Electronic Supplementary Information (ESI) for Chem. Comm.

A square-planar nickel dithiolate complex as an efficientmolecular catalyst for the electro- and photoreduction ofprotons
Geng-Geng Luo, ${ }^{a, *} \dagger$ Yong-Heng Wang, ${ }^{b, \dagger}$ Jiang-Hai Wang, ${ }^{a}$ Ji-Huai Wu ${ }^{a}$ and Rui-Bo Wu ${ }^{b}$
${ }^{a}$ College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China
${ }^{b}$ School of Pharmaceutical Sciences, East Campus, Sun Yat-sen University, Guangzhou 510006,
P. R. China
E-mail: ggluo@hqu.edu.cn Fax:+86-592-6162225
Table of Contents

1. Materials and Syntheses S2
2. Instrumentation S3
3. Electrochemical Experiments S3
4. Photochemical Experiments S4
5. Computational Details S4
6. References S5
7. Examples of Square-Planar $\mathrm{NiN}_{2} \mathbf{S}_{\mathbf{2}}$ Complexes S6
8. XRD, ESI-MS and UV-vis Analysis S7
9. Electrochemical Studies S9-S12
10. Photochemical Studies S13-S15
11. DFT Calculations S16-S25

Electronic Supplementary Information (ESI) for Chem. Comm.

Electronic Supplementary Information (ESI)

1. Materials and Syntheses

All chemicals and reagents were purchased from Sigma-Aldrich unless noted. Water (18.2 $\mathrm{M} \Omega$) was purified using Milli-Q system. All solvents were dried and distilled using common techniques unless otherwise mentioned. All reactions are carried out under a N_{2}-atmosphere.

Synthesis of ligand L (N, N^{\prime} '-dimethyl-N-N'-bis(2-mecaptoethyl)-ethylenediaminato). The synthesis of the ligand L was synthesized by modification of published procedures. ${ }^{1} \mathrm{~A}$ solution of N, N-dimethyl-1,3-ethanediamine $(4.6861 \mathrm{~g}, 53.16 \mathrm{mmol})$ in 5 mL benzene was placed in Schlenk reaction tube and the temperature was raised to $40^{\circ} \mathrm{C}$. Propylene sulfide ($8.2 \mathrm{~mL}, 111.64 \mathrm{mmol}$) in 5 mL benzene was then added dropwise, the temperature was raised to $80^{\circ} \mathrm{C}$. The mixture was stirred overnight at $80^{\circ} \mathrm{C}$. The oily product was washed with 4 x 10 mL of distilled water in a 125 mL separatory funnel. The ligand L solution was then dried over MgSO_{4} and gravity filtered into a tarred 25 mL round-bottom flask. The benzene was removed to yield a colorless viscous liquid $\left(6.7577 \mathrm{~g}, 24.13 \mathrm{mmol}, 45.4 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{d}^{6}-\mathrm{DMSO}\right): \delta(\mathrm{ppm})=2.4-2.8(\mathrm{~m}, 8 \mathrm{H}), 2.2(\mathrm{~s}, 6 \mathrm{H}), 2.1(\mathrm{~s}, 2 \mathrm{H})$.

Synthesis of complex 1 (N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-ethylene diaminato)

 nickel(II). The neutral nickel(II) complex 1 was synthesized with published procedures. ${ }^{2,3} \mathrm{~A}$ solution of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2.494 \mathrm{~g}, 0.010 \mathrm{~mol})$ was prepared in 70 mL of a $1: 1$ $\mathrm{MeOH} / \mathrm{EtOH}$ solvent mix. The solution was then added to a solution of $\mathrm{L}(2.084 \mathrm{~g}, 0.010$ mol) in 60 mL of ethanol. The resulting solution immediately became red/brown in color. It was stirred under an inert atmosphere overnight, filtered, and then the solvent volume reduced under vacuum to about 70 mL , and filtered again. Approximately 20 mL of diethyl ether was added, and the solution was left at low temperature for three days, resulting in reddish precipitation of 1. Yield $=2.067 \mathrm{~g}$ (78\%). Anal. Calcd (found) for $\mathrm{NiC}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{2}$: C, 36.25 (35.35); H, 6.85 (6.61); N, 10.57 (9.92). MS (ESI, m/z): [M] ${ }^{+}$calcd. For $\mathrm{NiC}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{2}$, 265.06; found 265.04. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}^{6}-\mathrm{DMSO}$): $\delta(\mathrm{ppm})=3.27(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H})$, $2.75(\mathrm{~s}, 6 \mathrm{H}), 2.50(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H})$. Single crystals suitable for X-ray diffraction were grown through the diffusion of diethyl ether into an ethanol solution of $\mathbf{1}$.Synthesis of complex $\mathbf{Z n N}_{2} \mathbf{S}_{2} \quad$ (N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-ethylene diaminato) zinc(II). The synthesis of $\mathrm{Zn}(\mathrm{II})$ complex $\left(\mathrm{ZnN}_{2} \mathrm{~S}_{2}\right)$ was synthesized using literature methods. ${ }^{4}$ A solution of $\mathrm{NaH}(0.52 \mathrm{~g}, 22 \mathrm{mmol})$ in ethanol was added to an ethanol solution of L $(2.25 \mathrm{~g}, 10.8 \mathrm{mmol})$ under Ar. The mixture was stirred at room temperature for 1 h , and then an ethanolic solution of $\mathrm{ZnCl}_{2}(1.47 \mathrm{~g}, 10.8 \mathrm{mmol})$ was added. The resulting cloudy mixture was stirred for 48 h . The solution was evaporated to dryness under reduced pressure, and the resulting

Electronic Supplementary Information (ESI) for Chem. Comm.

white solid was washed first with water and then diethyl ether. Remaining sodium salts were removed by dissolution of the crude product into dichloromethane and extraction with water. Evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer yielded a crude product that was washed with diethyl ether (0.876 g , 30%). The product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ diethyl ether solution with yield of 35%. Anal. Calcd (found) for $\mathrm{ZnC}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{2}$: C, 35.35(35.25); H, 6.67 (6.48); N, 10.31 (10.15). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}-d^{6}\right): \delta(\mathrm{ppm})=2.87(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 6 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H})$, $2.50(\mathrm{~m}, 2 \mathrm{H})$.

2. Instrumentation

UV-vis absorption spectra were recorded on a UV-2100 (Shimadzu) spectrophotometer. Steady-state fluorescence spectroscopic studies in solution were performed on a ThermoFisher spectrophotometer with a xenon arc lamp as light source. Samples for absorption and emission measurements were contained in $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ quartz cuvettes. C, H and N microanalyses were carried out with a CE instruments EA 1110 analyzer. The ${ }^{1} \mathrm{H}$ NMR were recorded on a Bruker AVANCE III 500 MHz spectrometer with tetramethylsilane (TMS, 0.00 ppm) as an internal standard and $d_{6}-\mathrm{DMSO}$ (or $d_{6}-\mathrm{CDCl}_{3}$) as solvent. Coupling constants (J) values are given in Hz . Mass spectrometry (MS) experiment was carried out in the positive ion made on a Bruker Esquire HCT ion trap mass spectrometer (Billerica, MA) coupled with a homemade electrospray ionization (ESI) device. Parameters of the ESI source were optimized to enhance the signal intensity. The pressure of nebulizing nitrogen, the flow rate of desolvation gas, and the temperature of desolvation gas were set to $8 \mathrm{psi}, 1 \mathrm{~L} / \mathrm{min}$, and $250^{\circ} \mathrm{C}$, respectively. The experimental powder X-ray diffraction (PXRD) was measured on a Panalytical X-Pert Pro diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation equipped with an X'Celerator detector. X-ray single crystal diffraction measurement was done on a Rigaku R-AXIS RAPID Image Plate single-crystal diffractometer. SHELXS-97 and SHELXL-97 were used to solve and refine the crystal structure.

3. Electrochemical Experiments

Cyclic voltammogram was conducted on an electrochemical workstation (CHI 650E) using a three-electrode single-compartment cell (glassy carbon working electrode, Pt wire auxiliary electrode and saturated calomel reference electrode) at room temperature. All measurements were performed in acetonitrile (MeCN) in the presence of 0.1 M tetrabutylammonium hexafluorophosphate $\left(\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ as a supporting electrolyte. Measurements were made using optically dilute solutions after deoxygenation by purging with dried N_{2}. Ferrocene was added to each sample solution at the end of the experiments, and the ferrocenium/ferrocene $\left(F_{\mathrm{c}} / F_{\mathrm{c}}{ }^{+}\right)$redox couple was used as an internal potential reference.

Electronic Supplementary Information (ESI) for Chem. Comm.

Electrochemical experiment in the presence of acetic acid: Under nitrogen atmosphere, 1 was dissolved in degassed $\mathrm{MeCN}, 0.1 \mathrm{M}$ TBAP solution. Acetic acid was added to the red solution of the complex. After the addition of the acetic acid solution a cyclic voltammogram was recorded. The addition was repeated several times to increase the concentration of acetic acid. After every addition a cyclic voltammogram was recorded. GC-2014C-TCD with molecular sieve column was used for product detection.

4. Photochemical Experiments

For photoinduced hydrogen evolution, solutions of FL (1 mM), TEA (0.36 M), Nickel catalyst 1 were prepared in pure water, giving a total volume of 10.0 mL . The solution was sealed with a septum, degassed under vacuum and flushed with Ar gas four times before irradiation. The cuvettes were irradiated by a Xenon Light Source with an optical filter employed to cut off light with wavelengths below 420 nm with constant stirring. The pH value of the solution was adjusted to the desired value using 4 M HCl as required and measured on OHAUS ST5000 pH meter. During irradiation, the headspace of the vials were analyzed by gas chromatography (GC) analysis (Shimadzu GC-2014C) with a thermal conductivity detector (TCD) and a Quadrex column and were quantified according to a calibration curve.

5. Computational Details

All calculations were carried out using the Gaussian 09 program. ${ }^{5}$ The hybrid density functional (U)B3P86 ${ }^{6}$ was used in combination with the standard $6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. ${ }^{7}$ All structures were fully optimized in acetonitrile (MeCN) solvent $(\varepsilon=35.688)$ using the PCM method. ${ }^{8}$ Vibrational analyses at the same level of theory were performed to confirm each stationary point to be either a local minimum or a transition state (TS), and to obtain thermal corrections. ${ }^{9}$ The connection of each TS to its corresponding reactant and product was confirmed by $I R C$ (intrinsic reaction coordinate) calculations. ${ }^{10}$ Because thermal corrections based on the ideal gas phase model overestimate entropy contributions to free energies for reactions involving component change, ${ }^{11}$ a relative free energy correction of $4.3 \mathrm{kcal} \mathrm{mol}^{-1}$ was added to the product state of H_{2} release step.

Acetic acid was used as proton donor to calculate the free energy changes for protonation step through following equation:

$$
\mathrm{B}^{-}+\mathrm{AcOH} \rightarrow \mathrm{BH}+\mathrm{AcO}^{-},
$$

where B is proton acceptor. Because the acetic acid was excessive to catalyst with a ratio of about $100: 1$, a correction of $-2.7 \mathrm{kcal} \mathrm{mol}^{-1}$ was added to the standard free energy change of protonation step based on van't Hoff formula:

Electronic Supplementary Information (ESI) for Chem. Comm.

$$
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \cdot \ln \mathrm{Q}
$$

where $\Delta \mathrm{G}^{\circ}$ is standard free energy change, R is mole gas constant, T is temperature and Q is reaction quotient.

The reduction potential was determined using isodesmic reaction ${ }^{12}$ with the reduction of $\mathbf{1}$ to $\mathbf{2 e}$ as the reference reaction $\left(E^{\circ}{ }_{\text {ref }}=-1.92 \mathrm{~V}\right.$ vs. SCE determined by experiment $)$:

$$
\mathrm{Ox}+\mathbf{2 e} \rightarrow \operatorname{Red}+\mathbf{1}
$$

where Ox and Red is oxidant and reductant respectively. The free energy change $\Delta \mathrm{G}^{\mathrm{o}}$ of this isodesimic reaction was used to calculate the reduction potential E° of desired reaction using following formula:

$$
\mathrm{E}^{\circ}=-\Delta \mathrm{G}^{\circ} / F+\mathrm{E}_{\mathrm{ref}}^{\circ},
$$

where F is Faraday's constant.

6. References

[1] J. L. Corbin, K. F. Miller, N. Pariyadath, S. Wherland, A. E. Bruce, Inorg. Chim. Acta., 1984, 90, 41 .
[2] D. Nakane, S. Kuwasako, M. Tsuge, M. Kubo, Y. Funahashi, T. Ozawa, T. Ogura and H. Masuda, Chem. Commun., 2010, 46, 2142.
[3] P. V. Rao, S. Bhaduri, J. Jiang and R. H. Holm, Inorg. Chem., 2004, 43, 5833.
[4] C. A. Grapperhaus, C. S. Mullins, P. M. Kozlowski and M. S. Mashuta, Inorg. Chem., 2004, 43, 2859.
[5] A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. Gaussian09 Rev. B.01, Gaussian, Inc., Wallingford CT, 2010.
[6] A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
[7] L. A. Curtiss, M. P. McGrath, J.-P. Blaudeau, N. E. Davis, R. C. Binning Jr. and L. Radom, J. Chem. Phys., 1995, 103, 6104.
[8] G. Scalmani and M. J. Frisch, J. Chem. Phys., 2010, 132, 114110.
[9] R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2011, 115, 14556.
[10] C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154.
[11] S. Qu, H. Dai, Y. Dang, C. Song, Z.-X. Wang and H Guan, ACS Catal., 2014, 4, 4377.

Electronic Supplementary Information (ESI) for Chem. Comm.

[12] C. N. Virca and T. M. McCormick, Dalton Trans., 2015, 44, 14333.

7. Examples of Square-planar $\mathrm{NiN}_{2} \mathrm{~S}_{2}$ Complexes

[5-5-5]

[5-6-5]

[5-5-6]

[6-5-6]

[5-5-6-5]

[5-6-6-5]

Scheme S1 Examples of the various chelate ring sizes observed in the square-planar $\mathrm{NiN}_{2} \mathrm{~S}_{2}$ complexes. See Reference: Chem. Rev., 2015, 115, 5248-5273.

Electronic Supplementary Information (ESI) for Chem. Comm.

8. XRD, ESI-MS and UV-vis Analysis

Fig. S1 (a) The simulated (red) and experimental (blue) PXRD patterns for complex 1. (b) ESIMS of 1.

Fig. S2 Temporal evolution of UV-vis absorption spectra of $\mathbf{1}$ in air. Inset: the corresponding solution of 1 exposure to air after 0 h and 24 h .

Electronic Supplementary Information (ESI) for Chem. Comm.

Fig. S3 (a) Absorption spectrum of 1 calculated by TD-DFT (PCM, EtOH). (b) Qualitative MO energy-level diagram and isosurface plots obtained from a DFT calculation for complex $\mathbf{1}$. The one-electron excitations producing the major contributions to the transitions responsible for bands I-III (as provided by TD-DFT calculations) are also indicated.

Electronic Supplementary Information (ESI) for Chem. Comm.

9. Electrochemical Studies

(a)
(b)

Fig. S4 Cyclic voltammogram of 1 mM of complex 1 recorded in 0.1 M tetrabutylammonium hexafluorophosphate $\left(\mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ in MeCN . The system was scanned towards anodic potentials (a) and versus cathodic potentials (b). Scan rate of $200 \mathrm{mV} \mathrm{s}^{-1}$; glassy carbon electrode.

Fig. $S 5$ (a) Cyclic voltammograms of 1 mM of complex 1 in $0.1 \mathrm{M} \mathrm{n}-\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ in MeCN under N_{2} conditions with scan rate varied from 100 to $400 \mathrm{mV} \mathrm{s}^{-1}$. (b) Peak currents vs. square root of scan rate. Room temperature conditions; glassy carbon electrode.

Electronic Supplementary Information (ESI) for Chem. Comm.

Fig. S6 Cyclic voltammogram of 0.8 mM of the complex $\mathrm{ZnN}_{2} \mathrm{~S}_{2}$ recorded in 0.1 M tetrabutylammonium hexafluorophosphate $\left(n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ in MeCN . Scan rate of 200 mV s -1; glassy carbon electrode.

Comments: Considering that the $\mathrm{Zn}(\mathrm{II})$ is redox inactive, one oxidation peak at 0.50 V is likely assigned to the ligand-centred oxidation, which indicates that the $\mathrm{N}_{2} \mathrm{~S}_{2}$ ligand is non-innocently behavior.

Fig. S7 Linear sweep voltammogram of 1 mM 1 in $\mathrm{MeCN}\left(0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ with 12 mM acetic acid added (black) and a subsequent CV using the same electrode after rinsing and transfer to fresh in $\mathrm{MeCN}\left(0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ without adding 1 with 12 mM acetic acid added (red). $v=0.2 \mathrm{~V} / \mathrm{s} \mathrm{vs} \mathrm{Fc}+/ \mathrm{Fc}$.

Electronic Supplementary Information (ESI) for Chem. Comm.

Fig. S8 Charge buildup of complex versus a series of applied potentials. All data have been deducted blank.

Fig. S9 The electronic absorption spectra of complex $\mathbf{1}$ before and after 1.5 h electrolysis.

Electronic Supplementary Information (ESI) for Chem. Comm.

Fig. S10 Cyclic voltammograms of $\mathbf{1}$ in the presence and absence of hydrogen gas. The black line shows the voltammogram before exposure of the solution to H_{2}. The red line shows the voltammogram in a solution saturated with 1 atm of H_{2} prepared by sparging immediately preceding measurement. The experimental conditions are 1 mM 1 in $\mathrm{MeCN}, 0.1 \mathrm{M} \mathrm{TBAPF}_{6}$, and an electrochemical potential scan rate of $200 \mathrm{mV} \mathrm{s}^{-1}$.

Electronic Supplementary Information (ESI) for Chem. Comm.

10. Photochemical Studies

Fig. S11 Effect of pH value of the system on hydrogen evolution containing catalyst $\mathbf{1}(10 \mu \mathrm{M})$, $\mathrm{FL}(1$ $\mathrm{mM})$ and TEA $(5 \% \mathrm{v} / \mathrm{v})$ in $\mathrm{H}_{2} \mathrm{O}$ over 24 h of Xe irradiation $(\lambda>420 \mathrm{~nm})$.

Fig. S12 Mercury poison experiment for the hydrogen generation by visible light irradiation ($\lambda>420$ nm) of catalyst $\mathbf{1}$, FL and TEA in $\mathrm{H}_{2} \mathrm{O}$ at pH 11.6.

Electronic Supplementary Information (ESI) for Chem. Comm.

Fig. S13 Partial regeneration of catalytic activity upon the addition of one equivalent of FL in compositions containing $10 \mu \mathrm{M}$ of $\mathbf{1}$ after 24 h of continuous illumination in the presence of 1 mM FL initially.

Fig. S14 UV-vis absorption spectra of photolysis systems containing catalyst $\mathbf{1}(20 \mu \mathrm{M})$, $\mathrm{FL}(10 \mu \mathrm{M})$ and TEA $(5 \% \mathrm{v} / \mathrm{v})$ in $\mathrm{H}_{2} \mathrm{O}$ at pH 11.6 upon irradiation $(\lambda>420 \mathrm{~nm})$.

Fig. S15 a) Photoluminescence spectra of FL as a function of TEA. b) Stern-Volmer plot of quenching by TEA.

Fig. S16 a) Photoluminescence spectra of FL as a function of 1. b) Stern-Volmer plot of quenching by 1 (inner filter correction applied).
Comments: In photodriven catalytic systems, two electron transfer reaction pathways are possible. One is that the photoexcited FL^{*} might be oxidatively quenched by the WRC to generate $[\mathrm{FL}]^{\cdot+}$. The other is that the photoexcited FL^{*} could be reductively quenched by the TEA to produce [FL] ${ }^{\circ}$, which delivers an electron to the WRC for proton reduction to H_{2}. To determine the dominant reaction pathway in the system, the luminescence of the excited photosensitizer FL^{*}, in deaerated $\mathrm{H}_{2} \mathrm{O}$ at pH 11.6 is undertaken as a function of both TEA and separately, 1 concentration (Fig. S15-S16, ESI \ddagger). Stern-Volmer analyses yielded the quenching constants for the system. The rate constants for reductive quenching of FL* by TEA and oxidative quenching by $\mathbf{1}$ are 2.6×10^{7} and $9.8 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, respectively. These results show that the quenching processes are diffusion controlled. Although the rate constant for oxidative quenching is about 400 times larger than that of reductive quenching, the reductive quenching process is still dominant given the much higher concentration of TEA $(0.36 \mathrm{M})$ relative to $\mathbf{1}(10 \mu \mathrm{M})$. Due to the dominant reductive process, FL should bleach much more rapidly because of the instability of [FL].- formed, leading to the

Electronic Supplementary Information (ESI) for Chem. Comm.

deactivation of the photocatalytic system as mentioned above.
11. DFT Calculations

Electronic Supplementary Information (ESI) for Chem. Comm.

Fig. S17 DFT-computed electrocatalytic mechanism of hydrogen production.

Molecular Geometries and Energies

B3P86 (PCM, MeCN) Cartesian coordinates and energies in Hartree

AcOH

Number of imaginary freguencies: 0
Charge $=0$, Multiplicity $=1$

C	-1.386628000	-0.117718000	-0.000019000
H	-1.916086000	0.831577000	-0.001496000
H	-1.665950000	-0.701893000	-0.879247000
C	0.088040000	0.120230000	-0.000037000
O	0.631416000	1.200657000	0.000003000
O	0.782772000	-1.030179000	-0.000013000
H	-1.666154000	-0.699078000	0.881033000
H	1.726211000	-0.809502000	0.000128000

Energy $(0 \mathrm{~K})=-229.738604$
Energy (0K) + ZPE = -229.677132
Enthalpy $(298 \mathrm{~K})=-229.671541$
Free Energy $(298 K)=-229.704913$

AcO-

Number of imaginary freguencies: 0
Charge $=-1$, Multiplicity $=1$

C	1.344585000	-0.045939000	-0.000027000
H	1.725618000	-1.067900000	-0.002031000
H	1.728008000	0.481522000	-0.877844000
C	-0.187298000	-0.000559000	-0.000050000
O	-0.805181000	-1.095963000	0.000009000
O	-0.710442000	1.144412000	0.000007000
H	1.727631000	0.477774000	0.880214000

Energy (0K) =-229.2691625
Energy (0K) + ZPE $=-229.220912$
Enthalpy $(298 \mathrm{~K})=-229.216422$
Free Energy $(298 \mathrm{~K})=-229.246774$

1

Number of imaginary freguencies: 0
Charge $=0$, Multiplicity $=1$

Ni	0.000004000	-0.403429000	0.000004000
S	-1.596857000	-1.885977000	0.193416000
S	1.596849000	-1.885985000	-0.193448000
N	-1.355349000	0.998970000	-0.194183000
N	1.355352000	0.998976000	0.194172000
C	-3.026946000	-0.730969000	0.310430000

Electronic Supplementary Information (ESI) for Chem. Comm.

H	-3.590105000	-0.740301000	-0.625031000
H	-3.699854000	-1.074843000	1.097896000
C	-2.533684000	0.660903000	0.642368000
H	-3.321237000	1.413210000	0.495386000
H	-2.207237000	0.700700000	1.683675000
C	-1.748634000	1.089546000	-1.617741000
H	-2.120223000	0.126259000	-1.959573000
H	-0.886578000	1.354229000	-2.227741000
H	-2.525228000	1.853293000	-1.743850000
C	-0.720729000	2.270764000	0.233118000
H	-0.775696000	2.321865000	1.321476000
H	-1.263812000	3.134955000	-0.165026000
C	0.720738000	2.270743000	-0.233214000
H	0.775699000	2.321760000	-1.321577000
H	1.263828000	3.134960000	0.164863000
C	1.748582000	1.089619000	1.617740000
H	0.886507000	1.354332000	2.227699000
H	2.525174000	1.853369000	1.743844000
H	2.120160000	0.126348000	1.959632000
C	2.533725000	0.660882000	-0.642316000
H	3.321277000	1.413186000	-0.495309000
H	2.207329000	0.700661000	-1.683640000
C	3.026955000	-0.730989000	-0.310332000
H	3.590033000	-0.740321000	0.625177000
H	3.699932000	-1.074867000	-1.097738000

Energy (0K) = -2732.828359
Energy (0K) + ZPE $=-2732.56024$
Enthalpy $(298 \mathrm{~K})=-2732.545229$
Free Energy $(298 \mathrm{~K})=-2732.599804$

2e

Number of imaginary freguencies: 0
Charge $=-1$, Multiplicity $=2$

Ni	0.000000000	0.568918000	0.000000000
S	1.844709000	1.918876000	0.390456000
S	-1.844709000	1.918876000	-0.390456000
N	1.405056000	-1.054408000	-0.281799000
N	-1.405057000	-1.054408000	0.281799000
C	3.153454000	0.635926000	0.242542000
H	3.612274000	0.688719000	-0.748958000
H	3.948625000	0.831592000	0.966698000
C	2.610707000	-0.759528000	0.505642000
H	3.392662000	-1.512343000	0.303491000
H	2.334635000	-0.838060000	1.560585000

Electronic Supplementary Information (ESI) for Chem. Comm.

C	1.735463000	-1.170977000	-1.704526000
H	2.139843000	-0.228251000	-2.072006000
H	0.838568000	-1.393174000	-2.282605000
H	2.474064000	-1.969670000	-1.878365000
C	0.734422000	-2.269921000	0.196322000
H	0.828502000	-2.299043000	1.284207000
H	1.220128000	-3.178789000	-0.190362000
C	-0.734423000	-2.269921000	-0.196323000
H	-0.828503000	-2.299042000	-1.284208000
H	-1.220129000	-3.178788000	0.190361000
C	-1.735463000	-1.170977000	1.704526000
H	-0.838568000	-1.393175000	2.282605000
H	-2.474063000	-1.969670000	1.878365000
H	-2.139843000	-0.228251000	2.072006000
C	-2.610708000	-0.759527000	-0.505642000
H	-3.392662000	-1.512343000	-0.303490000
H	-2.334636000	-0.838059000	-1.560585000
C	-3.153454000	0.635926000	-0.242541000
H	-3.612272000	0.688720000	0.748960000
H	-3.948626000	0.831593000	-0.966696000

Energy (0K) = -2732.95029
Energy $(0 \mathrm{~K})+$ ZPE $=-2732.686251$
Enthalpy $(298 \mathrm{~K})=-2732.669933$
Free Energy $(298 K)=-2732.728806$

2H

Number of imaginary freguencies: 0
Charge $=1$, Multiplicity $=1$

Ni	-0.032937000	-0.415471000	-0.075036000
S	-1.629458000	-1.886984000	0.040744000
S	1.560398000	-1.915363000	-0.392914000
N	-1.355828000	0.986512000	-0.204583000
N	1.354050000	0.958736000	0.163795000
C	-3.047664000	-0.733238000	0.255379000
H	-3.632736000	-0.697057000	-0.664896000
H	-3.696463000	-1.117005000	1.043736000
C	-2.528258000	0.632172000	0.641337000
H	-3.299366000	1.406323000	0.537481000
H	-2.182339000	0.622494000	1.676650000
C	-1.768881000	1.131819000	-1.621705000
H	-2.157483000	0.186209000	-1.991078000
H	-0.912497000	1.409136000	-2.233569000
H	-2.536428000	1.908991000	-1.701874000
C	-0.707977000	2.243848000	0.259590000

Electronic Supplementary Information (ESI) for Chem. Comm.

H	-0.755890000	2.261737000	1.348928000
H	-1.252758000	3.118296000	-0.109127000
C	0.726757000	2.251587000	-0.220972000
H	0.773939000	2.336274000	-1.307086000
H	1.281212000	3.095456000	0.201268000
C	1.758158000	1.001479000	1.588836000
H	0.902685000	1.255532000	2.211541000
H	2.542552000	1.752565000	1.730194000
H	2.127349000	0.030129000	1.910919000
C	2.516091000	0.637648000	-0.698552000
H	3.328778000	1.353751000	-0.528440000
H	2.189758000	0.734963000	-1.735164000
C	3.013029000	-0.770366000	-0.439731000
H	3.551350000	-0.867944000	0.500392000
H	3.666026000	-1.100623000	-1.245623000
H	1.755084000	-2.424675000	0.841230000

Energy $(0 \mathrm{~K})=-2733.262996$
Energy (0K) + ZPE $=-2732.984698$
Enthalpy $(298 \mathrm{~K})=-2732.969299$
Free Energy $(298 K)=-2733.024848$

3

Number of imaginary freguencies: 0
Charge $=0$, Multiplicity $=2$

Ni	-0.044652000	-0.603702000	-0.035698000
S	-1.803995000	-1.974104000	0.453484000
S	1.714858000	-1.932475000	-0.701589000
N	-1.424285000	1.004053000	-0.241721000
N	1.398681000	0.952320000	0.209697000
C	-3.130259000	-0.702316000	0.366639000
H	-3.632617000	-0.763894000	-0.602564000
H	-3.886649000	-0.909088000	1.127649000
C	-2.589921000	0.698021000	0.605012000
H	-3.385284000	1.444031000	0.440977000
H	-2.263279000	0.777866000	1.645043000
C	-1.826217000	1.138268000	-1.646376000
H	-2.249077000	0.199673000	-2.003283000
H	-0.959357000	1.368091000	-2.265839000
H	-2.571684000	1.938059000	-1.770641000
C	-0.721875000	2.211435000	0.217046000
H	-0.778610000	2.240766000	1.307155000
H	-1.206597000	3.126460000	-0.152054000
C	0.730912000	2.191282000	-0.229441000
H	0.785892000	2.232170000	-1.319309000

Electronic Supplementary Information (ESI) for Chem. Comm.

H	1.250307000	3.081093000	0.152844000
C	1.771413000	1.041022000	1.628459000
H	0.893093000	1.267146000	2.231777000
H	2.525732000	1.824562000	1.791145000
H	2.169636000	0.087886000	1.975586000
C	2.579890000	0.667041000	-0.618057000
H	3.395325000	1.372467000	-0.398584000
H	2.294490000	0.809980000	-1.662974000
C	3.098910000	-0.747723000	-0.430009000
H	3.498562000	-0.912156000	0.569303000
H	3.888695000	-0.949691000	-1.152893000
H	2.028216000	-2.791611000	0.290888000

Energy $(0 \mathrm{~K})=-2733.413467$
Energy (0K) + ZPE $=-2733.139297$
Enthalpy $(298 \mathrm{~K})=-2733.122651$
Free Energy $(298 K)=-2733.18204$

4e

Number of imaginary freguencies: 0
Charge $=-1$, Multiplicity $=3$

Ni	-0.053392000	-0.635182000	-0.081153000
S	-1.876978000	-1.989849000	0.319374000
S	1.748643000	-2.001089000	-0.540531000
N	-1.434847000	1.005187000	-0.241971000
N	1.394750000	0.942400000	0.179224000
C	-3.178478000	-0.692018000	0.280112000
H	-3.676833000	-0.699129000	-0.693444000
H	-3.945055000	-0.913526000	1.027070000
C	-2.610876000	0.685552000	0.581711000
H	-3.391229000	1.454089000	0.445450000
H	-2.290750000	0.714481000	1.626607000
C	-1.823773000	1.193601000	-1.642425000
H	-2.249559000	0.271149000	-2.036293000
H	-0.950385000	1.438419000	-2.246767000
H	-2.563031000	2.003288000	-1.745264000
C	-0.726778000	2.187650000	0.266488000
H	-0.769045000	2.159149000	1.357718000
H	-1.218850000	3.120143000	-0.048194000
C	0.722178000	2.193540000	-0.194727000
H	0.766771000	2.286429000	-1.282170000
H	1.239326000	3.070576000	0.221677000
C	1.816354000	0.969790000	1.582684000
H	0.967134000	1.204676000	2.224751000
H	2.603153000	1.722240000	1.747875000

Electronic Supplementary Information (ESI) for Chem. Comm.

H	2.193584000	-0.011860000	1.874688000
C	2.538648000	0.661953000	-0.698314000
H	3.348616000	1.390234000	-0.521960000
H	2.196064000	0.788079000	-1.728294000
C	3.080444000	-0.748235000	-0.519549000
H	3.621033000	-0.852333000	0.427746000
H	3.789635000	-0.954033000	-1.323779000
H	2.283777000	-2.578441000	1.163332000

Energy $(0 \mathrm{~K})=-2733.487116$
Energy (0K) + ZPE =-2733.219577
Enthalpy $(298 \mathrm{~K})=-2733.202534$
Free Energy $(298 K)=-2733.262684$

4H

Number of imaginary freguencies: 0
Charge $=1$, Multiplicity $=2$

Ni	0.001258000	-0.482926000	-0.014262000
S	-1.802012000	-1.901095000	0.400871000
S	1.787215000	-1.839662000	-0.548920000
N	-1.397449000	1.067535000	-0.308286000
N	1.394541000	1.061657000	0.323544000
C	-3.125450000	-0.650014000	0.182023000
H	-3.475356000	-0.786230000	-0.841542000
H	-3.953063000	-0.893307000	0.847324000
C	-2.625877000	0.759703000	0.442514000
H	-3.425134000	1.472836000	0.193032000
H	-2.402894000	0.869108000	1.505893000
C	-1.691071000	1.214798000	-1.743572000
H	-2.083517000	0.283067000	-2.149458000
H	-0.778427000	1.450848000	-2.289009000
H	-2.423923000	2.015168000	-1.913681000
C	-0.741762000	2.284420000	0.210578000
H	-0.864381000	2.295716000	1.295230000
H	-1.222819000	3.191910000	-0.177133000
C	0.735024000	2.294894000	-0.148268000
H	0.857694000	2.348184000	-1.231716000
H	1.212191000	3.188890000	0.274050000
C	1.691866000	1.151773000	1.761846000
H	0.781940000	1.373102000	2.318057000
H	2.430866000	1.939681000	1.961130000
H	2.077586000	0.201605000	2.129834000
C	2.618517000	0.780177000	-0.443343000
H	3.416080000	1.492345000	-0.187226000
H	2.384413000	0.913788000	-1.501840000

Electronic Supplementary Information (ESI) for Chem. Comm.

C	3.137337000	-0.629104000	-0.217132000
H	3.489157000	-0.784706000	0.800966000
H	3.961528000	-0.832572000	-0.899537000
H	2.001304000	-2.647164000	0.509239000
H	-1.752886000	-1.862462000	1.749840000

Energy $(0 \mathrm{~K})=-2733.867767$
Energy (0K) + ZPE =-2733.583631
Enthalpy (298K) = -2733.566594
Free Energy $(298 \mathrm{~K})=-2733.626588$

5

Number of imaginary freguencies: 0
Charge $=0$, Multiplicity $=1$

Ni	0.201326000	-0.365133000	-0.428055000
S	1.703415000	-1.875383000	-0.731484000
S	-2.711689000	-1.785339000	0.867141000
N	1.499471000	0.780272000	0.558492000
N	-1.107180000	1.154849000	-0.362917000
C	3.124380000	-1.006394000	0.061147000
H	3.279995000	-1.388545000	1.072753000
H	4.032942000	-1.216181000	-0.507034000
C	2.864549000	0.484395000	0.059817000
H	3.607528000	1.023201000	0.665503000
H	2.921105000	0.857910000	-0.964739000
C	1.434079000	0.549267000	2.013358000
H	1.713736000	-0.479806000	2.230834000
H	0.420161000	0.702201000	2.378190000
H	2.112819000	1.230008000	2.542225000
C	1.079565000	2.154735000	0.216733000
H	1.377417000	2.343925000	-0.816494000
H	1.580150000	2.899148000	0.849200000
C	-0.421782000	2.261834000	0.370320000
H	-0.695589000	2.186523000	1.422804000
H	-0.779691000	3.235265000	0.016660000
C	-1.289264000	1.562029000	-1.775245000
H	-0.319448000	1.751625000	-2.234900000
H	-1.898312000	2.473211000	-1.830692000
H	-1.774174000	0.763299000	-2.331948000
C	-2.443821000	0.955526000	0.263239000
H	-3.067343000	1.821491000	-0.001380000
H	-2.309578000	0.968521000	1.345592000
C	-3.180111000	-0.318089000	-0.115117000
H	-3.082464000	-0.553191000	-1.175335000
H	-4.242390000	-0.172873000	0.088121000

Electronic Supplementary Information (ESI) for Chem. Comm.

H	-1.446245000	-1.838639000	0.356169000
H	-0.686974000	-1.217480000	-1.225019000

Energy (0K) = -2734.017655
Energy (0K) + ZPE =-2733.734666
Enthalpy $(298 \mathrm{~K})=-2733.718116$
Free Energy $(298 K)=-2733.777144$

TS
Number of imaginary freguencies: 1
Charge $=0$, Multiplicity $=1$

Ni	0.108718000	-0.362908000	-0.397525000
S	1.859353000	-1.651675000	-0.723090000
S	-1.718617000	-1.954972000	0.901728000
N	1.257679000	0.915631000	0.489192000
N	-1.367963000	1.021399000	-0.333153000
C	3.154075000	-0.574581000	-0.003148000
H	3.399632000	-0.898076000	1.009794000
H	4.060683000	-0.658934000	-0.604732000
C	2.652402000	0.845060000	-0.036464000
H	3.286774000	1.525340000	0.546916000
H	2.620742000	1.199057000	-1.068175000
C	1.256063000	0.659215000	1.948031000
H	1.673606000	-0.325672000	2.144216000
H	0.238212000	0.670347000	2.331653000
H	1.852085000	1.422672000	2.459366000
C	0.680464000	2.251366000	0.187389000
H	0.920430000	2.484578000	-0.851172000
H	1.139965000	3.019273000	0.819690000
C	-0.809733000	2.193468000	0.397709000
H	-1.037584000	2.072248000	1.455888000
H	-1.289518000	3.120658000	0.068229000
C	-1.644118000	1.408865000	-1.736410000
H	-0.716886000	1.679656000	-2.241253000
H	-2.332600000	2.260884000	-1.762716000
H	-2.094102000	0.572232000	-2.268043000
C	-2.641599000	0.587413000	0.320236000
H	-3.449057000	1.236051000	-0.045833000
H	-2.535229000	0.755600000	1.392505000
C	-2.965841000	-0.874197000	0.106582000
H	-3.046694000	-1.099356000	-0.963270000
H	-3.953224000	-1.062647000	0.535335000
H	-0.830272000	-1.528676000	-1.121618000
H	-0.521115000	-1.116323000	-1.760113000

Energy $(0 K)=-2733.994216$

Electronic Supplementary Information (ESI) for Chem. Comm.

Energy $(0 \mathrm{~K})+\mathrm{ZPE}=-2733.710911$
Enthalpy $(298 \mathrm{~K})=-2733.695169$
Free Energy $(298 K)=-2733.752078$
H_{2}
Number of imaginary freguencies: 0
Charge $=0$, Multiplicity $=1$

H	0.000000000	0.000000000	0.372859000
H	0.000000000	0.000000000	-0.372859000

Energy (0K) $=-1.2153039$
Energy (0K) + ZPE $=-1.205254$
Enthalpy $(298 \mathrm{~K})=-1.201949$
Free Energy $(298 \mathrm{~K})=-1.216748$

