Ligand influence in Li-ion battery hybrid active materials: Ni methylenediphosphonate vs. Ni dimethylamino methylenediphosphonate

S. Schmidt ^a, S. Sallard ^{a,†}, D. Sheptyakov ^b, P. Novák ^a and C. Villevieille ^a

^a Paul Scherrer Institute, Electrochemical Energy Storage Section, 5232 Villigen PSI, Switzerland

^b Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, 5232 Villigen PSI, Switzerland

Supplementary information

Methods

Synthesis

NiMeDP and NiDMAMDP were prepared by an adaption of the synthetic procedure described elsewhere.¹ To 20 mL of a 0.15 M tetraethyl methylenediphosphonate (98%, Alfa Aesar) 1 eq. Ni acetate tetrahydrate (98 %, Alfa Aesar) was added under stirring. Subsequently, the mixture was transferred into an autoclave with Teflon inlet, bubbled with Ar for 15 min and heated under autogenous pressure at 160 °C for 7days. The product was collected after centrifugation and repeated washing with H₂O and ethanol.

Structural characterization

Phase identification was performed using X-ray diffraction (XRD) on a PANalytical Empyrean diffractometer using Cu K_a radiation. For the structure determination, XRD on NiMeDP was measured at the MS powder beamline (X04SA) at the Swiss Light Source (SLS) at PSI, Switzerland using a wavelength of 0.7759 Å, in Debye-Scherrer geometry in a 0.5 mm glass capillary. The high resolution XRD pattern of NiMeDP was indexed and atomic positions were determined by direct methods followed by Fourier synthesis in EXPO2014,² and further refined by a Rietveld refinement performed in FullProf 3.0.0.³

Scanning Electron Microscopy

The scanning electron microscopy (SEM) images were recorded by a Carl Zeiss UltraTM 55 (Germany) apparatus at a 3 kV voltage using the in-lens detector. The powders were sputtered with gold by Ar plasma.

Electrode preparation and electrochemical measurements

Electrodes were prepared by doctor-blading a suspension of 50 wt-% active material, 40 wt-% SuperC65 (Imerys) carbon black conductive additive and 10 wt-% PVdF (Kynar [®]) on Cu foil.

Electrochemical measurements were performed in coin-cell type electrochemical cells. The materials were cycled in constant current/constant potential mode (CC/CP), i.e. galvanostatically at 50 mA/g between 0.1 - 3.0 V vs. Li⁺/Li followed by a 5 h potentiostatic step after each half cycle. The Li counter electrode served as pseudo-reference. All potentials subsequently reported are indicated vs. Li⁺/Li.

The reported specific charge values are corrected as the contribution of the carbon black to the total specific charge was subtracted (170 mAh/g) as described.⁴

Ex situ X-ray absorption spectroscopy (XAS) at the Ni K-edge was measured at the SuperXAS beamline at SLS using a Si(111) channel-cut monochromator⁵ in transmission mode. The XAS data were analyzed using the Demeter software package.⁶

- 1. S. Schmidt, D. Sheptyakov, J.-C. Jumas, M. Medarde, P. Benedek, P. Novák, S. Sallard and C. Villevieille, *Chemistry of Materials*, 2015, **27**, 7889-7895.
- 2. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero and A. Falcicchio, *Journal of Applied Crystallography*, 2013, **46**, 1231-1235.
- 3. J. Rodriguez-Carvajal, 1990.
- 4. S. Schmidt, S. Sallard, D. Sheptyakov, M. Nachtegaal, P. Novák and C. Villevieille, *Journal of Power Sources*, 2017, **342**, 879-885.
- 5. O. Müller, M. Nachtegaal, J. Just, D. Lützenkirchen-Hecht and R. Frahm, *Journal of Synchrotron Radiation*, 2016, **23**, 260-266.
- 6. B. Ravel and M. Newville, *Journal of Synchrotron Radiation*, 2005, **12**, 537-541.

R-Factors R_p R_{wp} R_{exp} 14.2% 1.18% 11.6% Fitted unit cell parameters c [Å] a [Å] b [Å] β 9.636(1) 8.083(1) 9.104 (1) 109.128(1)° Atomic positions and parameters X [Å] Y [Å] Z [Å] B_{iso} Occupancy Ni1 0 0.5 0 1.38(4) 0.5 Ni2 0.112(1) 0.142(1) 0.015(1) 1.70(3) 1 Ρ1 0.888(1)0.200(1)0.184(1) 1.15(5) 1 01 0.963(1)0.079(1) 0.095(1) 0.5(1) 1 02 1 0.876(1) 0.374(1) 0.114(1) 1.6(1)03 0.975(1)0.197(1) 0.352(1) 0.7(1) 1 1 C1 0.723(1) 0.136(1) 0.182(1) 0.6(1) P2 0.709(1) -0.093(1)0.217(1) 1.82(6) 1 04 0.833(1) 1 -0.127(1)0.363(1) 1.3(1)05 0.720(1) -0.198(1)0.062(1) 2.8(2) 1 06 0.555(1)-0.132(1)0.241(1) 3.3(1) 1 1.8 1 07 0.742(1) 0.982(1) 0.799(1) 08 0.551(1)-0.016(2)0.472(2)1.8 0.427(6) Bond distances Atom1-Atom2 Atom 1 Atom 2 d₁₂ [Å] Atom 1 Atom 2 d₁₂ [Å] Ni-O bonds P-O bonds 2.09(1) Ni1 02 Ρ1 01 1.59(1) Ρ1 02 Ni1 03 2.05(1) 1.53(1) Ni1 04 1.96(1) P1 03 1.48(1) Ni2 Ρ2 04 01(1) 1.96(1) 1.51(1) Ni2 01(2) P2 05 1.59(1) 2.07(1) P2 Ni2 03 2.12(1) 06 1.60(1) Ni2 04 2.14(1)P-C bonds Ni2 05 1.98(1) Ρ1 C1 1.67(1) Ni2 07 2.04(1) Ρ2 C1 1.89(1)

Table S1 Details of the Rietveld refinement of NiMeDP.

Bond angles Atom1-Atom2-Atom3											
Atom 1	Atom 2	Atom 3	Angle [°]		Atom 1	Atom 2	Atom 3	Angle [°]			
Ligand bond angles					O-Ni-O bond angles						
01	P1	02	111(1)		03	Ni1	03	180(1)			
01	P1	03	109(1)		03	Ni1	04	85(1)			
02	P1	03	113(1)		04	Ni1	03	96(1)			
01	P1	C1	112(1)		04	Ni1	04	180(1)			
02	P1	C1	110(1)		O1(1)	Ni2	O1(2)	74(1)			
03	P1	C1	101(1)		01(1)	Ni2	03	89(1)			
P1	C1	P2	114(1)		01(1)	Ni2	04	94(1)			
C1	P2	04	105(1)		01(1)	Ni2	05	175(1)			
C1	P2	05	111(1)		01(1)	Ni2	07	87(1)			
C1	P2	O6	109(1)		O1(2)	Ni2	03	98(1)			
04	P2	05	112(1)		O1(2)	Ni2	04	169(1)			
04	P2	O6	110(1)		O1(2)	Ni2	05	101(1)			
05	P2	O6	110(1)		01(2)	Ni2	07	91(1)			
O-Ni-O bond angles					03	Ni2	04	79(1)			
02	Ni1	02	180(1)		03	Ni2	05	92(1)			
02	Ni1	03	91(1)		03	Ni2	07	168(1)			
03	Ni1	02	89(1)		04	Ni2	05	90(1)			
02	Ni1	04	83(1)		04	Ni2	07	90(1)			
04	Ni1	02	97(1)		05	Ni2	07	92(1)			

Table S2 EXAFS fit results of pristine NiDMAMDP and NiMeDP.

Path	N	S ₀ ^{2,†}	<i>R</i> [Å]	<i>E</i> ₀ [eV]	σ^2	R-value					
Pristine NiDMAMDP											
Ni-O	6.1±0.4		2.046±0.005		0.0061±0.0007	0.0081					
Ni-P	4±3*	0.789	3.18±0.05	-2.4±0.7	0.011±0.017*						
Ni-Ni	2.5±1.7*		3.07±0.04		0.007±0.004*						
Pristine NiMeDP											
Ni-O	6.4±0.5		2.058±0.004		0.006±0.001	0.0039					
Ni-P	4±8*	0.789	3.22±0.09	-2.0±0.6	0.01±0.04*						
Ni-Ni	2±3*		3.13±0.01		0.006±0.008*						
* The coordination number and mean square displacement values for P and Ni have a high uncertainty because their peaks strongly overlap due to their close R-values.											

⁺ Derived from fitting the corresponding Ni metal foil reference

Figure S1 One chain representation of the NiMeDP structure, detail of the Figure 2.B.

Figure S2 EDX mapping of the pristine NiDMAMDP.

Figure S3 EXAFS spectra in R-space representation of pristine NiMeDP and NiDMAMDP.

Figure S4 Comparison of the cyclic voltammograms of NiMeDP and NiDMAMDP cycled at 100 μ V/s between 0.1 – 3.0 V. **A**: 1st cycle, **B**: 4th cycle.