Chemical Communication

Supplementary Information for

Ligand-free nickel-catalyzed semihydrogenation of alkynes with sodium borohydride: a highly efficient and selective process for *cis*-alkenes under ambient conditions

Xin Wen,^{a,†} Xiaozhen Shi,^{a,†} Xianliang Qiao,^a Zhilei Wu,^a Guoyi Bai.^{a,*}

^aKey Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.

†These authors contributed equally to this work.

* Corresponding author: Phone: +86-312-5079359; Fax: +86-312-5937102. E-mail address: baiguoyi@hotmail.com.

Supplementary Information

Table of contents

1. Experimental details	Page S3
2. Table S1 Influence of ratio of Ni and DPA on the selectivity	Page S5
3. Table S2 Comparison of TOF for the semihydrogenation of DPA to <i>cis</i> -stilber	ne with
different reported catalysts	Page S6
4. Figure S1 The <i>in-situ</i> IR spectra of the semihydrogenation of DPA	Page S8
5. Figure S2 Influence of cycle number on the conversion and selectivity	Page S9
6. NMR spectra data of products	Page S10
7. ¹ H and ¹³ C NMR spectra of products	Page S14
8. Direct ¹¹ B NMR in CD ₃ OD	Page S23

Experimental Details

General

Chemical reactants were purchased from J&K Scientific Ltd. and Aladdin Reagent Co. Ltd. and used without further purification.

The NMR spectra were measured with a Bruker spectrometer using a reference compound, for example, tetramethylsilane for ¹H and ¹³CNMR and borontrifluorideether complex for ¹¹B NMR. The *in-situ* IR spectra were performed on a Nicolet iS10spectrometer configured with a flexible infrared fiber-optic probe. Transmission electron microscopy (TEM) images were obtained with a FEI Tecnai G2 F20 S-TWIN instrument at a voltage of 200 kV. Reaction mixtures were analyzed by Agilent 7820A gas chromatography by using a 30 m HP-5 capillary column and the product were identified using gas chromatography–mass spectrometry (GC–MS) on an Agilent 7890-5977a spectrometer.

Typical procedure of the Ni(0)-catalyzed semihydrogenation of alkynes

To a vial containing alkyne (1.0 mmol) in the solvent (8 mL), 50 μ L of methanol solution containing NiCl₂·6H₂O (20 mg/mL) were added at room temperature. The solution was then stirred vigorously using a magnetic stirrer. After 10 minutes, a certain amount of borohydrides or ammonia borane was added, and the color of solution immediately turned to black or brown. The reaction was monitored by TLC and GC, and when the reaction was complete, the methanol was removed under reduced pressure. The crude products were purified by column chromatography on silica gel to withhold the catalyst and inorganic salts.

The crude products of alkynes were identified using GC–MS and the *cis-trans* isomerism was determined by NMR.

Two-steps procedure of the semihydrogenation of DPA

To a vial containing methanol (8 mL), 50 μ L of methanol solution containing NiCl₂·6H₂O (20 mg/mL) were added at room temperature. The solution was then stirred vigorously using a magnetic stirrer. After 10 minutes, sodium borohydride (15 mg, 0.39 mmol) was added and then the color of solution turned to black immediately, suggesting that the formation of Ni nanoparticles. DPA (178 mg, 1.0 mmol) and sodium borohydride (61 mg, 1.61 mmol) were added to the reaction mixture and the reaction was monitored by TLC and GC.

Substrate	Ratio of Ni and DPA	Time	Conversion	Z/E/alkane
	(mol%)	(min)	(%)	(%)
DPA	0.2	5	72	93/6/1
	0.2	10	100	89/8/3
DPA	0.4	5	98	94/5/1
DPA	0.8	3	100	92/5/3
		5	100	76/11/13
DPA	2	5	100	54/17/29
DPA	8	5	100	3/9/88

Table S1 Influence of ratio of Ni and DPA on the selectivity for *cis*-stilbene^a

^{*a*}**Reaction conditions:** DPA (178 mg, 1.0 mmol), NiCl₂·6H₂O (0.4 mol%), methanol (8 mL), NaBH₄ (78 mg), at room temperature, in air atmosphere.

Catalyst	Hydrogen source	Temp. (°C)	TOF ^a (h ⁻¹)	Reference
Lindlar catalyst	1 atm H ₂	r. t.	380	S1
Pd ⁰ -AmP-HSNs	1 atm H ₂	r. t.	106	S 1
Pd(OAc) ₂ PPh ₂ Et/SiO ₂	1.03 MPa syngas	70	10.4	S2
Pd-PEI-HAS	0.1 MPa H ₂	r. t.	3027	83
Pd/SBA-gt-PEI	0.1 MPa H ₂	r. t.	2598	S 3
Pd@Ag-0.20	1 atm H ₂	r. t.	75	S4
Pd(OAc) ₂	DMF/KOH	145	8.25	S 5
Au/TiO ₂	NH ₃ BH ₃	25	190	S6
Nanoporous Au	НСООН	70	5	S7
Ni/gallium nanoalloys	0.5 MPa H ₂	120	139	S 8
NiBr ₂	Zn/HCOOH	120	0.59	S 9
(P-P)Ni(2- <i>C</i> , <i>C</i> -alkyne)	NH ₃ BH ₃	80	2.78	S10
(P-P)Ni(2- <i>C</i> , <i>C</i> -alkyne)	NaBH ₄	80	2.4	S10
Fe ₂ (CO) ₉ source [Fe]	PhSiH ₃	100	0.5	S11
[(PPh ₃)CuCl] ₄	5 atm H ₂ and <i>i</i> - PrOH	100	16.5	S12
POPs-[V]	1.38 MPa H ₂	60	4	S13
POPs-[Cr]	1.38 MPa H ₂	60	0.6	S13
Ni catalyst	NaBH ₄	r. t.	2940	This work

Table S2 Comparison of TOF for the semihydrogenation of DPA to *cis*-stilbene with

 different reported catalysts

^{*a*}TOF = mol of consumed DPA/(mol of metal × time)

References:

- S1. O. Verho, H. Zheng, K. P. Gustafson, A. Nagendiran, X. Zou and J. E. Bäckvall, *ChemCatChem*, 2016, 8, 773–778.
- S2. S. A. Jagtap, T. Sasaki and B. M. Bhanage, J. Mol. Catal. A, 2016, 414, 78-86.
- S3. W. Long, N. A. Brunelli, S. A. Didas, E. W. Ping and C. W. Jones, ACS Catal., 2013, 3, 1700-1708.
- S4. T. Mitsudome, T. Urayama, K. Yamazaki, Y. Maehara, J. Yamasaki, K. Gohara, Z. Maeno, T. Mizugaki, K. Jitsukawa and K. Kaneda, ACS Catal., 2016, 6, 666–670.
- **S5.** J. Li, R. Hua and T. Liu, J. Org. Chem., 2010, 75, 2966-2970.
- S6. E. Vasilikogiannaki, I. Titilas, G. Vassilikogiannakis and M. Stratakis, *Chem. Commun.*, 2015, 51, 2384-2387.
- S7. Y. S. Wagh and N. Asao, J. Org. Chem., 2015, 80, 847-851.
- S8. K. Schütte, A. Doddi, C. Kroll, H. Meyer, C. Wiktor, C. Gemel, G. Tendeloo,
 R. A. Fischer and C. Janiak, *Nanoscale*, 2014, 6, 5532-5544.
- S9. S. Enthaler, M. Haberberger and E. Irran, Chem.-Asian J., 2011, 6, 1613-1623.
- S10. R. Barrios-Francisco and J. J. García, Appl. Catal. A, 2010, 385, 108-113.
- S11. E. Richmond and J. Moran, J. Org. Chem., 2015, 80, 6922-6929.
- S12. K. Semba, R. Kameyama and Y. Nakao, *Synlett.*, 2015, 26, 318-322.
- S13. K. K. Tanabe, M. S. Ferrandon, N. A. Siladke, S. J. Kraft, G. Zhang, J. Niklas,
 O. G. Poluektov, S. J. Lopykinski, E. E. Bunel, T. R. Krause, J. T. Miller, A. S.
 Hock and S. T. Nguyen, *Angew. Chem. Int. Ed.*, 2014, 53, 12055-12058.

The in-situ IR monitoring of the semihydrogenation of DPA

The *in-situ* IR spectra of DPA and *cis*-stilbene were measured with a methanol background. Before the reaction, the background in the mixture of methanol (8 mL), NiCl₂·6H₂O in methanol (50 μ L, 20 mg/mL), was collected and then DPA (178 mg, 1.0 mmol) was added and the results were shown in Fig. S1. In the absence of NaBH₄ (0 s), the spectrum of solution was consistent with the spectra of DPA. After the addition of NaBH₄ (76 mg), the absorption peaks of DPA (mainly at 674, 760, 1443 and 1498 cm⁻¹) were weakened markedly compared with the pure DPA, whilst the absorption peaks of *cis*-stilbene appeared at 656, 692 and 782 cm⁻¹. When the reaction was completed (300 seconds), the characteristic peaks of DPA disappeared. The peaks of NaBH₄ at about 1010-1030 cm⁻¹ decreased along with the increasing of peaks at about 1200, 1080 and 960-980 cm⁻¹, thus exhibiting the generation of NaB(OCH₃)₄, as demonstrated by ¹¹B NMR.

Fig. S1 The *in-situ* IR spectra of the semihydrogenation of DPA.

Fig. S2 Influence of cycle number on the conversion and selectivity in the

semihydrogenation of DPA within 20 minutes.

NMR spectra data of products

cis-Stilbene^{S14}

¹H NMR (600 MHz, CDCl₃): 7.18-7.11 (m, 10H), 6.53 (s, 2H); ¹³C NMR (151 MHz,

CDCl₃): 137.3, 130.3, 128.9, 128.2, 127.1.

Monodeuterated *cis*-stilbene using NaBD₄^{S15}

¹H NMR (600 MHz, CDCl₃): 7.25-7.16 (m, 10H), 6.59 (s, 1H); ¹³C NMR (151 MHz,

CDCl₃): 137.3, 137.2, 130.2, 129.0, 128.3, 127.2.

Monodeuterated cis-stilbene using CH₃OD^{S15}

¹H NMR (600 MHz, DMSO-*d*₆): 7.27-7.20 (m, 10H), 6.64 (s, 1H); ¹³C NMR (151

MHz, DMSO-*d*₆): 136.8, 136.7, 129.0, 128.4, 128.3, 127.2.

Dideuterated cis-stilbene using NaBD₄ and CH₃OD^{S16}

¹H NMR (600 MHz, DMSO-*d*₆): 7.27-7.20 (m, 10H); ¹³C NMR (151 MHz, DMSO-*d*₆): 136.7, 128.5, 128.3, 127.2.

cis-Methyl 3-phenylacrylate^{S17}

¹H NMR (600 MHz, DMSO-*d*₆): 7.62 (d, 2H), 7.40-7.35 (m, 3H), 7.03 (d, *J*=12.6 Hz, 1H), 6.03 (d, *J* = 12.6 Hz, 1H), 3.66 (s, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆): 166.1, 142.3, 134.5, 129.6, 129.0, 128.0, 119.2, 51.1.

cis-methyl-2-(hex-1-en-1-yl) benzoate^{S18}

¹H NMR (600 MHz, DMSO-*d*₆): 7.83 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 6.78 (d, J = 11.6 Hz, 1H), 5.65 (td, $J_1 = 11.6$ Hz, $J_2 = 7.4$ Hz, 1H), 3.78 (s, 3H), 2.07-2.03 (m, 2H), 1.33-1.28 (m, 2H), 1.24-1.17 (m, 2H), 0.76 (t, J = 7.2Hz, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆): 166.9, 137.8, 131.9, 131.5, 130.3, 129.8, 129.2, 128.2, 126.8, 51.8, 31.2, 27.4, 21.6, 13.5.

cis-but-1-ene-1yl-benzene^{S18}

¹H NMR (600 MHz, DMSO-*d*₆): 7.38-7.27 (m, 5H), 6.38 (d, J = 12.0 Hz, 1H), 5.64 (td, $J_1 = 11.4$ Hz, $J_2 = 7.2$ Hz, 1H), 2.93 (q, 3H), 1.02 (t, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆): 137.1, 134.2, 128.5, 128.4, 128.2, 128.1, 126.6, 125.7, 21.5, 14.2.

cis-4-octene^{S19}

¹H NMR (600 MHz, CDCl₃): 5.35 (t, 2H, J = 7.2 Hz), 2.05 (m, 4H), 1.39 (m, 4H), 0.91 (t, 6H); ¹³C NMR (151 MHz, CDCl₃): 130.5, 30.3, 23.2, 14.1.

cis-1-styryl-4-(trifluoromethyl)benzene^{S20}

¹H NMR (600 MHz, DMSO-*d*₆): 7.57 (d, 2H), 7.40 (d, 2H), 7.27-7.19 (m, 5H), 6.78 (d, 1H, J = 12.6 Hz), 6.68 (d, 1H, J = 11.4 Hz); ¹³C NMR (151 MHz, DMSO-*d*₆): 141.0, 136.2, 132.2, 129.1, 128.5, 128.4, 128.4, 127.6, 125.1 ($J_1 = 3.8$ Hz, $J_2 = 3.5$ Hz), 123.2.

Reference (continued):

S14. R. Kusy and K. Grela, Org. Lett., 2016, 18, 6196-6199.

S15. J. Li, R. Hua and T. Liu, J. Org. Chem., 2010, 75, 2966-2970.

- S16. O. Cusso, I. Garcia-Bosch, D. Font, X. Ribas, J. Lloret-Fillol and M. Costas, Org. Lett., 2013, 15, 6158-6161.
- S17. J. J. Zhong, Q. Liu, C. J. Wu, Q. Y. Meng, X. W. Gao, Z. J. Li, B. Chen, C. H. Tung and L. Z. Wu, *Chem. Commun.*, 2016, 52, 1800-1803.
- S. S. Li, X. Liu, Y. M. Liu, H. Y. He, K. N. Fan and Y. Cao, *Chem. Commun.*, 2014, 50, 5626-5628.
- S19. T. Mitsudome, T. Urayama, K. Yamazaki, Y. Maehara, J. Yamasaki, K. Gohara, Z. Maeno, T. Mizugaki, K. Jitsukawa and K. Kaneda, ACS Catal., 2016, 6, 666-670.
- S. Fu, N. Y. Chen, X. Liu, Z. Shao, S. P. Luo, Q. Liu, J. Am. Chem. Soc., 2016, 138, 8588.

¹H and ¹³C NMR spectra of products

¹H NMR of monodeuterated *cis*-stilbene using NaBH₄ and CH₃OH in CDCl₃

¹H NMR of monodeuterated *cis*-stilbene using NaBD₄ and CH₃OH in CDCl₃

¹³C NMR of monodeuterated *cis*-stilbene using NaBD₄ and CH₃OH in CDCl₃

¹H NMR of monodeuterated *cis*-stilbene using NaBH₄ and CH₃OD in DMSO-*d*₆

¹³C NMR of monodeuterated *cis*-stilbene using NaBH₄ and CH₃OD in DMSO-*d*₆

¹H NMR of dideuterated *cis*-stilbene using NaBD₄ and CH₃OD in DMSO-*d*₆

¹³C NMR of dideuterated *cis*-stilbene using NaBD₄ and CH₃OD in DMSO-*d*₆

¹H NMR of *cis*-methyl 3-phenylacrylate in DMSO-*d*₆

¹³C NMR of *cis*-methyl 3-phenylacrylate in DMSO-*d*₆

¹H NMR of *cis*-methyl-2-(hex-1-en-1-yl) benzoate in DMSO-*d*₆

¹³C NMR of *cis*-methyl-2-(hex-1-en-1-yl) benzoate in DMSO-*d*₆

¹H NMR of *cis*-But-1-ene-1yl-benzene in DMSO-*d*₆

¹³C NMR of *cis*-But-1-ene-1yl-benzene in DMSO-*d*₆

¹H NMR of *cis*-4-octene in CDCl₃

¹³C NMR of *cis*-4-octene in CDCl₃

¹H NMR of *cis*-1-styryl-4-(trifluoromethyl)benzene in DMSO-*d*₆

 $^{13}\mathrm{C}$ NMR of cis-1-styryl-4-(trifluoromethyl) benzene in DMSO-d_6

Direct ¹¹B NMR in CD₃OD

Direct ¹¹B NMR of liquid phase from the semihydrogenation of DPA using

CD₃OD as solvent