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General Methods 
 

Reactions, unless otherwise stated, were conducted under a positive pressure of argon in 

oven-dried glassware. Toluene, CH2Cl2, tetrahydrofuran (THF), and acetonitrile were dried 

with an SPS apparatus. Commercially available reagents were used as purchased unless 

otherwise noted. Polymer supported triphenylphosphine (CAS # 39319-11-4, catalogue # 

93093) was purchased from Sigma-Alrich and used as is. Analytical thin layer 

chromatography was performed using aluminium plates precoated with silica gel 60 F254 (0.2 

mm). Flash chromatography employed 230-400 mesh silica gel. Solvents used for 

chromatography are quoted as volume/volume ratios. 

 

NMR spectroscopy was performed at 298 K using an Avance III HD 400 (400.1 MHz, 1H; 

100.6 MHz, 13C, 376.5 MHz, 19F) or an Avance III 300 (300 MHz, 1H; 75 MHz, 13C; 282.5 

MHz, 19F). Data is expressed in parts per million (ppm) downfield shift from 

tetramethylsilane with residual solvent as an internal reference (δ 7.26 ppm for chloroform, 

5.27 ppm for dichloromethane, 1.94 ppm for acetonitrile, and 2.09 ppm for the toluene methyl 

group) and is reported as position (δ in ppm), multiplicity (s = singlet, d = doublet, t = triplet, 

q = quartet, m = multiplet), coupling constant (J in Hz) and integration (number of protons). 
13C NMR spectra were recorded at 298 K with complete proton decoupling. Data is expressed 

in parts per million (ppm) downfield shift relative to the internal reference (δ 77.2 ppm for the 

central peak of deuterated chloroform). 

 

Infrared spectra were obtained on a ThermoNicolet Avatar 370 FT-IR spectrometer and are 

reported in wavenumbers (cm-1). HRMS were performed at the Bioanalytical Mass 

Spectrometry Facility within the Mark Wainwright Analytical Centre at the University of 

New South Wales on an Orbitrap LTQ XL (Thermo Fisher Scientific, San Jose, CA, USA) 

ion trap mass spectrometer. LCMS and GCMS analyses were carried out on Shimadzu 

LCMS-2010 EV and GCMS-QP2010 Ultra, respectively. 

 

Microwave reactions were carried out in 35 mL microwave vials on CEM Discover – SP 

W/ACTIVENT 909155 or 30 mL vials on Anton Paar Monowave 300. 

 

  



Phosphine Auxiliary Screening and Optimization of the C(sp3)-C(sp3) Coupling Reaction 
	  

General procedure for Table 1: A mixture of benzylbromide (1.0 mmol) and phosphine 3 
(1.0 mmol) was taken up in dry solvent (3 mL) in a reaction flask loaded with a stirrer bar 
under argon atmosphere. The reaction mixture was heated to the indicated temperature then 
cooled to room temperature. A 2 mL solution of benzylbromide (1.0 mmol) and base (1.0 
mmol) was subsequently added. The reaction mixture was heated to the indicated temperature 
again then cooled to room temperature. An aqueous solution of NaOH (indicated molar 
concentration, 1 mL) was then added and the reaction mixture was heated to the indicated 
temperature again then cooled to room temperature. The reaction mixture was diluted with 
water (10 mL) and extracted with ethyl acetate (3 x 5 mL). The combined organic phases was 
washed with brine, dried over Na2SO4 and concentrated under reduced pressure. The products 
were purified from the residues by column chromatography (silica-gel, 100% hexanes à 
hexane/EtOAc = 95/5). 

	  

Table 1: Phosphine auxiliary screening and optimization of the reactiona 

 
Entry R3P (3) base/solvent [OH-]/T Yieldb (%) 4a/4a’ 

1 Cy3P KHMDS/THF 2 M/70 °C 21/trace 
2c Cy3P.HBF4 KHMDS/THF 2 M/70 °C 30/trace 
3 tBu3P KHMDS/THF 2 M/70 °C 58/11 
4c tBu3P.HBF4 KHMDS/THF 2 M/70 °C 56/12 
5 nBu3P KHMDS/THF 2 M/70 °C 15/trace 
6 Ph3P KHMDS/THF 2 M/70 °C 60/12 
7 o-Tol3P KHMDS/THF 2 M/70 °C 49/n.d. 
8 p-Tol3P KHMDS/THF 2 M/70 °C 57/n.d. 
9 (1-naphthyl)3P KHMDS/THF 2 M/70 °C 40/32 
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10 (2-furyl)3P KHMDS/THF 2 M/70 °C 64/15 
11 (2,4,6-MeO3Ph)3P KHMDS/THF 2 M/70 °C 51/n.d. 
12 (C6F5)3P KHMDS/THF 2 M/70 °C trace/n.d. 
13 Ph3P LDA/THF 2 M/70 °C 58/18 
14 Ph3P KOtBu/THF 2 M/70 °C 34/14 
15 Ph3P KHMDS/Tol 2 M/70 °C 49/trace 
16 Ph3P KHMDS/MeCN 2 M/70 °C 66/trace 
17d Ph3P-resin KHMDS/MeCN 2 M/70 °C 65/5 
18 Ph3P KHMDS/MeCN 1 M/70 °C 54/trace 
19 Ph3P KHMDS/MeCN 5 M/70 °C 51/20 
20 Ph3P KHMDS/MeCN 2 M/rt 12/trace 
21 Ph3P KHMDS/MeCN 2 M/100 °C 84/trace 
22e Ph3P KHMDS/MeCN 2 M/150 °C 94/trace 
23d,e Ph3P-resin KHMDS/MeCN 2 M/150 °C 89/trace 

a Reaction conditions: halide 1a (1.0 mmol) and phosphine 3 (1.0 mmol) in THF (3 mL), 
followed by the addition of 1a (1.0 mmol) and base (1.0 mmol), finally aq. NaOH (1 mL) 
with conventional heating; b Overall yield of isolated product; c Phosphonium 
tetrafluoroborate was deprotonated with 1 equiv of base in step 1; d Ph3P on polymer support 
(~3 mmol/g) was used; e All steps were carried out in MW reactor (reaction time: step 1 = 2 h 
at 150 °C, step 2 = 3 h at 150 °C, step 3 = 1 h at 100 °C).	  

 

 

  



Substrate Scope under Microwave-Assisted Conditions 
 

General procedure for Table 2: A mixture of halide 1 (1.0 mmol) and triphenylphosphine 
(1.0 mmol) was taken up in dry acetonitrile (3 mL) in a microwave vial loaded with a stirrer 
bar. The reaction mixture was heated to 150 °C in microwave reactor (ramp-up time 2 min, 
holding time 120 min) then cooled to room temperature. A 2 mL solution of halide 2 (1.0 
mmol) and KHMDS (1.0 mmol) was subsequently added to the reaction vial. The reaction 
mixture was heated to 150 °C again (ramp-up time 2 min, holding time 180 min) then cooled 
to room temperature. An aqueous solution of NaOH (2 M, 1 mL, 2 mmol) was then added and 
the reaction mixture was heated to 100 °C (ramp-up time 2 min, holding time 60 min) before 
cooled to room temperature. The reaction mixture was diluted with water (10 mL) and 
extracted with ethyl acetate (3 x 5 mL). The combined organic phases was washed with brine, 
dried over Na2SO4 and concentrated under reduced pressure. The product was purified from 
the residues by column chromatography (silica-gel, 100% hexanes à hexane/EtOAc = 95/5).  



Table 2: Substrate scope under microwave-assisted conditionsa 

 
 

Hal1 = Br 
Hal2 = Br 

   

  
 

   

   

   

Hal1 = Br 
Hal2 = I 

   

   

    
Hal1 = I 
Hal2 = Br    

Hal1 = Br 
Hal2 = OMs 

 

Hal1 = Br 
Hal2 = OTs  

a Reaction conditions: halide 1 (1.0 mmol) and Ph3P (1.0 mmol) in MeCN (3 mL), followed 
by the addition of 2 (1.0 mmol) and KHMDS (1.0 mmol), finally aq. NaOH (2 M, 1 mL). All 
steps were carried out in MW reactor (reaction time: step 1 = 2 h at 150 °C, step 2 = 3 h at 
150 °C, step 3 = 1 h at 100 °C); b From benzyl bromide and 1,5-diiodopentane. 
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Characterization Data of C(sp3)-C(sp3) Coupled Products (Table 2) 

 
4a1 

1H NMR (300 MHz, CDCl3): δ = 7.31-7.26 (4H, m, ArH), 7.21-7.17 (6H, m, Ar-H), 2.95 

(4H, s, ArCH2) ppm. 

13C NMR (75 MHz, CDCl3): δ = 141.8, 128.5 (2C), 128.4 (2C), 126.0, 38.0 ppm. 

 

 
4b2 

1H NMR (400 MHz, CDCl3): δ = 7.21–7.05 (m, 9H, ArH), 2.91–2.81 (m, 4H, 2CH2) ppm. 
13C NMR (101 MHz, CDCl3): δ = 142.6, 141.1, 132.0, 131.9, 128.7, 128.5 (4C), 126.2, 

125.2, 124.4, 122.8, 37.7, 37.6 ppm. 
19F NMR (282.5 MHz, CDCl3): δ = -62.61 (d, J = 53.7 Hz) ppm. 

 

 
4c3 

1H NMR (300 MHz, CDCl3): δ = 7.38-7.33 (m, 4H), 7.26 (d, J = 7.1 Hz, 6H, Ar-H), 2.67 (t, J 

= 8.1 Hz, 4H, Ar-CH2), 2.03 (quintet, J = 7.3 Hz, 2H, Ar-CH2-CH2-CH2-Ar) ppm. 
13C NMR (75 MHz, CDCl3): δ = 142.4, 128.6 (2C), 128.4 (2C), 125.9, 35.6, 33.1 ppm. 

 

 
4d4 

                                                
1 W. Kerr, R. Mudd, J. Brown, Chem. Eur. J. 2016, 22, 4738 – 4742 
2 G. Molander,  C. Yun, Tetrahedron, 2002, 58, 1465-1470 
3 K. Huihui, J. Caputo, Z. Melchor, A. Olivares, A. Spiewak, K. Johnson, T. DiBenedetto, S. Kim, L. Ackerman, 
D. Weix, J. Am. Chem. Soc. 2016, 138 , 5016–5019. 
4 W. Guo, Z. Wang, Tetrahedron 2013, 69, 9580-9585 

CF3 F3C



1H NMR (300 MHz, CDCl3): δ = 8.01-7.98 (m, 1H), 7.89-7.86 (m, 1H), 7.74 (d, J=8.0 Hz, 

1H), 7.54-7.40 (m, 3H), 7.37-7.02 (m, 6H), 3.14 (t, J = 7.9 Hz, 2H), 2.79 (t, J = 7.6 Hz, 2H), 

2.18-2.10 (m, 2H) ppm. 
13C NMR (75 MHz, CDCl3): δ = 142.2, 138.5, 133.9, 132.2, 128.8, 128.5 (2C), 128.3 (2C), 

126.6, 125.9, 125.8, 125.7, 125.5, 125.4, 123.8, 35.9, 32.6, 32.3 ppm. 

 

 
4e5 

1H NMR (400 MHz, CDCl3): δ = 7.64 – 7.54 (m, 2H, ArH), 7.39 – 7.21 (m, 5H, ArH), 7.19 – 

7.12 (m, 2H, ArH), 3.06 – 2.92 (m, 4H, Ar-CH2) ppm. 
13C NMR (101 MHz, CDCl3):  δ = 147.3, 140.6, 132.2, 129.4, 128.8, 128.5, 128.5, 128.2, 

126.3, 119.1, 109.9, 37.9, 37.2 ppm. 

 

 
4f6 

1H NMR (400 MHz, CDCl3): δ = 7.48 – 7.41 (m, 2H, ArH), 7.37 – 7.16 (m, 5H, ArH), 7.12 – 

7.05 (m, 2H, ArH), 2.93 (s, 2H, Ar-CH2) ppm. 
13C NMR (101 MHz, CDCl3):  δ = 141.3, 140.7, 131.4, 130.3, 128.5 (2C), 128.4 (2C), 126.1, 

119.7, 37.7, 37.3 ppm. 

  
4g7 

1H NMR (300 MHz, CDCl3): δ = 7.61 – 7.51 (m, 2H, ArH), 7.39 – 7.21 (m, 5H, ArH), 7.21 – 

7.15 (m, 2H, ArH), 3.15 – 2.83 (m, 4H, Ar-CH2) ppm. 
13C NMR (101 MHz, CDCl3): δ = 145.77, 141.05, 128.81 (2C), 128.45 (2C), 126.17, 125.26 

(q, J = 3.8 Hz), 37.67, 37.52 ppm. 

                                                
5 Shen, Z.-L., Goh, K. K. K., Yang, Y.-S., Lai, Y.-C., Wong, C. H. A., Cheong, H.-L. and Loh, T.-P. Angew. 
Chem. Int. Ed. 2011, 50, 511–514. 
6 T. Di Franco; N.Boutin; X. Hu, Synthesis 2013, 45, 2949-2958 
7 P. J. Rushworth, D. G. Hulcoop, D. J. Fox, J. Org. Chem. 2013, 78, 9517-9521. 

NC

Br

F3C



19F NMR (377 MHz, CDCl3): δ = -62.28 ppm. 

 

 
4h8 

1H NMR (400 MHz, CDCl3): δ = 8.16-8.13 (m, 2H, ArH), 7.33-7.28 (m, 4H, ArH), 7.26-7.22 

(m, 1H, ArH), 7.17-7.15 (m, 2H, ArH), 3.04-3.08 (m, 2H, CH2), 2.97-3.00 (m, 2H, CH2) ppm. 

13C NMR (101 MHz, CDCl3): δ = 149.4, 146.5, 140.5, 129.4 (2C), 128.5 (2C), 128.4 (2C), 

126.3, 123.6 (2C), 37.7, 37.2. 

 

 
4i9 

1H NMR (400 MHz, CDCl3): δ = 7.37 – 7.16 (m, 5H, ArH), 3.30 – 2.73 (m, 4H, Ar-CH2) 

ppm. 
13C NMR (101 MHz, CDCl3): δ = 140.04, 128.56 (2C), 128.32 (2C), 126.55, 35.36, 24.46 

ppm. 
19F NMR (377 MHz, CDCl3): δ = -144.31 (dd, J = 22.1, 8.4 Hz), -157.55 (d, J = 21.1 Hz), -

162.75 – -162.98 (m) ppm. 

 

 
4j10 

1H NMR (400 MHz, CDCl3): δ = 7.39-7.23 (m, 5H, ArH), 3.01-3.95 (m, 1H, CH), 1.36-1.33 
(m, 6H, 2CH3) ppm. 
13C NMR (101 MHz, CDCl3): δ = 148.9, 128.4 (2C), 126.5 (2C), 125.8, 34.2, 24.1 (2C) ppm 

 

                                                
8 J. Angelique; G. Eduardo; Z. Jieping, J. Org. Chem. 2002, 3163-3164 
9 S. Xu, G. Wu, F. Ye, X. Wang, H. Li, X. Zhao, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2015, 54, 4669-
4672 
10 K. Takahiro; K. Chikako; K. Chizuru, Tetrahedron 2012, 68, 1492 -1501 

F

F
F

F
F

H3C CH3



 
4k11 

1H NMR (300 MHz, CDCl3): δ = 7.23-7.09 (m, 5H, ArH), 2.51 (t, J = 7.7 Hz, 2H, Ar-CH2), 

1.59-1.45 (m, 3H, ArCH2-CH2), 1.19-1.12 (m, 2H, CH2-CH-(CH3)2), 0.80 (d, 6H, J = 6.6 Hz, 

2CH3) ppm 
13C NMR (75 MHz, CDCl3): δ = 143, 128.4 (2C), 128.2 (2C), 125.6, 38.7, 36.3, 29.4, 27.9, 

22.6 (2C) ppm. 

 

 

 
4n12 

1H NMR (300 MHz, CDCl3): δ = 7.20-7.09 (m, 5H, Ar-H), 2.53 (t, J= 7.6 Hz, 2H, CH2-Ar), 

1.59-1.51 (m, 2H, ArCH2-CH2), 1.26-1.18 (m, 6H, 3CH2), 0.81 (t, J= 7.1 Hz, 3H, CH3) ppm. 
13C NMR (75 MHz, CDCl3): δ = δ 143.0, 128.4 (2C), 128.2 (2C), 125.6, 36.0, 31.8, 31.5, 

29.1, 22.7, 14.1 ppm. 

 

 
4o13 

1H NMR (400 MHz, CDCl3): δ = 7.22-7.06 (m, 5H, Ar-H), 2.52 (t, J = 7.8 Hz, 2H, Ar-CH2), 

1.56-1.51 (quint, J = 7.5 Hz, 2H, Ar-CH2-CH2), 1.26-1.18 (m, 8H, 4CH2), 0.81 (t, J = 7.0 Hz, 

3H, CH3) ppm. 
13C NMR (101 MHz, CDCl3): δ = 143.0, 128.4 (2C), 128.2 (2C), 125.6, 36.0, 31.9, 31.6, 

29.3, 29.2, 22.7, 14.1 ppm. 

 

 
4p14 

                                                
11 D. Burns, J. Miller, Ho-Kit Chan, and Michael O. Delaney, J. Am. Chem. Soc. 1997, 119, 2125-2133 
12 C.Yang, Z. Zhang, Y. Liu, L. Liu, Angew. Chem. Int. Ed. 2011, 50, 3905-3907 
13 L. McCann, H. Hunter, J. Clyburne, M. Organ, Angew. Chem. Int. Ed. 2012, 51, 7024-7027 
14 K. Nakata, C. Feng, Y. Kobayashi, Tetrahedron Lett. 2014, 55, 5774–5777 

nC3H7

nC4H9 nC4H9

nC5H11



1H NMR (300 MHz, CDCl3): δ = 7.22-7.06 (m, 5H, Ar-H), 2.52 (t, J = 7.5 Hz, 2 H, CH2-Ar), 

1.64 (quint, J = 7.6 Hz, 2 H, Ar-CH2-CH2), 1.33–1.29 (m, 10 H), 0.91 (t, J = 7.0 Hz, 3H, CH3) 

ppm. 
13C NMR (75 MHz, CDCl3): δ = 143.0, 128.4 (2C), 128.2 (2C), 125.6, 36.0, 31.9, 31.5, 29.5, 

29.4, 29.3, 22.7, 14.2 ppm. 

 

 
4q15 

1H NMR (300 MHz, CDCl3): δ = 7.33-7.17 (m, 5H, ArH), 2.63 (t, J = 7.5 Hz, 2H, CH2-Ar), 

1.64 (quint, J = 7.4 Hz, 2H, Ar-CH2-CH2), 1.30-1.26 (m, 14H, 7CH2), 0.91 (t, J = 7.0 Hz, 3H, 

CH3) ppm. 

13C NMR (76 MHz, CDCl3): δ = 143.1, 128.4(2C), 128.2 (2C), 125.5, 36.0, 31.9, 31.5, 29.7, 

29.63, 29.61, 29.5, 29.4, 22.7, 14.1 ppm. 

 

 
4r16 

 
1H NMR (300 MHz, CDCl3): δ = 7.31-7.20 (m, 5H, ArH), 2.64 (t, J = 7.5Hz, 2H, Ar-CH2), 

1.65 (quint, J = 7.3 Hz, 2H, Ar-CH2-CH2), 1.41-1.30 (m, 16H, 8CH2), 0.89 (t, J=7.2 Hz, 3H, 

CH3) ppm.  
13C NMR (76 MHz, CDCl3): δ = 143.0, 128.4 (2C), 128.2 (2C), 125.5, 36.0 (C1), 31.9 (C9), 

31.5 (C2), 29.68, 29.64, 29.61, 29.5, 29.4 (2C), 22.7, 14.1 ppm 

 

 

 
4s17,18 

                                                
15 M. Tobisu, T. Takahira, T. Morioka, N. Chatani, J. Am. Chem. Soc. 2016, 138, 6711–6714 
16 A. Link, C. Fischer, C. Sparr, Angew. Chem. Int. Ed. 2015, 54, 12163-12166 
17 AIST- Integrated Spectral Database System of Organic Compounds. (Data obtained from the National Institute 
of Advanced Industrial Science and Technology (Japan)) 
18 E. Emary; Morgan, J. Am. Oil Chem. Soc. 1978, 55, 593-595 

nC7H15

nC8H17

nC14H29 nC14H29



1H NMR (300 MHz, CDCl3): δ = 7.22-7.09 (m, 5H, ArH), 2.53 (t, J= 7.5 Hz, 2H, Ar-CH2), 

1.54 (quint, J = 7.3 Hz, 2H, Ar-CH2-CH2), 1.25-1.18 (m, 28H, 14CH2), 0.81 (t, J = 6.5 Hz, 

3H, CH3) 
13C NMR (75 MHz, CDCl3): 143.0, 128.4 (2C), 128.2 (2C), 125.5, 36.0, 31.9, 31.5, 29.7 

(9C), 29.6, 29.5, 29.4, 22.7, 14.1 ppm 

 

 

 
4t19 

This compound was produced according to the general procedure with benzylbromide as 

halide 1 and 1,5-diiodopentane as halide 2. Two molar equivalents of KHMDS were used to 

facililate the second ylide formation and the cyclization of the six-membered ring. 

Presumably, the reaction proceeded through intermediates depicted below: 

 
1H NMR (400 MHz, CDCl3): δ = 7.37-7.22 (m, 5H, ArH), 2.59-2.53 (m, 1H, Ar-CH), 1.96-

1.80 (m, 5H, 5CH2), 1.55-1.30 (m, 5H, 5CH2) ppm. 

13C NMR (101 MHz, CDCl3): δ = 148.1, 128.3 (2C), 126.9 (2C), 125.8, 44.7, 34.5(2C), 27.0 

(2C), 26.2 ppm 

 

 
4u20 

1H NMR (400 MHz, CDCl3): 7.38-7.24 (m, 5H, ArH), 2.70 (t, J = 7.7 Hz, 2H, Ar-CH2), 1.71 

(quint, J = 7.1 Hz, 2H, Ar-CH2-CH2), 1.45-1.36 (m, 10H, 5CH2), 1.00-0.97 (t, J = 7.0 Hz, 3H, 

CH3) ppm 

13C NMR (101 MHz, CDCl3): 143.0, 128.5 (2C), 128.3 (2C), 125.6, 36.1, 32.0, 31.6, 29.7, 

29.6, 29.4 (2C), 22.8, 14.2 ppm 

                                                
19 C. Indranil, O. Martin, Org. Lett. 2016, 18, 2463-2466 
20 P. Tuhin, A. Soumitra, Akanksha, M. Debabrata, Chem. Commun. 2013, 49, 69-71 

BrPPh3PPh3
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Br
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I

I
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nC6H13



 

 
4v21 

This compound was produced according to the general procedure with ethyl bromoacetate as 

halide 1 and pentadecyl tosylate as halide 2. The ethyl ester group was hydrolyzed under the 

reaction conditions. 
1H NMR (400 MHz, CDCl3): 3.69 (s, 1H, HO-CO), 2.32 (t, J = 7.5 Hz, 2H, CO-CH2), 1.66-

1.59 (m, 2H, COCH2-CH2), 1.33-1.27 (m, 27H, 13(CH2)-CH3), 0.9 (t, J = 6.6 Hz, 3H, CH2-

CH3) ppm. 

13C NMR (101 MHz, CDCl3): 174.4, 51.4, 34.1, 31.9, 29.7 (5C), 29.6, 29.5, 29.4, 29.3, 29.2, 

25.0, 22.7, 14.1 ppm. 

 

  

                                                
21 E. Bengsch, B. Perly, C. Deleuze, A. Valero., J. Magn. Reson. 1986, 68, 1-13 

nC13H27HO2C BrEtO2C
nC13H27

TsO



General Settings for C(sp3)-C(sp3) Coupling Reactions in Flow 
 

 
 

Typical reactions and conditions: i) Pump 1: alkyl bromide 1 (2.4 equiv.) in acetonitrile 

(0.08 M), 0.3 mL/min, column T = 120 °C, 5 h; ii) Pump 2: 1.0 M KHMDS (5.0 equiv.), 

THF, 0.3 mL/min, column T = 20 °C, 50 min; iii) Pump 3: alkyl bromide 2 (2.4 equiv.) in 

acetonitrile (0.08 M), 0.3 mL/min, column T = 120 °C, 5 h; iv) Pump 4: 2.0 M NaOH(aq), 0.3 

mL/min, column T = 20 °C, 4 h; v) Pump 5 (optional for regeneration of TPP-resin): Ph2SiH2 

(2.4 equiv.) in acetonitrile (0.08 M), 0.3 mL/min, column T = 120 °C, 5 h. Yields based on 

molar amount of Ph3P on TPP-resin used (3 mmol on 1 g). 

 

TPP-resin: triphenylphosphine, styrene polymer-bound, 100-200 mesh, ~3.0 mmol/g loading, 

2% cross-linked with divinylbenzene. This resin was purchased from Sigma-Alrich and used 

as is. For 4a, 2 g of TPP-resin was used; for other flow setups, 1 g TPP-resin was used. 

 

Equipment: Pumps = Little Things Factory GmbH Mr. Q continuous syringe pump; Column 

= Omnifit®, L × I.D. 100 mm × 10 mm, bed volume 5.6 mL, fixed ends; Heat block for 

column = FRX volcano; Pressure regulator = Upchurch Scientific™ 100 psi. 
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Recyclability of TPP-resin and Solid State 31P NMR Studies 
 

 
 

We carried out solid-state 31P NMR (121.4 MHz, 25 °C) studies of TPP-resin on a Bruker 

Avance III 700 MHz Solid State NMR spectrometer after each step of the homocoupling 

reaction of 1a to 4a. We could not obtain a solid state 31P NMR spectrum for the polymer-

bound phosphonium ylide intermediate due to the unstable nature of this species. The 

presence of these phosphine, phosphine oxide and phosphonium salts intermediates in the 

reaction was confirmed by the characteristic solid-state 31P NMR signals. 

 

 
  



NMR Spectra of C(sp3)-C(sp3) Coupled Products 
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