Electronic Supplementary Information

# Monodispersed gold nanoparticles supported on a Zirconium- based porous metal-organic framework and its high catalytic ability for the reverse water-gas shift reaction

Haitao Xu,<sup>a,\*</sup> Yansong Li, <sup>a</sup> Xikuo Luo, <sup>a</sup> Zhenliang Xu<sup>a</sup>, Jianping Ge<sup>b\*</sup>

<sup>a</sup> State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China. E-mail: xuhaitao@ecust.edu.cn <sup>b</sup> Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. E-mail: jpge@chem.ecnu.edu.cn

## \* Corresponding author

Tel: 86-021-64252989

Email: xuhaitao@ecust.edu.cn

jpge@chem.ecnu.edu.cn

#### **Experimental section**

### Materials and characterization methods

All chemicals were purchased from commercial suppliers and used without further purification.

**Synthesis of UIO-67:** UIO-67 was synthesized according to the procedures reported in the literature<sup>1, 2</sup>, In a typical synthesis, ZrCl<sub>4</sub> (99.99%, 0.067 g) and 4,4'-Biphenyldicarboxylic acid (98%,0.09 g) and n ml acetic acid were dissolved in N,N-Dimethylformamide (DMF, 99.8%, 15 ml) at room temperature, the mixtures were sonicated for 20 minutes and sealed in an autoclave and placed in a preheated oven at 120 °C for 24 h. After the reaction, the product was collected by centrifugation and washed with fresh DMF for three times and dried at 120 °C overnight. Fig. S2 are SEM images of UIO-67 with different amount of acetic acid, a better monodisperse octahedron appeared when 1.4 ml acetic acid was added, in the next experiment all the UIO-67 was synthesized with 1.4 ml acetic acid added.

Synthesis of Au@UIO-67-H<sub>2</sub>: Au@UIO-67-H<sub>2</sub> catalyst was prepared by mixing 0.3 g of UIO-67 with 1.9 ml HAuCl<sub>4</sub> methanol solution (1 g HAuCl<sub>4</sub>·4H<sub>2</sub>O in 100 ml methanol ) in 30 mL of MeOH, the resulting mixture was stirred at RT for 5 h before centrifugation, the obtained Au<sup>3+</sup>/UIO-67 was dried at 60 °C then reduced at 200 °C for 3 h under H<sub>2</sub> stream, the resulting sample was marked as Au@UIO-67-H<sub>2</sub>. Different Au content samples were also obtained using the same method.

**Synthesis of Au@UIO-67-NaBH<sub>4</sub>:** Au@UIO-67-NaBH<sub>4</sub> catalyst was prepared by mixing 0.3 g of UIO-67 with 1.9 ml HAuCl<sub>4</sub> methanol solution in 30 mL of MeOH, the resulting mixture was stirred at RT for 5 h and NaBH<sub>4</sub> was added (30 times excess) to the solution and stirred for one hour at RT, then washed under stirring for 4 times with methanol before centrifugation and drying at 120 °C, the catalyst was marked as Au@UIO-67-NaBH<sub>4</sub>.

**Synthesis of Au@UIO-67-oleymine:** Au@UIO-67-oleymine catalyst was prepared by mixing 0.3 g of UIO-67 with 1.9 ml HAuCl<sub>4</sub> methanol solution in 30 mL of MeOH, the resulting mixture was stirred at RT for 5 h before centrifugation, the obtained Au<sup>3+</sup>/UIO-67 was dried at 60 °C and dispersed in 10 ml oleylamine and stirred for 5 h at 100 °C, after the reaction the sample was washed under stirring for 5 times with ethanol before centrifugation and drying at 120 °C, the sample was marked as Au@UIO-67-oleylamine. As a comparison, 60 °C without stirring has also been done.

Synthesis of Au@TiO<sub>2</sub>-H<sub>2</sub>: Au@TiO<sub>2</sub>-H<sub>2</sub> catalyst was prepared by mixing 0.3 g of TiO<sub>2</sub> with 1.9 ml HAuCl<sub>4</sub> methanol solution in 30 mL of MeOH, the resulting mixture was stirred at RT for 5 h before centrifugation, the obtained Au<sup>3+</sup>/TiO<sub>2</sub> was dried at 60 °C then reduced at 200 °C for 3h under H<sub>2</sub> stream, the resulting sample was marked as Au@TiO<sub>2</sub>-H<sub>2</sub>.

Synthesis of Au@MgO-H<sub>2</sub>: Au@ MgO-H<sub>2</sub> catalyst was prepared by mixing 0.3 g of MgO with 1.9 ml HAuCl<sub>4</sub> methanol solution in 30 mL of MeOH, the resulting mixture was stirred at RT for 5 h before centrifugation, the obtained Au<sup>3+/</sup> MgO was dried at 60 °C then reduced at 200 °C for 3h under H<sub>2</sub> stream, the resulting sample was marked as Au@MgO-H<sub>2</sub>.

#### N<sub>2</sub> adsorption-desorption measurements:

The specific surface areas of the samples were characterized by  $N_2$  physisorption measurements at 77 K and all samples were outgassed at 150 °C for 3 h under a primary vacuum.

Activity test of catalysts: The activity test of the  $CO_2$  hydrogenation was performed with a fixedbed flow reactor and analyzed using a gas chromatograph(GC) equipped with hydrogen flame ionization detector (FID). Contents were quantified with external standard method. The operating parameters are as follows: column temperature, 80 °C; detector temperature, 120 °C; carrier gas, hydrogen. All the samples were activated with H<sub>2</sub> at 200 °C for 3 h before catalytic test.



Fig. S1 CAD drawing of fixed-bed flow reactor

 Table S1 Deposition efficiency with different gold nanoparticle (AuNP) content supported within

 UIO-67.

| Samples                           | Nominal metal              | Actual metal               |  |  |
|-----------------------------------|----------------------------|----------------------------|--|--|
|                                   | loading (wt%) <sup>a</sup> | loading (wt%) <sup>b</sup> |  |  |
| 0.71 wt% Au@UIO-67-H <sub>2</sub> | 1.0                        | 0.71                       |  |  |
| 2.40 wt% Au@UIO-67-H <sub>2</sub> | 3.0                        | 2.40                       |  |  |
| 4.30 wt% Au@UIO-67-H <sub>2</sub> | 5.0                        | 4.30                       |  |  |

<sup>a</sup>Determined by loading amount of metal precursors.

<sup>b</sup>Determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis.

| Catalyst            | Catalyst | Au/Co/Mo       | Т    | $H_2/CO_2$ | GHSV     | CO <sub>2</sub> | со          | CH <sub>4</sub> | Ref. |
|---------------------|----------|----------------|------|------------|----------|-----------------|-------------|-----------------|------|
|                     | dosage   | content        | (°C) |            | mL/(h·g) | conversion      | selectivity | selectivity     |      |
|                     | (g)      | (%)            |      |            |          | (%)             | (%)         | (%)             |      |
| Au@UIO-67           | 0.2      | 2.4            | 408  | 1:1        | 12000    | 12.2            | /           | /               | This |
| -H <sub>2</sub>     |          |                |      |            |          |                 |             |                 | work |
| Au@UIO-67           | 0.2      | 2.4            | 408  | 3:1        | 12000    | 30.5            | 96.5        | 3.5             | This |
| -H <sub>2</sub>     |          |                |      |            |          |                 |             |                 | work |
| Au@TiO2             | 0.2      | 3 <sup>a</sup> | 408  | 3:1        | 12000    | 1.9             | /           | /               | This |
| -H <sub>2</sub>     |          |                |      |            |          |                 |             |                 | work |
| Au@MgO              | 0.2      | 3 <sup>a</sup> | 408  | 3:1        | 12000    | 1.7             | /           | /               | This |
| -H <sub>2</sub>     |          |                |      |            |          |                 |             |                 | work |
| Au/CeO <sub>2</sub> | 1        | 3              | 400  | 1:1        | 12000    | 15.4            | /           | /               | S3   |
| Au/CeO <sub>2</sub> | 1        | 3              | 400  | 3:1        | 12000    | 27.6            | 100         | 0               | S3   |
| Co/CeO <sub>2</sub> | 0.02     | 2              | 400  | 1:1        | 300000   | 6               | 97          | 3               | S4   |
| Co/CeO <sub>2</sub> | 0.02     | 2              | 450  | 1:1        | 300000   | 16              | 100         | 0               | S4   |
| β-Μο2C              | 0.05     | /              | 400  | 4:1        | 36000    | 28              | 98          | 2               | S5   |

Table S2 The comparison between the results in this work and the results reported in literature

<sup>a</sup> Nominal metal loading, determined by loading amount of metal precursors.

Seen in the Table S2, CO<sub>2</sub> conversion of three catalysts for RWGS are about 30.5% for Au@UIO-67-H<sub>2</sub>, 1.9% for Au@TiO<sub>2</sub>-H<sub>2</sub>, and 1.7% for Au@MgO-H<sub>2</sub> respectively. The results show Au@UIO-67-H<sub>2</sub> is the highly active catalyst, and its catalytic activity is much better than that of Au@ TiO<sub>2</sub>-H<sub>2</sub> or Au@MgO-H<sub>2</sub> for RWGS. In the preparation process of Au@ UIO-67-H<sub>2</sub> catalysts, due to the porosity and exceptionally high surface areas of UIO-67, Au<sup>3+</sup> is favor to be adsorbed on the exterior pores or cavities of UIO-67 when stirring with HAuCl<sub>4</sub> in methanol, and is further reduced to AuNPs. Compared with UIO-67, common metal oxide supports such as TiO<sub>2</sub> or MgO shows no pores and low surface areas, Au<sup>3+</sup> is not easy to be adsorbed on the supports under the same conditions. So Au@TiO<sub>2</sub>-H<sub>2</sub> and Au@MgO-H<sub>2</sub> catalysts perform a very poor catalytic activity for RWGS, indicating that this method is not suitable for imporous metal oxide as supports to synthesize composite Au catalysts.



**Fig. S2** SEM images of UIO-67 with different amount of acetic acid. (a) 0 ml, (b) 0.2 ml, (c) 0.4 ml, (d) 0.6 ml, (e) 0.8 ml, (f) 1.0 ml, (g) 1.2 ml, (h) 1.4 ml. Through the SEM images, we can see a better monodisperse octahedron appeared when 1.4 ml acetic acid was added.



Fig. S3 TEM images of UIO-67



Fig. S4 TEM images of Au@UIO-67-NaBH<sub>4</sub>



Fig. S5 TEM images of Au@UIO-67-oleylamine (Reduction temperature was 60 °C and without stirring)



**Fig. S6** (a, b, c) TEM images of Au@UIO-67-oleylamine, (d) Oleylamine solution after the reduction of Au<sup>3+</sup>/UIO-67 and optical photograph of Au@UIO-67-oleylamine (Reduction temperature was 100 °C with stirring)



Fig. S7 TEM images of 0.71 wt% Au@UIO-67-H $_2$ 



Fig. S8 TEM images of 2.40 wt% Au@UIO-67-H $_2$  (a, b, c) and HRTEM images (d, e, f)



Fig. S9 TEM images of 4.30 wt% Au@UIO-67- $H_2$ 



Fig. S10 TEM images of Au@UIO-67-NaBH $_4$  catalyst after catalytic test



Fig. S11 TEM images of Au@UIO-67-oleylamine catalyst after catalytic test



Fig. S12 TEM images of Au@UIO-67-H $_2$  catalyst after catalytic test



**Fig. S13** XRD patterns of UIO-67-simulation (black), UIO-67-experiment (red), Au@UIO-67-NaBH<sub>4</sub> (blue), Au@UIO-67-oleylamine (magenta), Au@UIO-67-H<sub>2</sub> (green).



Fig. S14 XRD patterns of 0.71 wt% Au@UIO-67-H<sub>2</sub> (magenta), 2.40 wt% Au@UIO-67-H<sub>2</sub> (blue) and 4.30 wt% Au@UIO-67-H<sub>2</sub> (red).









Fig. S16 N<sub>2</sub> adsorption isotherms at 77 K for Au@UIO-67-oleylamine (a), Au@UIO-67-NaBH<sub>4</sub>
(b) and corresponding micropore size distribution (inset), (nominal metal loading are both 3.0 wt%)



**Fig. S17** The corresponding micropore size distribution of UIO-67 and 0.71 wt% Au@UIO-67-H<sub>2</sub>, 2.40 wt% Au@UIO-67-H<sub>2</sub>, 4.30 wt% Au@UIO-67-H<sub>2</sub>.



Fig. S18 XPS patterns of the 2.4 wt% Au@UIO-67-H\_2 catalyst before catalysis



Fig. S19 XPS patterns (Au) of three catalysts before (left) and after (right) catalysis



**Fig. S20** CO<sub>2</sub> conversion of three catalysts for RWGS, Au@UIO-67-H<sub>2</sub> (black), Au@UIO-67-NaBH<sub>4</sub> (red) and Au@UIO-67-oleylamine (blue) at the same conditions. (catalyst: 0.2 g, temperature: 408 °C, space velocity: 12000 ml/h·gcat, pressure: 2.0 Mpa, CO<sub>2</sub>:H<sub>2</sub>=1:5)



**Fig. S21** CO<sub>2</sub> conversion of three catalysts for RWGS, Au@UIO-67-H<sub>2</sub> (black), Au@TiO<sub>2</sub>-H<sub>2</sub> (red) and Au@MgO-H<sub>2</sub> (blue) at the same conditions. (catalyst: 0.2 g, temperature: 408 °C, space velocity: 12000 ml/h·gcat, pressure: 2.0 Mpa, CO<sub>2</sub>:H<sub>2</sub>=1:3)



**Fig. S22** (a) CO<sub>2</sub> conversion at different reaction temperatures for RWGS (catalyst: 0.2 g of 2.40 wt% Au@UIO-67-H<sub>2</sub>, pressure: 2.0 Mpa, space velocity: 12000 ml/h·gcat, CO<sub>2</sub>:H<sub>2</sub>=1:3); (b) CO<sub>2</sub> conversion under different reaction pressures for RWGS (catalyst: 0.2 g of 2.40 wt% Au@UIO-67-H<sub>2</sub>, temperature: 408 °C, space velocity: 12000 ml/h·gcat, CO<sub>2</sub>:H<sub>2</sub>=1:3); (c) CO<sub>2</sub> conversion with different volume ratios for RWGS (catalyst: 0.2 g of 2.40 wt% Au@UIO-67-H<sub>2</sub>, temperature: 408 °C, pressure: 2.0 Mpa, space velocity: 12000 ml/h·gcat); (d) CO<sub>2</sub> conversion with different Au contents for RWGS (catalyst: 0.2 g of Au@UIO-67-H<sub>2</sub>, temperature: 408 °C, space velocity: 12000 ml/h·gcat); (d) CO<sub>2</sub> conversion with different XI contents for RWGS (catalyst: 0.2 g of Au@UIO-67-H<sub>2</sub>, temperature: 408 °C, space velocity: 12000 ml/h·gcat); (d) CO<sub>2</sub> conversion with different XI contents for RWGS (catalyst: 0.2 g of Au@UIO-67-H<sub>2</sub>, temperature: 408 °C, space velocity: 12000 ml/h·gcat); (d) CO<sub>2</sub> conversion with different XI contents for RWGS (catalyst: 0.2 g of Au@UIO-67-H<sub>2</sub>, temperature: 408 °C, space velocity: 12000 ml/h·gcat); (d) CO<sub>2</sub> conversion with different XI contents for RWGS (catalyst: 0.2 g of Au@UIO-67-H<sub>2</sub>, temperature: 408 °C, space velocity: 12000 ml/h·gcat, CO<sub>2</sub>:H<sub>2</sub>=1:5).



Fig. S23 Selectivity of CO and CH<sub>4</sub> (left) and longevity test of 2.4 wt% Au@UIO-67-H<sub>2</sub> (right) (catalyst: 0.2 g of 2.40 wt% Au@UIO-67-H<sub>2</sub>, temperature: 408 °C, space velocity: 12000 ml/h·gcat, CO<sub>2</sub>:H<sub>2</sub>=1:5)

- 1. M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp and O. K. Farha, *Chemical communications*, 2013, **49**, 9449-9451.
- A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke and P. Behrens, *Chemistry*, 2011, 17, 6643-6651.
- X. Zhu, X. Qu, X. Li, J. Liu, J. Liu, B. Zhu and C. Shi, *Chinese J Catal*, 2016, 37, 2053-2058.
- 4 L. Wang, H. Liu, Y. Chen and S. Yang, Int. J. Hydrogen Energy, 2017, 42, 3682-3689
- 5 J. Gao, Y. Wu, C. Jia, Z. Zhong, F. Gao, Y. Yang and B. Liu, *Catal. Commun.*, 2016, 84, 147-150.