (d, J = 7.7 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 5.94 – 5.72 (m, 1H), 5.01 (dd, J = 21.6, 13.7 Hz, 2H), 4.33 (t, J = 6.6 Hz, 2H), 2.13 (q, J = 7.0 Hz, 2H), 1.89 – 1.69 (m, 2H), 1.61 – 1.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 138.3, 134.5, 132.9, 132.3, 129.78, 129.74, 127.7, 115.0, 65.3, 33.4, 28.2, 25.3.

Hex-5-en-1-yl 4-chlorobenzoate (1e): ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.1 Hz, 2H), 5.90 – 5.72 (m, 1H), 5.10 – 4.90 (m, 2H), 4.31 (t, J = 6.5 Hz, 2H), 2.12 (q, J = 6.9 Hz, 2H), 1.86 – 1.69 (m, 2H), 1.62 – 1.47 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 165.8, 139.4, 138.3, 131.0, 129.0, 128.8, 115.0, 65.2, 33.4, 28.2, 25.4.

But-3-en-1-yl 4-methylbenzenesulfonate (**1f**): ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 5.72 – 5.56 (m, 1H), 5.10 – 4.98 (m, 2H), 4.03 (t, J = 6.7 Hz, 2H), 2.42 (s, 3H), 2.40 – 2.32 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 144.8, 133.1, 132.5, 129.9, 127.9, 118.2, 69.5, 33.2, 21.7.

N-allyl-4-chlorobenzamide (1g): ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 6.21 (brs, 1H), 6.02 – 5.83 (m, 1H), 5.38 – 5.10 (m, 2H), 4.08 (t, J = 5.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 137.9, 134.1, 132.9, 129.0, 128.5, 117.1, 42.7.

N-phenylpent-4-enamide (1h): ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.51 (d, J = 7.8 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.09 (t, J = 7.2 Hz, 1H), 5.94 – 5.76 (m, 1H), 5.20 – 4.94 (m, 2H), 2.54 – 2.36 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 170.9, 138.0, 137.0, 129.0, 124.4, 120.1, 116.0, 36.9, 29.6.

1-(4-Fluorophenyl)but-3-en-1-one (1i): ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 8.3, 5.6 Hz, 2H), 7.12 (t, J = 8.5 Hz, 2H), 6.15 – 5.98 (m, 1H), 5.29 – 5.13 (m, 2H), 3.72 (d, J = 6.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 196.5, 165.9 (d, $J_{C-F} = 254.6$ Hz), 133.1 (d, $J_{C-F} = 3.0$ Hz), 131.0 (d, $J_{C-F} = 9.1$ Hz), 130.9 , 119.0, 115.8 (d, $J_{C-F} = 22.0$ Hz), 43.5.

1-(3,5-Dibromo-4-methoxyphenyl)pent-4-en-1-one (**1j**): ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 2H), 5.96 – 5.77 (m, 1H), 5.16 – 4.93 (m, 2H), 3.93 (s, 3H), 3.00 (t, J = 7.3 Hz, 2H), 2.47 (q, J = 6.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 196.1, 158.1, 136.9, 135.0, 132.8, 118.8, 115.8, 60.9, 37.8, 28.0.

4-(Allyloxy)benzaldehyde (1k): ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.80 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.11 – 5.93 (m, 1H), 5.49 – 5.25 (m, 2H), 4.59 (d, J = 4.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 190.8, 163.6, 132.3, 132.0, 130.1, 118.3, 115.0, 69.0.

10-Bromodec-1-ene (**11**): ¹H NMR (400 MHz, CDCl₃) δ 5.88 – 5.70 (m, 1H), 5.07 – 4.86 (m, 2H), 3.40 (t, *J* = 6.8 Hz, 2H), 2.04 (q, *J* = 13.7, 6.8 Hz, 2H), 1.91 – 1.77 (m, 2H), 1.51 – 1.22 (m, 10H); ¹³C NMR (150 MHz, CDCl₃) δ 139.2, 114.3, 34.1, 33.9, 33.0, 29.4, 29.1, 29.0, 28.9, 28.3.

Octadec-1-ene (**1m**): ¹H NMR (400 MHz, CDCl₃) δ 5.91 – 5.73 (m, 1H), 5.07 – 4.87 (m, 2H), 2.11 – 1.96 (m, 2H), 1.48 – 1.15 (m, 28H), 0.88 (t, *J* = 6.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, overlapping peaks) δ 139.4, 114.2, 34.0, 32.1, 29.9, 29.85, 29.81, 29.7, 29.6, 29.3, 29.1, 22.9, 14.3.

2-(2-Methylallyl)isoindoline-1,3-dione (**1n**): ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.82 (m, 2H), 7.77 – 7.69 (m, 2H), 4.89 (s, 1H), 4.82 (s, 1H), 4.22 (s, 2H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 139.4, 134.1, 132.1, 123.5, 112.1, 43.4, 20.5.

3-Methylbut-3-en-1-yl 4-methylbenzenesulfonate (10): ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.77 (s, 1H), 4.66 (s, 1H), 4.11 (t, J = 6.8 Hz, 2H), 2.43 (s, 3H), 2.33 (t, J = 6.7 Hz, 2H), 1.64 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 144.8, 140.2, 133.2, 129.9, 127.9, 113.1, 68.6, 36.8, 22.3, 21.7.

3-Methylbut-3-en-1-yl 4-chlorobenzoate (**1p**):¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 4.84 (s, 2H), 4.80 (s, 2H), 4.43 (t, J = 6.7 Hz, 2H), 2.47 (t, J = 6.7 Hz, 2H), 1.80 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.8, 141.7, 139.4, 131.1, 129.0, 128.8, 112.6, 63.5, 36.9, 22.6.

1-Tosyl-2,5-dihydro-1H-pyrrole (1r): ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 7.8 Hz, 2H), 5.64 (s, 2H), 4.11 (s, 4H), 2.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 143.6, 134.4, 129.9, 127.5, 125.6, 55.0, 21.6.

EtO₂C CO₂Et

Diethyl 2,2-diallylmalonate (1s): ¹H NMR (600 MHz, CDCl₃) δ 5.77 – 5.54 (m, 2H), 5.14 – 5.02 (m, 4H), 4.21 – 4.10 (m, 4H), 2.62 (d, *J* = 7.4 Hz, 4H), 1.29 – 1.17 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 170.9, 132.4, 119.2, 61.3, 57.4, 36.9, 14.2.

Allyl 4-chlorobenzoate (1t): ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 6.10 – 5.95 (m, 1H), 5.48 – 5.23 (m, 2H), 4.81 (d, J = 5.6 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 165.4, 139.5, 132.1, 131.1, 128.8, 128.7, 118.6, 65.9.

1-([1,1'-Biphenyl]-4-yl)pent-4-en-1-one (1u): ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7.4 Hz, 2H), 7.44 – 7.38 (m, 1H), 6.06 – 5.85 (m, 1H), 5.24 – 4.98 (m, 2H), 3.11 (t, J = 7.3 Hz, 2H), 2.61 – 2.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 145.8, 140.0, 137.5, 135.8, 129.1, 128.8, 128.3, 127.38, 127.36, 115.4, 37.9, 28.4.

2-(3-Chloro-5,5,5-trifluoropentyl)isoindoline-1,3-dione (**3a**): White solid; m.p. 64-66 °C; 73% yield (89 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.80 (m, 2H), 7.80 – 7.67 (m, 2H), 4.25 – 4.09 (m, 1H), 4.01 – 3.79 (m, 2H), 2.76 – 2.55 (m, 2H), 2.38 – 2.21 (m, 1H), 2.21 – 2.05 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 134.3, 132.1, 125.2 (q, *J*_{C-F}=277.6), 123.6, 51.5 (q, *J*_{C-F}= 3.1 Hz), 42.4 (q, *J*_{C-F}= 28.6 Hz), 36.6, 35.2; ¹⁹F NMR (564 MHz, CDCl₃) δ -63.65 (t, *J* = 10.1 Hz, 3F).

2-(9-Chloro-11,11,11-trifluoropentyl)isoindoline-1,3-dione (3b): White solid; m.p. 49-51 °C; 84% yield (131 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.77 (m, 2H), 7.77 – 7.62 (m, 2H), 4.23 – 4.02 (m, 1H), 3.66 (t, *J* = 7.1 Hz, 2H), 2.71 – 2.41 (m, 2H), 1.91 – 1.60 (m, 4H), 1.60 – 1.38 (m, 2H), 1.36 – 1.17 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7, 134.0, 132.3, 125.4 (q, *J*_{C-F} = 277.5 Hz), 123.2, 54.3 (q, *J*_{C-F} = 3.1 Hz), 42.5 (q, *J*_{C-F} = 28.3 Hz), 38.12, 38.08, 29.3, 29.1, 28.8, 28.6, 26.8, 25.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.83 (t, *J* = 10.3 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2919, 2850, 1688, 1600, 831; HRMS (CI) calcd C₁₉H₂₄NO₂F₃Cl³⁵ [M + H]⁺: 390.1448, found: 390.1454.

5-Chloro-7,7,7-trifluoroheptyl 2-chlorobenzoate (3c): Colorless oil; 74% yield (101 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.6 Hz, 1H), 7.49 – 7.38 (m, 2H), 7.32 (t, J = 7.3 Hz, 1H), 4.36 (t, J = 6.1 Hz, 2H), 4.22 – 4.03 (m, 1H), 2.75 – 2.43 (m, 2H), 1.99 – 1.69 (m, 5H), 1.69 – 1.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 133.7, 132.7, 131.5, 131.2, 130.4, 126.7, 125.3 (d, J_{C-F} = 277.6 Hz), 65.2,

54.0 (q, $J_{C-F} = 3.1$ Hz), 42.6 (q, $J_{C-F} = 28.4$ Hz), 37.7, 28.0, 22.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.78 (t, J = 10.3 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2960, 1728, 1436, 1118, 747; HRMS (CI) calcd C₁₄H₁₆O₂F₃Cl³⁵₂ [M + H]⁺: 343.0479, found: 343.0480.

5-Chloro-7,7,7-trifluoroheptyl 3-chlorobenzoate (**3d**): Colorless oil; 65% yield (90 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.92 (d, J = 7.7 Hz, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 4.35 (t, J = 6.1 Hz, 2H), 4.21 – 4.08 (m, 1H), 2.74 – 2.47 (m, 2H), 2.00 – 1.68 (m, 5H), 1.68 – 1.54 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 134.7, 133.1, 132.1, 129.9, 129.8, 127.8, 125.3 (q, $J_{C-F} = 277.6$ Hz), 65.0, 54.0 (q, $J_{C-F} = 3.1$ Hz), 42.6 (q, $J_{C-F} = 28.5$ Hz), 37.7, 28.1, 22.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.76 (t, J = 10.3 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2957, 1720, 1427, 1279, 748; HRMS (CI) calcd C₁₄H₁₆O₂F₃Cl³⁵₂ [M + H]⁺: 343.0479, found: 343.0485.

5-Chloro-7,7,7-trifluoroheptyl 4-chlorobenzoate (**3e**): Colorless oil; 64% yield (88 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 4.34 (t, J = 6.1 Hz, 2H), 4.22 – 4.06 (m, 1H), 2.75 – 2.46 (m, 2H), 2.00 – 1.87 (m, 1H), 1.88 – 1.69 (m, 4H), 1.68 – 1.56 (m, 1H); ¹³C NMR (150 MHz, CDCl₃, overlapping peaks) δ 165.8, 139.5, 131.1, 128.9, 125.3 (q, $J_{C-F} = 277.6$ Hz), 64.9, 54.0, 42.6 (q, $J_{C-F} = 28.5$ Hz), 37.7, 28.1, 22.7; ¹⁹F NMR (564 MHz, CDCl₃) δ -59.07 (t, J = 10.3 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2957, 1718, 1390, 1241, 759; HRMS (CI) calcd C₁₄H₁₆O₂F₃Cl³⁵₂ [M + H]⁺: 343.0479, found: 343.0483.

3-Chloro-5,5,5-trifluoropentyl 4-methylbenzenesulfonate (3f): Yellow oil; 86% yield (114 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.9 Hz, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 4.29 – 4.21 (m, 2H), 4.21 – 4.14 (m, 1H), 2.68 – 2.48 (m, 2H), 2.46 (s, 3H), 2.35 – 2.18 (m, 1H), 2.03 – 1.87 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 145.3, 132.7, 130.1 , 128.1, 125.0 (q, *J*_{C-F} = 277.7 Hz), 66.4, 50.0, 42.4 (q, *J*_{C-F} = 28.9 Hz), 37.2, 21.8; ¹⁹F NMR (564 MHz, CDCl₃) δ -63.63 (t, *J* = 10.0 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2962, 2923, 1598, 1175, 775; HRMS (CI) calcd C₁₂H₁₅O₃F₃SCl³⁵ [M + H]⁺: 311.0383, found: 331.0381.

4-Chloro-N-(2-chloro-4,4,4-trifluorobutyl)benzamide (**3g**): White solid; m.p. 132-134 °C; 69% yield (83 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 6.53 (brs, 1H), 4.46 – 4.29 (m, 1H), 4.04 – 3.92 (m, 1H), 3.72 – 3.59 (m, 1H), 2.78 – 2.55 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 166.8, 138.5, 132.1, 129.2, 128.6, 125.2 (q, $J_{C-F} = 277.4$ Hz), 53.7, 46.0, 40.2 (q, $J_{C-F} = 29.4$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -63.68 (t, J = 10.1 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 3302, 2922, 1637, 1185, 759; HRMS (CI) calcd C₁₁H₁₁NOF₃Cl³⁵₂ [M + H]⁺: 300.0170, found: 300.0172.

4-Chloro-6,6,6-trifluoro-N-phenylhexanamide (3h): Colorless oil; 74% yield (83 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.8 Hz, 2H), 7.41 (brs, 1H), 7.32 (t, J = 7.7 Hz, 2H), 7.12 (t, J = 7.2 Hz, 1H), 4.31 – 4.17 (m, 1H), 2.79 – 2.47 (m, 4H), 2.45 – 2.26 (m, 1H), 2.16 – 1.91 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 137.7, 129.2, 125.2 (q, J_{C-F} = 277.7 Hz), 124.7, 120.1, 53.8 (q, J_{C-F} = 3.1 Hz), 42.8 (q, J_{C-F} = 28.7 Hz), 33.7, 33.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.62 (t, J = 10.1 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 3301, 2924, 1773, 1543, 692; HRMS (CI) calcd C₁₂H₁₄NOF₃Cl³⁵ [M + H]⁺: 280.0716, found: 280.0711.

3-Chloro-5,5,5-trifluoro-1-(4-fluorophenyl)pentan-1-one (3i): Colorless oil; 54% yield (58 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 8.2, 5.6 Hz, 2H), 7.17 (t, J = 8.4 Hz, 2H), 4.82 – 4.71 (m, 1H), 3.60 (dd, J = 17.6, 7.0 Hz, 1H), 3.40 (dd, J = 17.6, 6.0 Hz, 1H), 2.91 – 2.63 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 193.9, 166.3 (d, J_{C-F} = 256.2 Hz), 132.78 (d, J_{C-F} = 2.9 Hz), 130.6 (d, J_{C-F} = 9.4 Hz), 125.3 (q, J_{C-F} = 277.8 Hz), 116.2 (d, J_{C-F} = 22.0 Hz), 48.4, 46.1, 41.7 (q, J_{C-F} = 28.8 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -63.48 (t, J = 10.1 Hz, 3F), -103.68 – -103.74 (m, 1F); FT-IR (thin film, KBr): v (cm⁻¹) 2961, 2924, 1686, 1598, 669; HRMS (CI) calcd C₁₁H₁₀OF₄Cl³⁵ [M + H]⁺: 269.0356, found: 269.0351.

4-Chloro-1-(3,5-dibromo-4-methoxyphenyl)-6,6,6-trifluorohexan-1-one (3j): Yellow oil; 53% yield (95 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 2H), 4.35–4.16 (m, 1H), 3.95 (s, 3H), 3.18 (t, J = 6.8 Hz, 2H), 2.86 – 2.54 (m, 2H), 2.46 – 2.31 (m, 1H), 2.13–1.95 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 195.2, 158.4, 134.6, 132.8, 125.2 (q, $J_{C-F} = 277.7$ Hz), 118.9, 61.0, 53.7, 42.9 (q, $J_{C-F} = 28.7$ Hz), 35.0, 32.1; ¹⁹F NMR (564 MHz,CDCl₃) δ -58.98 (t, J = 10.1 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2930, 1689, 1382, 737; HRMS (CI) calcd C₁₃H₁₃O₂F₃Cl³⁵Br⁷⁹₂ [M + H]⁺: 450.8923, found: 450.8925.

4-(2-Chloro-4,4,4-trifluorobutoxy)benzaldehyde (3k): Colorless oil; 62% yield (66 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.87 (d, *J* = 8.5 Hz, 2H), 7.03 (d, *J* = 8.5 Hz, 2H), 4.48 – 4.38 (m, 1H), 4.32 (dd, J = 9.9, 4.8 Hz, 1H), 4.20 (dd, J = 9.8, 6.5 Hz, 1H), 3.05 – 2.84 (m, 1H), 2.79 – 2.56 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 190.7, 162.7, 132.2, 131.0, 125.3 (q, *J*_{C-F} = 277.3 Hz), 115.0, 70.6, 50.3, 39.1 (q, *J*_{C-F} = 29.4 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -61.32 (t, *J* = 10.1 Hz, 3F).

11-Bromo-3-chloro-1,1,1-trifluoroundecane (3l): Colorless oil; 65% yield (84 mg); ¹H NMR (600 MHz, CDCl₃) δ 4.15 – 4.07 (m, 1H), 3.40 (t, *J* = 6.8 Hz, 2H), 2.66 – 2.48 (m, 2H), 1.89 – 1.79 (m, 3H), 1.79 – 1.70 (m, 1H), 1.59 – 1.41 (m, 4H), 1.37 – 1.30 (m, 4H), 0.90 – 0.85 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 125.4 (q, *J*_{C-F} = 277.5 Hz), 54.3, 42.6 (q, *J*_{C-F} = 28.4 Hz), 38.2, 34.0, 32.9, 29.3, 28.9, 28.8, 28.2, 26.0; ¹⁹F NMR (564 MHz, CDCl₃) δ -63.90 (t, *J* = 10.3 Hz, 3F).

3-Chloro-1,1,1-trifluorononadecane (**3m**): Colorless oil; 72% yield (103 mg); ¹H NMR (600 MHz, CDCl₃) δ 4.14 – 4.08 (m, 1H), 2.67 – 2.49 (m, 2H), 1.86 – 1.79 (m, 1H), 1.78 – 1.72 (m, 1H), 1.59 – 1.51 (m, 2H), 1.49 – 1.40 (m, 2H), 1.37 – 1.24 (m, 24H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃ overlapping peaks) δ 125.5 (q, J_{C-F} = 277.5 Hz), 54.3, 42.6 (q, J_{C-F} = 28.3 Hz), 38.3, 32.1, 29.89, 29.87, 29.81, 29.79, 29.7, 29.6, 29.5, 29.1, 26.1, 22.9, 14.3; ¹⁹F NMR (564 MHz, CDCl₃) δ -63.94 (t, J = 10.3 Hz, 3F).

2-(2-Chloro-4,4,4-trifluoro-2-methylbutyl)isoindoline-1,3-dione (3n): White solid; m.p. 104-106 °C; 60% yield (73 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.88 (m, 2H), 7.80 – 7.75 (m, 2H), 4.04 (s, 2H), 2.89 – 2.60 (m, 2H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 134.6, 131.8, 125.2 (q, *J*_{C-F} = 278.4 Hz), 123.9, 65.3, 49.5, 45.5 (q, *J*_{C-F} = 28.4 Hz), 28.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -60.00 (t, *J* = 10.5Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2989, 1712, 1384, 1098, 715; HRMS (CI) calcd C₁₃H₁₂NO₂F₃Cl³⁵ [M + H]⁺: 306.0509, found: 306.0514.

3-Chloro-5,5,5-trifluoro-3-methylpentyl 4-methylbenzenesulfonate (**3o**): Yellow oil; 85% yield (117 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.1 Hz, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 4.29 (t, *J* = 6.4 Hz, 2H), 2.64 (q, *J* = 10.6 Hz, 2H), 2.45 (s, 3H), 2.34 – 2.14 (m, 2H), 1.67 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 145.3, 132.8, 130.1, 128.0, 124.8 (q, *J*_{C-F} = 278.7 Hz), 66.6, 64.9, 47.1 (q, *J*_{C-F} = 27.9 Hz), 42.3, 30.3, 21.7; ¹⁹F NMR (564 MHz, CDCl₃) δ -60.66 (t, *J* = 10.6 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2928, 1598, 1364, 1210, 764; HRMS (CI) calcd C₁₃H₁₇O₃F₃SCl³⁵ [M + H]⁺: 345.0539, found: 345.0545.

3-Chloro-5,5,5-trifluoro-3-methylpentyl 4-chlorobenzoate (3p): Colorless oil; 88% yield (115 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 4.68 – 4.49 (m, 2H), 2.88 – 2.65 (m, 2H), 2.48 – 2.25 (m, 2H), 1.78 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.7, 139.7, 131.1, 128.9, 127.7, 125.0 (q, $J_{C-F} = 278.7$ Hz), 65.4, 61.7, 47.2 (q, $J_{C-F} = 27.8$ Hz), 42.1, 30.5; ¹⁹F NMR (564 MHz, CDCl₃) δ -60.61 (t, J = 10.7 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2972, 1720, 1595, 1268, 758; HRMS (CI) calcd C₁₃H₁₄O₂F₃Cl³⁵₂ [M + H]⁺: 329.0323, found: 329.0328.

5-Chloro-6-(trifluoromethyl)decane (3q): yield: 63% (1.2:1 dr); ¹H NMR (600 MHz, CDCl₃) δ 4.25 – 4.13 (m, 1H), 2.59 – 2.47 (m, 0.66H), 2.38 – 2.29 (m, 0.55H), 1.89 – 1.17 (m, 12H), 0.98 – 0.88 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 127.1 (q, *J*_{C-F} = 281.5 Hz), 126.9 (q, *J*_{C-F} = 282.2 Hz), 60.0, 59.2, 49.5 (q, *J*_{C-F} = 24.1 Hz), 48.5 (q, *J*_{C-F} = 24.6 Hz), 36.1, 33.7, 30.1, 29.9, 29.7, 29.3, 29.0, 24.3, 24.0, 22.7, 22.6, 22.0, 21.9, 13.9, 13.8, 13.7; ¹⁹F NMR (564 MHz, CDCl₃) δ -65.66 (d, *J* = 9.4 Hz, 1.64F), -67.44 (d, *J* = 9.2 Hz, 1.36F).

3-Chloro-1-tosyl-4-(trifluoromethyl)pyrrolidine (**3r**): yield: 41%; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.2 Hz, 2H), 4.32 (dd, *J* = 11.0, 5.3 Hz, 1H), 3.79 (dd, *J* = 11.2, 6.2 Hz, 1H), 3.65 (dd, *J* = 10.8, 9.1 Hz, 1H), 3.46 (dd, *J* = 11.0, 5.5 Hz, 1H), 3.41 (dd, *J* = 11.2, 5.1 Hz, 1H), 3.08 – 2.98 (m, 1H), 2.45 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 144.6, 132.8, 130.1, 127.8, 125.2 (q, *J*_{C-F} = 279.0 Hz), 56.2, 52.8, 51.9 (q, *J*_{C-F} = 28.7 Hz), 46.0, 21.7; ¹⁹F NMR (564 MHz, CDCl₃) δ -70.66 (d, *J* = 8.6 Hz, 3F).

Diethyl 3-(chloromethyl)-4-(2,2,2-trifluoroethyl)cyclopentane-1,1-dicarboxylate (3s): Colorless oil; 41% yield (56 mg); ¹H NMR (600 MHz, CDCl₃) δ 4.19 (q, *J* = 7.1 Hz, 4H), 3.50 (dd, *J* = 11.1, 6.2 Hz, 1H), 3.43 (dd, *J* = 11.1, 7.5 Hz, 1H), 2.56 – 2.46 (m, 4H), 2.34 – 2.27 (m, 2H), 2.23 – 2.07 (m, 2H), 1.27 – 1.22 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 172.2, 172.1, 126.9 (q, *J*_{C-F} = 277.1 Hz), 62.0, 61.9, 58.6, 44.4, 44.0, 38.6, 37.1, 35.6, 33.4 (q, *J*_{C-F} = 28.3 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -64.49 (t, *J* = 10.8 Hz, 3F).

2-(3-Bromo-5,5,5-trifluoropentyl)isoindoline-1,3-dione (**4a**): White solid; m.p. 58-60 °C; 72% yield (101 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.81 (m, 2H), 7.78 – 7.69 (m, 2H), 4.23 – 4.09 (m, 1H), 4.02 – 3.81 (m, 2H), 2.93 – 2.67 (m, 2H), 2.45 – 2.29 (m, 1H), 2.29 – 2.13 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 134.3, 132.1, 125.2 (q, *J*_{C-F} = 278.2 Hz), 123.5, 43.0 (q, *J*_{C-F} = 28.7 Hz), 41.2 (q, *J*_{C-F} = 3.2 Hz), 37.0, 36.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.61 (t, *J* = 10.1 Hz, 3F).

5-Bromo-7,7,7-trifluoroheptyl 4-chlorobenzoate (4b): Colorless oil; 71% yield (110 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 4.34 (t, J = 6.0 Hz, 2H), 4.25 – 4.09 (m, 1H), 2.95 – 2.56 (m, 2H), 2.05 – 1.70 (m, 5H), 1.69 – 1.59 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 165.9, 139.6, 131.1, 128.9, 128.8, 125.4 (q, $J_{C-F} = 278.1$ Hz), 64.8, 44.8, 43.3 (q, $J_{C-F} = 28.5$ Hz), 38.1, 28.0, 24.0; ¹⁹F NMR (564 MHz, CDCl₃) δ -63.82 (t, J = 10.2 Hz, 3F); FT-IR (thin film, KBr): v

(cm⁻¹) 2957, 1718, 1595, 1241, 760; HRMS (CI) calcd $C_{14}H_{16}O_2F_3Cl^{35}Br^{79}$ [M + H]⁺: 386.9974, found: 386.9975.

4-(2-Bromo-4,4,4-trifluorobutoxy)benzaldehyde (4c): Colorless oil; 60% yield (74 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.86 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 4.47 – 4.33 (m, 2H), 4.31 – 4.21 (m, 1H), 3.17 – 2.99 (m, 1H), 2.87 – 2.70 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 190.8, 162.6, 132.2, 131.0, 125.3 (q, $J_{C-F} = 277.6$ Hz), 115.5, 70.8, 39.6 (q, $J_{C-F} = 29.4$ Hz), 39.0; ¹⁹F NMR (564 MHz, CDCl₃) δ -63.99 (t, J = 10.1 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 3056, 3005, 1693, 1596, 771; HRMS (CI) calcd C₁₁H₁₁O₂F₃Br⁷⁹ [M + H]⁺: 310.9895, found: 310.9890.

2-(2-Bromo-4,4,4-trifluoro-2-methylbutyl)isoindoline-1,3-dione (4d): White solid; m.p. 63-65 °C; 76% yield (106 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.87 (m, 2H), 7.82 – 7.75 (m, 2H), 4.20 – 4.09 (m, 2H), 3.06 – 2.72 (m, 2H), 1.92 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 134.6, 131.8, 125.2 (q, *J*_{C-F} = 278.8 Hz), 123.9, 58.2, 50.4, 46.6 (q, *J*_{C-F} = 28.4 Hz), 29.6; ¹⁹F NMR (564 MHz, CDCl₃) δ -60.01 (t, *J* = 10.6 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2933, 1774, 1387, 1260, 713; HRMS (CI) calcd C₁₃H₁₂NO₂F₃Br⁷⁹ [M + H]⁺: 350.0003, found: 350.0004.

3-Bromo-5,5,5-trifluoro-3-methylpentyl 4-chlorobenzoate (4e): Colorless oil; 82% yield (122 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 4.71 – 4.53 (m, 2H), 3.05 – 2.84 (m, 2H), 2.53 – 2.32 (m, 2H), 1.98 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.4, 139.6, 130.9, 128.8, 128.3, 124.9 (q, $J_{C-F} = 279.5$ Hz), 62.9, 59.3, 48.3 (q, $J_{C-F} = 27.7$ Hz), 42.9, 32.1; ¹⁹F NMR (564 MHz, CDCl₃) δ -60.52 (t, J = 10.7 Hz, 3F).

3-Bromo-5,5,5-trifluoro-3-methylpentyl 4-methylbenzenesulfonate (4f): Colorless oil; 75% yield (116 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.36

(d, J = 7.9 Hz, 2H), 4.32 (t, J = 6.5 Hz, 2H), 2.80 (q, J = 10.6 Hz, 2H), 2.45 (s, 3H), 2.35 – 2.22 (m, 2H), 1.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 145.3, 132.8, 130.1, 128.0, 124.9 (q, $J_{C-F} = 279.4$ Hz), 67.9, 58.7, 48.3 (q, $J_{C-F} = 27.9$ Hz), 43.3, 32.0, 21.8; ¹⁹F NMR (564 MHz, CDCl₃) δ -60.60 (t, J = 10.6 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2920, 2850, 1598, 1362, 762; HRMS (CI) calcd C₁₃H₁₇O₃F₃SBr⁷⁹ [M + H]⁺: 389.0034, found: 389.0024.

2-(11,11,11-Trifluoro-9-((trifluoromethyl)thio)undecyl)isoindoline-1,3-dione (7a): Colorless oil; 78% yield (142 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.1, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.2, 3.0 Hz, 2H), 3.67 (t, *J* = 7.2 Hz, 2H), 3.45 – 3.34 (m, 1H), 2.71 – 2.41 (m, 2H), 1.90 – 1.76 (m, 1H), 1.73 – 1.62 (m, 3H), 1.57 – 1.44 (m, 1H), 1.43 – 1.26 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 134.0, 132.3, 130.8 (q, *J*_{C-F} = 306.7 Hz), 125.6 (q, *J*_{C-F} = 278.0 Hz), 123.3, 40.3 (q, *J*_{C-F} = 28.1 Hz), 39.7, 38.1, 34.4, 29.3, 29.1, 29.0, 28.7, 26.9, 26.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -39.66 (s, 3F), -63.72 (t, *J* = 11.1 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2932, 2859, 1711, 1396, 718; HRMS (CI) calcd C₂₀H₂₄NO₂F6S [M + H]⁺: 456.1432, found: 456.1428.

4,4,4-Trifluoro-2-((trifluoromethyl)thio)butyl 4-chlorobenzoate (7b): Colorless oil; 72% yield (105 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.2 Hz, 2H), 4.62 (dd, *J* = 11.7, 5.0 Hz, 1H), 4.53 (dd, *J* = 11.7, 5.5 Hz, 1H), 3.88 – 3.76 (m, 1H), 2.84 – 2.58 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 165.0, 140.4, 131.2, 130.4 (q, *J*_{C-F} = 307.2 Hz), 129.2, 127.6, 125.3 (q, *J*_{C-F} = 277.7 Hz), 65.7, 37.9, 37.2 (q, *J*_{C-F} = 29.5 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -40.03 (s, 3F), -64.02 (t, *J* = 10.2 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2965, 1728, 1595, 1256, 757; HRMS (CI) calcd C₁₂H₁₀O₂F₆SCl³⁵ [M + H]⁺: 366.9994, found: 366.9987.

$$\bigcup_{O}^{H} \bigcup_{O}^{SCF_3} CF_3$$

6,6,6-Trifluoro-N-phenyl-4-((**trifluoromethyl**)**thio**)**hexanamide** (**7c**)**:** Yellowish solid; m.p. 67-69 °C; 64% yield (88 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.8 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 3H), 7.12 (t, *J* = 7.2 Hz, 1H), 3.59 – 3.46 (m, 1H), 2.79 – 2.51 (m, 4H), 2.47 – 2.33 (m, 1H), 2.04 – 1.87 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 137.6, 130.6 (q, *J*_{C-F} = 307.0 Hz), 129.2, 125.5 (q, *J*_{C-F} = 278.0 Hz), 124.8, 120.2, 41.0 (q, *J*_{C-F} = 28.4 Hz), 39.4, 34.0, 29.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -39.29 (s, 3F), -63.41 (t, *J* = 11.1 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 3245,

2924, 1654, 1445, 757; HRMS (CI) calcd $C_{13}H_{14}NOF_6S [M + H]^+$: 346.0700, found: 346.0686.

5,5,5-Trifluoro-3-((trifluoromethyl)thio)pentyl 4-methylbenzenesulfonate (**7d):** Colorless oil; 64% yield (101 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.1 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.22 (t, *J* = 5.4 Hz, 2H), 3.56 – 3.42 (m, 1H), 2.74 – 2.58 (m, 1H), 2.58 – 2.49 (m, 1H), 2.45 (s, 3H), 2.33 – 2.21 (m, 1H), 2.00 – 1.88 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 132.6, 130.3 (q, *J*_{C-F} = 307.4 Hz), 130.1, 128.1, 125.3 (q, *J*_{C-F} = 278.0 Hz), 66.4, 40.3 (q, *J*_{C-F} = 28.7 Hz), 36.0, 33.5, 21.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -39.15 (s, 3F), -63.42 (t, *J* = 10.9 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2962, 1599, 1360, 1176, 757; HRMS (CI) calcd C₁₃H₁₅O₃F₆S₂ [M + H]⁺: 397.0367, found: 397.0385.

1-([1,1'-Biphenyl]-4-yl)-6,6,6-trifluoro-4-((trifluoromethyl)thio)hexan-1-one (7e): White solid; m.p. 101-103 °C; 74% yield (120 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.9 Hz, 2H), 7.71 (d, *J* = 7.9 Hz, 2H), 7.64 (d, *J* = 7.6 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 2H), 7.45 – 7.38 (m, 1H), 3.67 – 3.52 (m, 1H), 3.29 (t, *J* = 6.9 Hz, 2H), 2.86 – 2.68 (m, 1H), 2.70 – 2.55 (m, 1H), 2.54 – 2.38 (m, 1H), 2.11 – 1.93 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 146.3, 139.9, 135.3, 130.7 (q, *J*_{C-F} = 307.0 Hz), 129.1, 128.7, 128.5, 127.5, 127.4, 125.5 (q, *J*_{C-F} = 278.1 Hz), 41.1 (q, *J*_{C-F} = 28.5 Hz), 39.5, 35.3, 28.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -39.31 (s, 3F), -63.44 (t, *J* = 10.4 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2909, 1680, 1389, 1243, 697; HRMS (CI) calcd C₁₉H₁₇OF₆S [M + H]⁺: 407.0904, found: 407.0912.

4-(4,4,4-Trifluoro-2-((trifluoromethyl)thio)butoxy)benzaldehyde (7f): White solid; m.p. 68-70 °C; 69% yield (92 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.87 (d, *J* = 8.1 Hz, 2H), 7.02 (d, *J* = 8.2 Hz, 2H), 4.49 – 4.16 (m, 2H), 3.88 – 3.74 (m, 1H), 3.05 – 2.56 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 162.4, 132.0, 130.9, 130.4 (q, *J*_{C-F} = 307.1 Hz), 125.2 (q, *J*_{C-F} = 277.9 Hz), 114.8, 69.2, 38.0, 36.5 (q, *J*_{C-F} = 29.5 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -40.41 (s, 3F), -64.07 (t, *J* = 10.3 Hz, 3F); FT-IR (thin film, KBr): v (cm⁻¹) 2949, 1673, 1425, 1148, 758; HRMS (CI) calcd C₁₂H₁₁O₂F₆S [M + H]⁺: 333.0384, found: 333.0382.

(Trifluoromethyl)(6-(trifluoromethyl)decan-5-yl)sulfane (7g): yield: 58% (1.2:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 3.53 – 3.41 (m, 0.45H), 3.35 – 3.24 (m, 0.55H), 2.67 – 2.50 (m, 1H), 1.89 – 1.20 (m, 12H), 1.03 – 0.83 (m,6H); ¹³C NMR (100 MHz, CDCl₃) δ 131.3 (d, *J*_{C-F} = 306.1 Hz), 131.0 (q, *J*_{C-F} = 306.5 Hz), 127.6 (q, *J*_{C-F} = 281.8 Hz), 127.4 (q, *J*_{C-F} = 282.3 Hz), 48.6 (q, *J*_{C-F} = 24.4 Hz), 45.1, 44.4, 32.1, 30.2, 29.8, 29.7, 29.6, 26.3, 24.4, 22.7, 22.6, 22.2, 22.2, 14.0, 13.9, 13.9, 13.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -40.65 (s, 1.36F), -40.74 (s, 1.64F), -66.23 (d, *J* = 10.4 Hz, 1.36F), -66.52 (d, *J* = 10.6 Hz, 1.64F).

7. NMR Spectra for the substrates and products

110 100 fl (ppm)

fl (ppm) :00 Ó

 ^{13}C NMR of 1k

¹³C NMR of **1r**

 \downarrow

T . T				· · ·			_	_	 								· · · · ·	T . T . T
0 -10	-20	-30	-40	-50	-60	-70	-80	-90	-110	-130	-150 fl (ppm)	-170	-190	-210	-230	-250	-270	-290

120 110 100 fl (ppm) 90 80

 1 H NMR of **3d**

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 fl (ppm)

 $^{19}\mathrm{F}$ NMR of **3f**

63.61 63.63

61 61 63 65 63 65 66 65

0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-110	-130	-150 fl (ppm)	-170	-190	-210

Т

-290

-230

-250

-270

¹⁹F NMR of **3**j

-

-280

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

110 100 fl (ppm)

¹H NMR of 3n

59. 38 60. 00

¹⁹F NMR of **3p**

60.51 60.61

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100

-180

-200

-220

-240

-260

-120

· · ·

-280

¹³C NMR of **3**q

¹⁹F NMR of **3q**

¹H NMR of **3r**

¹³C NMR of **3r**

¹⁹F NMR of **3r**

^{0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290} f1 (ppm)

¹H NMR of 3s

¹H NMR of 4a

¹⁹F NMR of **4a**

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 fl (ppm)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 C fl (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 fl (ppm)

¹⁹F NMR of **4d**

10.00 60.01

¹H NMR of **4e**

¹⁹F NMR of **4e**

00.55 00.52

) -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 fl (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 fl (ppm)

¹⁹F NMR of **7e**

 $f = \frac{1}{2} \frac{1}{2}$

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290 f1 (ppm)

