Supporting Information

for

Dynamic kinetic asymmetric transfer hydrogenation-cyclization

tandem reaction: an easy access to chiral 3,4-dihydro-2H-pyran-

carbonitriles

Dongsong Zheng,^a Qiankun Zhao,^a Xiaoying Hu,^a Tanyu Cheng,^a Guohua Liu,^{a,*} and Wei Wang^{a,b,*}

^{*a*} Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China

^b Department of Chemistry & Chemical Biology, University of New Mexico, MSC 03 2060, Albuqueruqe, NM 87131, USA

CONTENTS

. General Information and Catalytic Experiments					
2. Characterizations of Chiral Products					
Table S1. Optimization of Reaction Temperature for the ATH/Cyclization					
Enantioselective Cascade Reaction of 2-(3-oxo-3-phenylpropyl)malononitrile					
Table S2. Optimization of Bases and Catalysts for the DKR-ATH/Cyclization					
Enantioselective Cascade Reaction of 2-(3-oxo-1,3-diphenylpropyl)malononitrileS14					
3. Mechanistic Studies					
4. Experiment for growing X-ray crystal structure of chiral 4h and Figure S3. X-Ray					
crystal structures of chiral 4h and its 1:1 mixture of (S, S) and (S, R) epimeric form. S19					
5. ¹ H NMR, ¹³ C NMR and HRMS of Chiral Products					
6. HPLC Trace Analyses of Chiral Products					

1. General Information and Catalytic Experiments

1.1. General. All reagents and solvents were purchased from commercial sources and used without further purification. All compounds are bought by commodity resources. Compounds (1 and 3) was synthesized according to the reported literatures (A. Russo, A. Perfetto, A. Lattanzi, *Adv. Synth. Catal.* **2009**, *351*, 3067–3071). Analytical HPLC was carried out with a Waters[®] Chromatography setup consisting of: Waters[®] 717plus Autosampler, Waters[®] 1525 Binary HPLC Pump, and Waters[®] 2478 Dual λ Absorbance Detector. The enantiomeric excesses (ee) were determined using a Daicel Chiralcel[®] column AD–H or OD–H or OJ–H with the above HPLC setup. Optical rotations were measured on a Rudolph Research Analytical Autopol VI automatic polarimeter using a 50 mm path-length cell at 589 nm.

1.2. General Procedure for ATH/Cyclization of Substituted 2-(3-oxo-1arylpropyl)malononitriles. The catalyst A (2 μ mol, S/C = 50), 1 (0.10 mmol), HCOONa (1.0 mmol, 68 mg, 10 equiv), and ⁱPrOH/H₂O(v/v = 3/1) (4 mL) were added

in a 10 mL round bottom flask in turn. The mixture was allowed to react at 60 °C for 1-

5 h. The reaction was monitored constantly by TLC. After completion of the reaction, the solvent was removed by evaporation. The residue is dissolved in 2 mL water, and then the aqueous solution was extracted by ethyl acetate (3×3.0 mL). The combined ethyl acetate was washed with brine twice and dehydrated with Na₂SO₄. After the evaporation of EA, the residue was purified by silica gel flash column chromatography to afford the desired product. The *ee* value was determined by a Daicel Chiralcel[®] AD–H or OD–H or OJ–H column.

1.3. Procedure General for **DKR-ATH/Cyclization** of 2-(3-oxo-1,3diarylpropyl)malononitriles. The catalyst A (2 μ mol, S/C = 50), 3 (0.10 mmol), HCOONa (1.0 mmol, 68 mg, 10 equiv), Et₃N (0.10 mmol, 14.0 µL, 1.0 equiv) and ⁱPrOH/H₂O (v/v = 3/1) (4 mL) were added in a 5 mL round bottom flask in turn. The mixture was allowed to react at 60 °C for 5-12 h. The reaction was monitored constantly by TLC. After completion of the reaction, the solvent was removed by evaporation. The residue is dissolved in 2 mL water, and then the aqueous solution was extracted by ethyl acetate(EA) (3 \times 3.0 mL). The combined EA was washed with brine twice and dehydrated with Na₂SO₄. After the evaporation of EA, the residue was purified by silica gel flash column chromatography to afford the desired product. The ee value was determined by a Daicel Chiralcel® AD-H or OD-H or OJ-H column.

2. Characterizations of Chiral Products

2a: (*S*)-6-Amino-2-phenyl-3,4-dihydro-2*H*-pyran-5-carbonitrile. White solid, m. p. 123-124 °C, yield 99%, 97% *ee*, $[\alpha]_D^{25} = +42.6319$ (c 0.7467, CHCl₃); ¹H NMR (400

NH₂ NH₂ NH₂ NH₂ NH₂ NH₂ NH₂ NH₂, CDCl₃) δ 7.45–7.26 (m, 5H), 5.03 (dd, J = 10.5, 2.4 Hz, 1H), 4.38 (s, 2H), 2.47 (m, J = 14.7, 11.0, 6.1 Hz, 1H), 2.30 (m, J = 14.8, 6.0, 3.0 Hz, 1H), 2.16–2.06 (m, 1H), 2.01–1.89 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.84, 139.51, 128.94, 128.79, 126.13, 121.96, 80.05, 54.62, 29.27, 21.05. HRMS (ESI): m/z

 $[M+H]^+$ calculated for C₁₂H₁₂N₂O: 201.1022; found: 201.1021. HPLC (AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 25 °C), t₁ = 29.9 min (major), t₂ = 35.5 min (minor).

2b: (*S*)-6-Amino-2-(4-fluorophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile. White solid, m. p. 138-139 °C, yield 97%, 97% *ee*, $[\alpha]_D^{25} = +44.6560$ (c 1.0250, CHCl₃); ¹H

NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 8.6, 5.2 Hz, 2H), 7.10 (t, J = 8.6 Hz, 2H), 5.00 (dd, J = 10.5, 2.3 Hz, 1H), 4.37 (s, 2H), 2.47 (m, J = 14.8, 11.0, 6.1 Hz, 1H), 2.30 (m, J = 14.8, 5.7, 2.6 Hz, 1H), 2.14–2.05 (m, 1H), 1.92 (m, J = 14.0, 10.9, 5.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.68, 161.70, 141.29, 135.35–135.32 (d, J = 3.2 Hz), 130.14–130.05 (d, J = 8.6 Hz),

128.04–127.95 (d, J = 8.4 Hz), 121.79, 115.99–115.77 (d, J = 21.7 Hz), 79.41, 54.70, 29.31, 21.04. HRMS (ESI): m/z [M+H]⁺ calculated for C₁₂H₁₁N₂OF: 219.0928; found: 219.0928; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 25 °C), t₁ = 37.8 min (major), t₂ = 45.7 min (minor).

2c: (S)-6-Amino-2-(3-fluorophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile. White solid, m. p. 58-59 °C, yield 95%, 95% *ee*, $[\alpha]_D^{25} = +30.2676$ (c 0.3667, CHCl₃); ¹H

NMR (400 MHz, CDCl₃) δ 7.45–7.26 (m, 1H), 7.09 (dd, J = 17.7, 8.3 Hz, 3H), 5.02 (d, J = 10.4 Hz, 1H), 4.44 (s, 2H), 2.45 (m, J = 16.6, 10.9, 6.1 Hz, 1H), 2.28 (m, J = 14.9, 5.7, 3.0 Hz, 1H), 2.18–2.04 (m, 1H), 1.99–1.83 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.39, 163.54, 161.93, 142.08–142.01 (d, J = 7.2 Hz), 130.59–130.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 130.59–130.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 130.59–130.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 130.59–130.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 130.59–130.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 130.59–130.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 130.59–130.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 120.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 120.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 120.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 120.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 120.51 (d, J = 7.7 Hz), 121.65–121.62 (d, J = 7.2 Hz), 120.51 (d, J = 7.7 Hz), 120.51 (d, J = 7.7

3.2 Hz), 115.70–115.50 (d, J = 20.6 Hz), 113.24–113.02 (d, J = 22.6 Hz), 79.12, 54.73, 29.28, 20.87. HRMS (ESI): m/z [M+H]⁺ calculated for C₁₂H₁₁N₂OF: 219.0928; found: 219.0929; HPLC (OJ-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 254 nm, flow rate: 1.0 mL/min, 25 °C), t₁ = 41.4 min (major), t₂ = 46.7 min (minor).

2d: (*S*)-6-Amino-2-(2-fluorophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile. White solid, m. p. 108-110 °C, yield 83%, 90% *ee*, $[\alpha]_D^{25} = +22.7370$ (c 0.1294, CHCl₃); ¹H

NMR (400 MHz, CDCl₃) δ 7.44–7.31 (m, 2H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.14–7.03 (m, 1H), 5.34 (dd, *J* = 10.4, 2.3 Hz, 1H), 4.41 (s, 2H), 2.48 (m, *J* = 14.9, 11.0, 6.1 Hz, 1H), 2.29 (m, *J* = 14.9, 5.8, 2.9 Hz, 1H), 2.18–2.09 (m, 2H), 2.00–1.87 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.68, 160.96, 158.49, δ 130.28–130.20 (d, *J* = 7.5 Hz), 127.37–127.34 (d, *J* = 3.7 Hz), 126.84–126.78 (d, *J* =

12.9 Hz), 124.6 , 121.73, 115.95–115.73 (d, J = 22.2 Hz), 74.14, 54.91, 28.19, 20.94. HRMS (ESI): m/z [M+H]⁺ calculated for C₁₂H₁₁N₂OF: 219.0928; found: 219.0926; HPLC (OJ-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 254 nm, flow rate: 1mL/min, 25 °C), t₁ = 27.0 min (minor), t₂ = 35.0 min (major).

2e: (*S*)-6-Amino-2-(4-chlorophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile. White solid, m. p. 135-137 °C, yield 96%, 97% *ee*, $[\alpha]_D^{25} = +15.3718$ (c 0.1667, CHCl₃); ¹H

NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.3 Hz, 2H), 7.29 (s, 1H), 7.27 (s, 1H), 5.00 (dd, J = 10.5, 2.1 Hz, 1H), 4.38 (s, 2H), 2.46 (m, J = 14.4, 11.0, 6.0 Hz, 1H), 2.29 (m, J = 14.7, 6.0, 2.9 Hz, 1H), 2.15–2.05 (m, 1H), 1.98–1.85 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.61, 138.02, 134.58, 129.13, 127.50, 121.75, 79.26, 54.70, 29.28, 20.94. HRMS (ESI): m/z [M+H]⁺

calculated for $C_{12}H_{11}N_2OCl$: 235.0633; found: 235.0632; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 25 °C), $t_1 = 41.1$ min (major), $t_2 = 46.8$ min (minor).

2f: (S)-6-Amino-2-(2-chlorophenyl)-3,4-dihydro-2H-pyran-5-carbonitrile. White

solid, m. p. > 253 °C, yield 95%, 88% *ee*, $[\alpha]_D^{25} = -7.4857$ (c 0.4000, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 7.5, 1.9 Hz, 1H), 7.40 (dd, J = 7.6, 1.3 Hz, 1H), 7.38–7.29 (m, 2H), 5.42 (dd, J = 10.4, 2.3 Hz, 1H), 4.41 (s, 2H), 2.51 (m, J = 14.9, 11.3, 6.1 Hz, 2H), 2.30 (m, J = 14.7, 5.7, 2.7 Hz, 1H), 2.22 (m, J =

14.1, 5.7, 2.5 Hz, 2H), 1.79 (m, J = 14.0, 10.9, 5.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.73, 137.20, 131.84, 129.91, 129.66, 127.50, 127.09, 121.71, 76.82, 55.05, 28.12, 21.07. HRMS (ESI): m/z [M+H]⁺ calculated for C₁₂H₁₁N₂OCl: 235.0633; found: 235.0632; HPLC (OJ-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 254 nm, flow rate: 1mL/min, 25 °C), t₁ = 25.3 min (minor), t₂ = 31.3 min (major). **2g:** (*S*)-6-Amino-2-(3-bromophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile. White solid, m. p. 101-103 °C, yield 91%, 94% *ee*, $[\alpha]_D^{25} = +22.8927$ (c 0.6800, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 3.0 Hz, 2H), 7.28 (d, *J* = 3.1 Hz, 3H), 4.99 (dd,

J = 10.4, 2.3 Hz, 1H), 4.41 (s, 2H), 2.46 (m, J = 15.1, 11.0, 6.1Hz, 1H), 2.30 (m, J = 15.0, 5.8, 2.9 Hz, 1H), 2.11 (m, J = 13.9, 5.9, 2.6 Hz, 1H), 1.97–1.83 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.49, 141.75, 131.81, 130.51, 129.19, 124.68, 123.02, 121.68, 79.08, 54.78, 29.34, 20.93. HRMS (ESI): m/z [M+H]⁺ calculated for C₁₂H₁₁N₂OBr: 279.0128; found:

279.0128; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 254 nm, flow rate: 0.5mL/min, 25 °C), $t_1 = 50.9 \text{ min (minor)}, t_2 = 55.2 \text{ min (major)}.$

2h: (*S*)-6-Amino-2-(4-iodophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile. White NH₂ solid, m. p. 155-157 °C, yield 92%, 97% *ee*, $[\alpha]_D^{25} = +35.8177$ (c 1.0533, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 4.97 (dd, *J* = 10.3, 2.3 Hz, 1H), 4.43 (s, 2H), 2.44 (m, *J* = 14.7, 10.9, 6.1 Hz, 1H), 2.27 (m, *J* = 14.9, 6.0, 3.0 Hz, 1H), 2.08 (m, *J* = 13.9, 5.9, 2.6 Hz, 1H), 1.95–1.81 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.58, 139.21, 138.04, 127.97,

1.95–1.81 (m, 1H). ¹⁵C NMR (101 MHz, CDCl₃) & 165.58, 139.21, 138.04, 127.97, 121.74, 94.31, 79.34, 54.70, 29.23, 20.91. HRMS (ESI): m/z $[M+H]^+$ calculated for C₁₂H₁₁N₂OI: 326.9989; found: 326.9991; HPLC (OJ-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 254 nm, flow rate: 1.0 mL/min, 25 °C), t₁ = 78.5 min (minor), t₂ = 93.8 min (major).

2i: (S)-6-Amino-2-(4-nitrophenyl)-3,4-dihydro-2H-pyran-5-carbonitrile. Lightyellow solid, m. p. 196-197 °C, yield 89%, 90% *ee*, $[\alpha]_D^{25} = +17.4540$ (c 0.4867,

CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.7 Hz, 2H), 5.15 (dd, J = 10.3, 2.4 Hz, 1H), 4.45 (s, 2H), 2.49 (m, J = 14.9, 10.8, 6.2 Hz, 1H), 2.31 (m, J= 14.7, 5.8, 3.0 Hz, 1H), 2.17 (m, J = 13.8, 5.6, 3.0, 2.5 Hz, 1H), 2.01–1.85 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.08, 146.47, 141.86, 128.86, 126.79, 124.70, 124.21,

121.20, 78.68, 55.22, 29.45, 20.77. HRMS (ESI): $m/z [M+H]^+$ calculated for $C_{12}H_{11}N_3O_3$: 246.0873; found: 246.0875; HPLC (OJ-H, elute: Hexanes/*i*-PrOH = 80/20, detector: 254 nm, flow rate: 1.0 mL/min, 25 °C), $t_1 = 47.7$ min (minor), $t_2 = 61.5$ min (major).

2j: (*S*)-6-Amino-2-(4-cyanophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile. White solid, m. p. 150-152 °C, yield 94%, 92% *ee*, $[\alpha]_D^{25} = +28.2883$ (c 0.7267, CHCl₃); ¹H

NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.3 Hz, 2H), 5.09 (dd, J = 10.3, 2.4 Hz, 1H), 4.45 (s, 2H), 2.47 (m, J = 15.0, 10.8, 6.2 Hz, 1H), 2.29 (m, J = 14.8, 5.8, 3.1 Hz, 1H), 2.13 (m, J = 14.0, 5.8, 2.7 Hz, 1H), 1.96–1.81 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.20, 144.63, 132.79, 126.65, 121.38, 118.59, 112.61, 78.85, 55.01, 29.34, 20.76.

HRMS (ESI): m/z [M+H]⁺ calculated for $C_{13}H_{11}N_3O$: 226.0975; found: 226.0975; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 254 nm, flow rate: 1.0 mL/min, 25 °C), t₁ = 47.8 min (major), t₂ = 55.6 min (minor).

2k: (S)-6-Amino-2-(p-tolyl)-3,4-dihydro-2H-pyran-5-carbonitrile. White solid, m. p.

101-102 °C, yield 91%, 97% *ee*, $[\alpha]_D^{25} = +33.2835$ (c 0.9333, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 20.0 Hz, 5H), 4.98 (dd, J = 10.3, 2.4 Hz, 1H), 4.37 (s, 2H), 2.46 (m, J = 14.7, 10.9, 6.1 Hz, 1H), 2.38 (s, 3H), 2.30 (m, J = 14.7, 5.8, 2.9 Hz, 1H), 2.09 (m, J = 13.7, 5.6, 2.6 Hz, 1H), 2.01–1.88 (m,

1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.93, 138.71, 136.53, 130.35, 129.60, 127.80, 126.17, 122.04, 80.04, 54.51, 29.15, 21.39, 21.10. HRMS (ESI): m/z [M+H]⁺ calculated for C₁₃H₁₄N₂O: 215.1179; found: 215.1177; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 254 nm, flow rate: 1.0 mL/min, 25 °C), t₁ = 46.7 min (minor), t₂ = 66.1 min (major).

21: (*S*)-6-Amino-2-(3-methoxyphenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile. White solid, m. p. 82-84 °C, yield 91%, 96% *ee*, $[\alpha]_D^{25} = +31.5671$ (c 0.2200, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.24 (m, 1H), 7.07–6.77 (m, 3H), 4.99 (dd, J = 10.4,

2.4 Hz, 1H), 4.40 (s, 2H), 3.84 (s, 3H), 2.46 (m, J = 14.9,
CN 11.0, 6.1 Hz, 1H), 2.29 (m, J = 14.7, 5.6, 2.8 Hz, 1H), 2.11 (m, J = 13.8, 5.8, 2.6 Hz, 1H), 1.93 (m, J = 13.9, 10.6, 5.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.76, 160.10, 141.08, 130.03, 121.91, 118.36, 113.96, 111.97, 79.91,

55.54, 29.27, 21.03. HRMS (ESI): m/z $[M+H]^+$ calculated for $C_{13}H_{14}N_2O_2$: 231.1128; found: 231.1128; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 25 °C), t₁ = 64.1 min (minor), t₂ = 74.8 min (major).

solid, m. p. 106-108 °C, yield 90%, 95% *ee*, $[\alpha]_D^{25} = +46.2159$ (c 0.7133, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.80 (m, 4H), 7.58–7.40 (m, 3H), 5.19 (dd, J = 10.5, 2.4 Hz, 1H), 4.43 (s, 2H), 2.52 (m, J = 14.9, 11.0, 6.1 Hz, 1H), 2.34 (m, J = 14.8, 5.8, 2.9 Hz, 1H), 2.19 (m, J = 11.3, 5.8, 2.9 Hz, 1H), 2.11–1.99 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.83,

136.84, 133.49, 133.35, 128.86, 128.27, 127.97, 126.76, 126.69, 125.29, 123.73, 80.19, 54.78, 29.32, 21.12. HRMS (ESI): m/z $[M+H]^+$ calculated for $C_{16}H_{14}N_2O$: 251.1179; found: 251.1179; HPLC (AD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 254 nm, flow rate: 1.0 mL/min, 25 °C), t₁ = 27.2 min (major), t₂ = 35.6 min (minor).

4a: (2S,4S)-6-Amino-2,4-diphenyl-3,4-dihydro-2H-pyran-5-carbonitrile. White solid,

m. p. 120-121 °C, 78% yield, 99% *ee*, 96/4 *dr*. $[\alpha]_D^{25} = +7.2693$ (c 0.6467, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.56–7.29 (m, 8H), 7.28–7.15 (m, 2H), 5.20–4.94 (m, 1H), 4.61 (d, J = 22.3 Hz, 2H), 3.94–3.79 (m, 1H), 2.35 (ddd, J = 14.0, 11.0, 6.0 Hz, 1H), 2.14–2.07 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.66,

143.84, 139.08, 129.03, 128.97, 128.89, 128.80, 128.09, 127.26, 126.25, 75.93, 57.16, 39.88, 37.25. HRMS (ESI): m/z $[M+Na]^+$ calcd for $C_{18}H_{16}N_2ONa$ 299.1155; found: 299.1168. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 85/15, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4b: (2*S*, 4*S*)-6-Amino-4-(4-fluorophenyl)-2-phenyl-3,4-dihydro-2*H*-pyran-5carbonitrile. White solid, m. p. 146-147 °C, 79% yield, 99% *ee*, 94/6 *dr*. $[\alpha]_D^{25} =$

+6.0001 (c 1.3533, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.61 (m, 3H), 7.45–7.21 (m, 6H), 5.29–5.02 (m, 1H), 4.53 (d, J = 23.4 Hz, 2H), 3.90–3.70 (m, 1H), 2.36 (ddd, J =14.0, 11.1, 6.0 Hz, 1H), 2.10 (ddd, J = 14.0, 9.7, 5.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 164.87, 160.97, 138.79, 138.42 (d, *J* = 3.1 Hz), 129.56 (d, *J* = 8.0 Hz), 129.12, 128.97 (d, *J* = 6.1 Hz), 126.25 (d, *J* = 8.8 Hz), 121.03, 115.73 (d, *J* = 6.8 Hz), 75.86, 57.10, 40.55, 39.20. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₆FN₂O 295.1241; found: 295.1245. HPLC (Chiralpak OJ-H, elute: Hexanes/*i*-PrOH = 85/15, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4c: (2*S*,4*S*)-6-Amino-4-(4-chlorophenyl)-2-phenyl-3,4-dihydro-2*H*-pyran-5carbonitrile. White solid, m. p. 148-149 °C, 80% yield, 99% *ee*, 96/4 *dr*. $[\alpha]_D^{25} =$

+8.0321 (c 1.6467, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.44 (m, 2H), 7.32–7.28 (m, 3H), 7.25 (s, 1H), 7.21 (d, J = 2.1 Hz, 1H), 7.16 (t, J = 3.8 Hz, 1H), 7.05 (dd, J = 8.1, 5.5 Hz, 1H), 5.11–4.72 (m, 1H), 4.56 (s, 2H), 3.87–3.55 (m, 1H), 2.45–2.20 (m, 1H), 2.14–1.78 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.48, 141.08, 137.50, 131.82, 128.42,

128.18, 127.86, 127.69, 124.93, 120.13, 74.60, 55.41, 36.75, 35.47. HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{18}H_{16}CIN_2O$ 311.0946; found: 311.0947. HPLC (Chiralpak OJ-H, elute: Hexanes/*i*-PrOH = 82/20, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4d: (2*S*,4*S*)-6-Amino-4-(3-chlorophenyl)-2-phenyl-3,4-dihydro-2*H*-pyran-5carbonitrile. White solid, m. p. 135-136 °C, 76% yield, 96% *ee*, 85/15 *dr*. $[\alpha]_D^{25} =$

+5.5691 (c 0.7200, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 75.0 Hz, 1H), 7.37 (dd, J = 15.4, 8.3 Hz, 3H), 7.33–7.10 (m, 5H), 5.16 (d, J = 11.5 Hz, 1H), 4.62 (d, J = 16.8 Hz, 2H), 3.92–3.77 (m, 1H), 2.43–2.28 (m, 1H), 2.11– 2.01 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.10,

144.91, 142.60, 138.65, 130.78, 130.37, 129.44, 129.03, 127.74, 126.31, 126.03, 111.98, 80.02, 59.48, 42.57, 39.63. HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{18}H_{16}N_2OCI 311.0946$; found: 311.0951. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4e: (2*S*,4*S*)-6-Amino-4-(4-cyanophenyl)-2-phenyl-3,4-dihydro-2*H*-pyran-5carbonitrile. White solid, m. p. 167-168 °C, 83% yield, 89% *ee*, 82/18 *dr*. $[\alpha]_D^{25} =$

+8.5249 (c 1.1800, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.61 (m, 2H), 7.59–7.45 (m, 2H), 7.44– 7.36 (m, 3H), 7.28–7.08 (m, 2H), 5.22–4.87 (m, 1H), 4.69 (d, *J* = 21.1 Hz, 2H), 4.02–3.83 (m, 1H), 2.47–2.32 (m, 1H), 2.09–2.05 (m, 1H). ¹³C NMR (101 MHz,

CDCl₃) δ 163.95, 147.08, 137.09, 131.69, 127.98, 127.81, 127.20, 124.99, 119.36, 117.74, 110.12, 74.59, 54.65, 38.75, 36.17. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₆N₃O 302.1288; found: 302.1297. HPLC (Chiralpak OD-H, elute: Hexanes/*i*-PrOH = 88/12, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4f: (2S,4S)-6-Amino-2-phenyl-4-(p-tolyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

White solid, m. p. 122-123 °C, 73% yield, 99% *ee*, 97/3 *dr*. $[\alpha]_D^{25} = +6.1187$ (c 1.5133, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 7.5, 2.1 Hz, 2H), 7.38 (dd, J = 5.0, 2.3 Hz, 2H), 7.35 (dd, J = 4.7, 2.9 Hz, 1H), 7.27– 7.23 (m, 2H), 7.18 (d, J = 8.3 Hz, 2H), 5.17–4.94 (m, 1H), 4.62 (s, 2H), 3.91–3.71 (m, 1H), 2.37 (d, J = 5.9 Hz, 3H),

2.34–2.26 (m, 1H), 2.10–2.05 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.25, 143.08, 138.97, 137.07, 130.20, 129.05, 128.22, 127.56, 125.82, 112.53, 80.10, 60.87, 42.59, 39.44, 21.48. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₉N₂O 291.1492; found: 291.1492. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 85/15, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4g: (2S,4S)-6-Amino-2-phenyl-4-(m-tolyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

White solid, m. p. 117-118 °C, 72% yield, 98% *ee*, 80/20 *dr*. [α]_D²⁵ = +7.5270 (c 1.9400, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.20 (m, 5H), 7.18–6.91 (m, 4H), 4.98 (dd, *J* = 70.7, 11.0 Hz, 1H), 4.47 (d, *J* = 20.8 Hz, 2H), 3.82–3.67 (m, 1H), 2.31 (s, 3H), 2.20 (ddd, *J* = 20.8, 11.6, 5.2 Hz, 1H), 2.05–1.97 (m, 1H). ¹³C NMR

(101 MHz, CDCl₃) δ 163.54, 141.36, 137.67, 137.30, 128.66, 128.08, 127.69, 127.02, 125.08, 124.89, 123.33, 119.97, 74.66, 55.96, 41.66, 38.50, 20.46. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₉N₂O 291.1492; found: 291.1494. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4h: (2*S*,4*S*)-6-Amino-4-(4-methoxyphenyl)-2-phenyl-3,4-dihydro-2*H*-pyran-5carbonitrile. White solid, m. p. 129-130 °C, 72% yield, 99% *ee*, 95/5 *dr*. $[\alpha]_D^{25} =$

+19.1534 (c 0.8333, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (q, J = 6.2 Hz, 3H), 7.30–7.20 (m, 4H), 6.93 (d, J = 8.5 Hz, 2H), 5.05 (dd, J = 75.9, 10.5 Hz, 1H), 4.62 (s, 4H), 3.83 (s, 3H), 3.77 (dd, J = 5.7, 2.4 Hz, 1H), 2.31 (ddd, J = 13.9, 11.0, 5.9 Hz, 1H), 2.07 (d, J = 20.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ

164.83, 143.95, 139.15, 128.90, 128.13, 127.28, 126.28, 121.78, 75.88, 56.89, 38.15, 37.28, 29.97. HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{19}H_{19}N_2O_2$ 307.1441; found: 307.1439. HPLC (Chiralpak OD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4i: (2*S*,4*S*)-6-Amino-4-(3-methoxyphenyl)-2-phenyl-3,4-dihydro-2*H*-pyran-5carbonitrile. White solid, m. p. 125-126 °C, 71% yield, 96% *ee*, 94/6 *dr*. $[\alpha]_D^{25} =$ +7.5242 (c 1.8333, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.25 (m, 4H), 7.24–

7.20 (m, 1H), 7.10 (d, J = 8.7 Hz, 2H), 6.86–6.78 (m, 2H), 5.05–4.80 (m, 1H), 4.46 (d, J = 20.7 Hz, 2H), 3.85–3.75 (m, 1H), 3.73 (s, 3H), 2.33–2.20 (m, 1H), 1.99–1.94 (m, 1H). ¹³C{1H} NMR (101 MHz, CDCl₃) δ 163.63, 158.84, 143.15, 137.63, 129.28, 128.76, 127.70, 125.07, 119.91, 118.65, 112.17, 111.42, 74.69,

58.86, 54.19, 41.74, 38.60. HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{19}H_{19}N_2O_2$ 307.1441; found: 307.1445. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4j: (2S, 4S)-6-Amino-2-(4-chlorophenyl)-4-phenyl-3,4-dihydro-2*H*-pyran-5carbonitrile. White solid, m. p. 140-141 °C, 84% yield, 97% *ee*, 98/2 *dr*. $[\alpha]_D^{25} =$

+58.2476 (c 1.0067, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.6 Hz, 1H), 7.43–7.36 (m, 3H), 7.35–7.29 (m, 4H), 7.19 (d, J = 8.4 Hz, 1H), 5.18–4.88 (m, 1H), 4.62 (s, 2H), 3.95–3.78 (m, 1H), 2.36–2.21 (m, 1H), 2.08–2.01 (m, 1H). ¹³C{1H} NMR (101 MHz, CDCl₃) δ 163.10,

142.34, 136.31, 133.33, 127.81, 127.76, 126.79, 126.36, 126.10, 120.08, 73.92, 56.03, 36.91, 35.91. HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{18}H_{16}N_2OC1$ 311.0946; found: 311.0949. HPLC (Chiralpak OD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4k: (2*S*, 4*S*)-6-Amino-2-(3-bromophenyl)-4-phenyl-3,4-dihydro-2*H*-pyran-5carbonitrile. White solid, m. p. 153-154 °C, 79% yield, 97% *ee*, 83/17 *dr*. $[\alpha]_D^{25} = -$

5.0934 (c 0.8800, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.28 (m, 4H), 7.28–7.23 (m, 2H), 7.23–7.20 (m, 1H), 7.13 (dt, *J* = 26.1, 7.2 Hz, 2H), 5.08–4.80 (m, 1H), 4.51 (d, *J* = 21.9 Hz, 2H), 3.85–3.67 (m, 1H), 2.30–2.12 (m, 1H), 2.03–1.98 (m, 1H). ¹³C NMR (101 MHz, CDCl₃)

δ 162.95, 142.25, 130.76, 130.59, 129.21, 128.04, 127.79, 127.57, 126.78, 126.25, 126.14, 123.55, 73.80, 56.22, 36.98, 35.91. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₈H₁₅N₂OBrNa 377.0260; found: 377.0273. HPLC (Chiralpak OJ-H, elute: Hexanes/*i*-PrOH = 85/15, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

41: (2*S*, 4*S*)-6-Amino-4-phenyl-2-(p-tolyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile. White solid, m. p. 128-129 °C, 82% yield, 99% *ee*, 93/7 *dr*. $[\alpha]_D^{25} = +5.7805$ (c 1.6667,

CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (ddd, J = 15.7, 13.4, 7.8 Hz, 5H), 7.32–7.29 (m, 1H), 7.18 (dd, J = 14.6, 6.5 Hz, 3H), 5.16–4.90 (m, 1H), 4.57 (d, J = 21.6 Hz, 2H), 3.94–3.78 (m, 1H), 2.39 (t, J = 3.0 Hz, 1H), 2.36 (s, 3H), 2.09–2.05 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.64,

141.48, 137.71, 128.54, 128.36, 127.75, 126.82, 126.28, 125.14, 119.95, 74.59, 58.99, 41.80, 38.60, 20.13 HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{19}H_{19}N_2O$ 291.1492; found: 291.1494. HPLC (Chiralpak OD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4m: (2S, 4S)-6-Amino-2-(4-methoxyphenyl)-4-phenyl-3,4-dihydro-2*H*-pyran-5carbonitrile. White solid, m. p. 135-136 °C, 82% yield, 95% *ee*, 93/7 *dr*. $[\alpha]_D^{25} =$

+6.1324 (c 1.3067, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.24 (m, 4H), 7.22 (d, J = 7.9 Hz, 1H), 7.18–7.16 (m, 1H), 6.96–6.66 (m, 3H), 5.09–4.87 (m, 1H), 4.48 (d, J= 20.0 Hz, 2H), 3.76 (s, 3H), 3.70 (dd, J = 5.9, 2.4 Hz, 1H), 2.25 (ddd, J = 13.9, 11.1, 6.0 Hz, 1H), 2.01 (dt, J =

14.1, 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.49, 158.77, 142.62, 129.76, 128.26, 127.68, 126.58, 126.23, 112.99, 111.03, 74.42, 55.67, 54.31, 41.92, 36.06. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₉N₂O₂ 307.1441; found: 307.1444. HPLC (Chiralpak OJ-H, elute: Hexanes/*i*-PrOH = 80/20, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4n: (2*S*, 4*S*)-6-Amino-2-(3-methoxyphenyl)-4-phenyl-3,4-dihydro-2*H*-pyran-5carbonitrile. White solid, m. p. 133-134 °C, 80% yield, 99% *ee*, 89/11 *dr*. $[\alpha]_D^{25} =$

+5.8710 (c 0.8733, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.29 (m, 5H), 7.28–7.10 (m, 1H), 7.10–6.73 (m, 3H), 5.17–4.90 (m, 1H), 4.58 (d, *J* = 20.9 Hz, 2H), 3.93–3.83 (m, 1H), 3.83–3.70 (m, 3H), 2.34 (ddd, *J* = 14.0, 10.9, 6.0 Hz, 1H), 2.14–2.07 (m, 1H). ¹³C NMR (101

MHz, CDCl₃) δ 163.43, 158.82 141.33, 139.13, 128.81, 127.77, 126.81, 126.26, 119.75, 117.30, 113.07, 110.70, 74.55, 59.26, 54.30, 38.55, 35.92. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₈N₂O₂Na 329.1260; found: 329.1278. HPLC (Chiralpak OJ-H, elute: Hexanes/*i*-PrOH = 85/15, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

40: (2*S*, 4*S*)-6-Amino-2-(naphthalen-2-yl)-4-phenyl-3,4-dihydro-2*H*-pyran-5carbonitrile. White solid, m. p. 141-142 °C, 78% yield, 97% *ee*, 83/17 *dr*. $[\alpha]_D^{25} =$ +8.4712 (c 1.7133, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.51 (m, 2H), 7.43–

7.37 (m, 3H), 7.35 (d, J = 9.2 Hz, 3H), 7.31 (t, J = 3.4 Hz, 1H), 7.25 (d, J = 5.2 Hz, 2H), 7.18–7.12 (m, 1H), 5.15 (d, J = 11.6 Hz, 1H), 4.62 (d, J = 22.9 Hz, 2H), 3.95–3.65 (m, 1H), 2.40–2.20 (m, 1H), 1.98 (ddd, J = 37.1, 18.6, 10.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.34, 142.53,

135.08, 132.16, 128.25, 127.94, 127.73, 127.53, 127.10, 126.95, 126.85, 126.68, 126.29, 126.03, 124.18, 122.50, 74.78, 55.94, 41.77, 36.00. HRMS (ESI): m/z [M+H]⁺ calcd for $C_{22}H_{19}N_2O$ 327.1492; found: 327.1501. HPLC (Chiralpak AD-H, elute: Hexanes/*i*-PrOH = 90/10, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4p: (2S, 4S)-6-Amino-4-phenyl-2-(thiophen-2-yl)-3,4-dihydro-2H-pyran-5carbonitrile. white solid, mp 130-131°C, 81% yield (2+3), 97% *ee* (2), 87/13 *dr* (2/3).

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.22 (m, 6H), 7.20 – 6.94 (m, 2H), 5.45 – 5.17 (m, 1H), 4.61 (d, *J* = 16.5 Hz, 2H), 3.95 – 3.83 (m, 1H), 2.48 (ddd, *J* = 13.8, 10.9, 6.1 Hz, 1H), 2.23 (dt, *J* = 13.9, 2.5 Hz, 1H). ¹³C{1H} NMR (101 MHz, CDCl₃) δ 162.81, 142.23, 140.34, 127.75, 126.81, 126.09, 125.75, 125.16,

124.80, 120.03, 70.56, 56.04, 36.46, 35.91. HRMS (ESI): $m/z [M+Na]^+$ calcd for $C_{16}H_{14}N_2OSNa$ 305.0719; found: 305.0726. HPLC (Chiralpak AD-H, elute: Hexanes/i-PrOH = 90/10, detector: 215 nm, flow rate: 1.0 mL/min, 25 °C).

4q: (2S, 4S)-6-Amino-4-ethyl-2-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile. White

solid, mp 141-142°C, 82% yield, 95% *ee*, 89/11 *dr*. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.21 (m, 5H), 4.94 (ddd, *J* = 25.7, 10.8, 2.4 Hz, 1H), 4.34 (s, 2H), 2.54 – 2.13 (m, 1H), 2.12 – 1.73 (m, 2H), 1.57 – 1.10 (m, 2H), 0.89 (dt, *J* = 24.4, 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.02, 163.47, 139.42, 128.70, 128.59, 128.42,

126.04, 125.89, 121.93, 121.21, 79.90, 76.36, 35.73, 33.23, 33.04, 32.09, 28.84, 27.69, 11.36, 10.43. HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{22}H_{19}N_2O$ 327.1492; found: 327.1501. HPLC (Chiralpak AD-H, elute: Hexanes/i-PrOH = 95/5, detector: 254 nm, flow rate: 1.0 mL/min, 25 °C). HRMS (ESI): $m/z [M+Na]^+$ calcd for $C_{14}H_{16}N_2ONa$ 251.1155; found: 251.1157.

Table S1. Optimization of Reaction Temperature for the ATH/Cyclization Enantioselective Cascade Reaction of 2-(3-Oxo-3-phenylpropyl)malononitrile.^a

^{*a*} Reaction conditions: 0.10 mmol **1a**, 2.0 μmol catalyst **A** and 10 equivalent of H-resource were added into 4.0 mL of water and the mixture was stirred at different reaction temperature. ^{*b*} Yield was determined by ¹H-NMR analysis. ^{*c*} Determined by HPLC analysis using a Daicel Chiralcel® AD–H column. ^{*d*} (Yield/Conversion) ×100.

Table S2. Optimization of Bases and Catalysts for the DKR-ATH/Cyclization Enantioselective Cascade Reaction of 2-(3-oxo-1,3-diphenylpropyl)malononitrile.^{*a*}

Entry	Catalyst/Base	Time (h)	Yield. (%) ^b	ee (%) ^c	dr ^c
1	A/morpholine	12	82	90	96:4
2	A/DBU ^d	12	66	92	93:7
3	A/DMAP ^e	12	81	83	91:19
4	A/pyridine	12	74	95	82:18
5	A/Et ₃ N	7	83	99	96:4
6	A/Et ₃ N	7	70	98	89:11
7	B /Et ₃ N	7	80	96	92:8
8	C/Et ₃ N	7	78	95	95:5
9	D /Et ₃ N	7	81	98	96:4
10	E/Et ₃ N	7	70	96	90:10
11	F/Et ₃ N	7	83	95	91:9
12	G/Et ₃ N	7	83	93	93:7

^{*a*} 0.10 mmol **1a**, 2.0 µmol catalyst, 10 equivalent of HCOONa and 1 equivalent of base were added into 3.0 mL of co-solvent (^{*i*}PrOH: H₂O, v/v = 3: 1), and the mixture was stirred for 7-12 h. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis using a chiral stationary phase. ^{*d*} DBU = 1,8-diazabicyclo(5.4.0)undec-7-ene. ^{*e*} DMAP = 4-dimethylaminopyridine

3. Mechanistic Studies

Table S3. Results of reaction conditions A, B and C.

 $\begin{array}{l} \textbf{Condition A: }^{i}\text{PrOH:H}_{2}\text{O} (3:1) (3.0 \text{ mL}) \\ \textbf{Condition B: }^{i}\text{PrOH:H}_{2}\text{O} (3:1) (3.0 \text{ mL}) + \text{HCOONa} (10 \text{ eq}) \\ \textbf{Condition C: }^{i}\text{PrOH:H}_{2}\text{O} (3:1) (3.0 \text{ mL}) + \text{HCOONa} (10 \text{ eq}) + \text{Et}_{3}\text{N} (1\text{eq}) \\ \end{array}$

Reaction	Condition A		Condition B		Condition C	
Time/h	ee ^a	Yield $(\%)^b$	ee ^a	yield (%) ^b	ee ^a	Yield $(\%)^b$
0	90	100%	90	100%	90	100%
3.5	88	95%	84	95%	36	85%
7.0	87	95%	71	85%	0	70%

^a The ee value was determined by a Daicel Chiralcel® AD-H column. ^b Isolated yield.

Scheme S1. Proposed reaction mechanism.

Figure S1. The A-catalyzed DKR-ATH-cyclization tandem reactions of (*R*)-3a or (*S*)-3a.

The A-catalyzed DKR-ATH-cyclization tandem reactions of (S)-3a (reaction time 7 h).

time 7h see supporting information).

Figure S2. Captured intermediate of chalcone in the ¹H NMR spectrum by the treatment of (*S*)-**3a** with NEt₃ in CD₃OD in a NMR-tube experiment.

4. Procedure for growing X-ray crystal structures of chiral 4h

Crystals of compound (2S, 4S)-**4h** was grown by liquid–liquid diffusion. Compound **4h** (0.10 g) was dissolved in 3.0 mL of CHCl₃. Toluene (1.0 mL) was then slowly added via a pipette along the sides of the tube so that the solution was not disturbed, forming a layer of toluene. The tube was then covered and the solvents were allowed to slowly diffuse at room temperature. The resultant crystals were separated from the solution by decanting.

Suitable X-ray quality crystals were recovered and mounted using epoxy glue. Data were collected using on a Bruker SMART APEX CCD area detector diffractometer. SAINT (Bruker, 1998), SHELXTL (Bruker, 1998), and SHELXS 97 were used for cell refinement, data reduction and structure solving, and refinement of structure. Molecular graphics and publication materials were prepared using SHELXTL.

Figure S3. X-Ray crystal structures of chiral **4h** and its 1:1 mixture of (S, S) and (S, R) epimeric form.

Chiral **4h**

1:1 mixture of (S, S) and (S, R) 4h

5. ¹H NMR, ¹³C NMR and HRMS of Chiral Products

2a: (*S*)-6-Amino-2-phenyl-3,4-dihydro-2*H*-pyran-5-carbonitrile.

165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 fl (ppm)

2b: (*S*)-6-amino-2-(4-fluorophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

Formula	Intensity	Threshold	Expected m/z	Found at m/z	Error (ppm)
C12H11N2OF	759275	100	219.0928	219.0928	-0.1

2c: (*S*)-6-amino-2-(3-fluorophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 fl (ppm)

Formula	Intensity	Threshold	Expected m/z	Found at m/z	Error (ppm)
C12H11N2OF	1547752	100	219.0928	219.0929	0.5

2d: (S)-6-amino-2-(2-fluorophenyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

C12H11N2OF	1041434	100	219.0928	219.0926	-1.0
------------	---------	-----	----------	----------	------

2e: (*S*)-6-amino-2-(4-chlorophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

Formula	Intensity	Threshold	Expected m/z	Found at m/z	Error (ppm)
C12H11N2OCI	1181211	100	235.0633	235.0632	-0.1

2f: (*S*)-6-amino-2-(2-chlorophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

2g: (*S*)-6-amino-2-(3-bromophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 fl (ppm)

Formula	Intensity	Threshold	Expected m/z	Found at m/z	Error (ppm)
C12H11N2OBr	1241905	100	279.0128	279.0128	0.0

2h: (S)-6-amino-2-(4-iodophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

Formula	Intensity	Threshold	Expected m/z	Found at m/z	Error (ppm)
C12H11N2OI	954119	100	326.9989	326.9991	0.7

2i: (*S*)-6-amino-2-(4-nitrophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

00000000000000000000000000000000000000	v 4 0 - m x x r v 4 m	0 0 8 8 - 9 9 8 8 6 7 8 8 6 7 8 8 6 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8	010400081
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
$i \infty \infty \infty \infty \infty \infty \infty \infty \cdots $	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	****	~
		<u> </u>	and the second s
rm -			

165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 fl (ppm)

Formula	Intensity	Threshold	Expected m/z	Found at m/z	Error (ppm)
C12H11N3O3	166622	100	246.0873	246.0875	0.6

2j: (*S*)-6-amino-2-(4-cyanophenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

 7.72 7.77 7.45 <li< th=""><th>2445 2445 2446 2446 2446 2446 2446 2446</th></li<>	2445 2445 2446 2446 2446 2446 2446 2446
---	--

170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 fl (ppm)

Formula	Intensity	Threshold	Expected m/z	Found at m/z	Error (ppm)
C13H11N3O	700535	100	226.0975	226.0975	0.2

2k: (S)-6-amino-2-(p-tolyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

Formula	Intensity	Threshold	Expected m/z	Found at m/z	Error (ppm)
C13H14N2O	629726	100	215.1179	215.1177	-0.9

2l: (*S*)-6-amino-2-(3-methoxyphenyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

7,7,357,7,337,7,337,7,337,7,337,7,337,7,337,7,337,7,337,7,337,7,337,7,337,2,337,2,347,2,6,6,6,8,86,6,8,96,6,8,96,6,8,96,6,8,96,6,8,96,6,8,96,6,8,96,6,8,97,2,2,447,2,2,447,2,2,447,2,2,447,2,2,447,2,2,447,2,2,447,2,2,447,2,2,247,2,2,447,2,2,227,2,2,247,2,2,247,2,2,227,2,2,247,2,2,227,2,2,227,2,2,227,2,2,227,2,2,227,2,2,227,2,2,227,2,2,227,2,2,227,2,2,227,2,2,227,2,2,2,227,2,2,227,2,2,227,2,2,227,2,2,227,2,2,237,2,2,227,2,2,237,2,2

2m: (*S*)-6-amino-2-(naphthalen-2-yl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

4a. (2*S*,4*S*)-6-amino-2,4-diphenyl-3,4-dihydro-2*H*-pyran-5 -carbonitrile.

4b. (2S,4S)-6-amino-4-(4-fluorophenyl)-2-phenyl-3,4-dihydro-2H- pyran-5-carbonitrile.

$\begin{array}{c} 7.7.1\\ 7.7.3\\ 7.$

4b (entry 2 in Table 3)

4c. (2S,4S)-6-amino-4-(4-chlorophenyl)-2-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile.

4d. (2S,4S)-6-amino-4-(3-chlorophenyl)-2-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile.

0.

310.087290985 (Mass/RT/Isotope/Library) ✓ ● ✓ ● ●

11/1/	Compound Name (Library Hit)	Score	Formula.	Intensity	Threshold.	Expected m/z.	Found at m/z.s	Error (ppm).	Expected RT (min).	Found RT (min)	RT Delta (min).	Isotope Diff (%).	Library Score(%)	ę.
vevee	310.087290985.	80%.	C18H15N2O Cl.1	746860.1	100.1	311.0946.	311.0951.	1.9.1	0.00.1	0.72.1	0.72.1	4.4%.,	N/A.1	¢

4f.(2S,4S)-6-amino-2-phenyl-4-(p-tolyl)-3,4-dihydro-2H-pyran-5-carbonitrile. $\{\{1,2\},1\},2\}$ $\{2S,4S\}$ -6-amino-2-phenyl-4-(p-tolyl)-3,4-dihydro-2H- $\{2S,4S\}$ $\{2S,4S\}$ -7-2-phenyl-4-(p-tolyl)-3,4-dihydro-2H- $\{2S,4S\}$ $\{2S,4S\}$ -7-2-phenyl-4-(p-tolyl)-3,4-dihydro

290.141913376 (Mass/RT/Isotope/Library)

10/1/	Compound Name (Library Hit)	Score	Formula	Intensity	Threshold	Expected m/z.	Found at m/z.s	Error (ppm).	Expected RT (min).	Found RT (min).	RT Delta (min).	Isotope Diff (%).	Library Score(%)	P
v evee	290.141913376.	99%.	C19H18N2O	244276.1	100.1	291.1492.	291.1492.	0.1.,	0.00.1	0.95.	0.95.	0.3%.1	N/A.	ę
- a														

(2S,4S)-6-amino-2-phenyl-4-(m-tolyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

S49

4h.(2S,4S)-6-amino-4-(4-methoxyphenyl)-2-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile.

4i. (2*S*,4*S*)-6-amino-4-(3-methoxyphenyl)-2-phenyl-3,4-dihydro-2*H*-pyran-5-carbonitrile.

4j.(2*S*,4*S*)-6-amino-2-(4-chlorophenyl)-4-phenyl-3,4-dihydro-2*H*-pyran-5-carbonitrile.

÷	a		3 I I I I				201 - 22.0				5155 TO 15065	and the second second	an an anna an	1.0.00	13
Т	1.111	Compound Name (Library Hit)	Score	Formula	Intensity	Threshold	Expected	Found at	Error	Expected RT	Found RT	RT Delta	Isotope Diff	Library	₽
	11111	compound Name (Elbrary Int).	JUOIU	i viniula.	intenany.	Threahold	m/z.	m/z.,	(ppm).	(min).	(min)	(min).	(%).1	Score(%).	ł
	/	310.087290985.,	91%. ₁	C18H15N2O Cl.1	818124.	100.,	311.0946.	311.0949.	1.2.,	0.00.1	0.73.	0.73.1	1.6%.,	N/A.	ę
															n.

311.094

311.0

311.5

Acquired / Theoretical MS+

0.5

1.0

1.5

Time, min

2.0

4j (entry 10 in Table 3)

313.5

314.0

313.0924

313.0

Spectrum from 20151116-09.wiff (sample 1) - ZQK9, +TOF MS (100 - 1000) from 0.677 to 0.695 mil OC18H15N2OCI+H

312.0983

312.5

Mass/Charge, Da

312.0

41. (2*S*,4*S*)-6-amino-4-phenyl-2-(p-tolyl)-3,4-dihydro-2*H*-pyran-5-carbonitrile.

4m. (2*S*,4*S*)-6-amino-2-(4-methoxyphenyl)-4-phenyl-3,4-dihydro-2*H*-pyran-5-carbonitrile.

4n. (2S,4S)-6-amino-2-(3-methoxyphenyl)-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile.

40. (2*S*,4*S*)-6-amino-2-(naphthalen-2-yl)-4-phenyl-3,4-dihydro-2*H*-pyran-5-carbonitrile.

326.141913376 (Mass/RT/Isotope/Library)

11/11	Compound Name (Library Hit).	Score	Formula.	Intensity	Threshold.	Expected m/z.	Found at m/z.	Error (ppm).	Expected RT (min).	Found RT (min).	RT Delta (min).	Isotope Diff (%).	Library Score(%)
V 0 V 0 0	326.141913376.	84%.	C22H18N2O	1225840.	100.,	327.1492.	327.1501.	2.7.1	0.00.1	0.82.1	0.82.1	1.5%.	N/A.1

4p: (2*S*,4*S*)-6-amino-4-phenyl-2-(thiophen-2-yl)-3,4-dihydro-2*H*-pyran-5-carbonitrile

1.111	Compound Name (Library Hit).	Score.	Formula.	Intensity	Threshold.	Expected m/z.	Found at m/z.a	Error (ppm).	Expected RT (min).	Found RT (min).	RT Delta (min).	Isotope Diff (%).	Library Score(%)	P
v evee	282.082685016.	86%.	C16H14N2O S.1	3610569.,	100.1	305.0719.	305.0726.	2.3.	0.00.1	0.62.1	0.62.,	1.1%.	N/A.1	÷

4q: (2S,4S)-6-amino-4-ethyl-2-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile

$\begin{array}{c} 7.7_{-2}\\$

6. HPLC Trace Analyses for Chiral Products

2a: (S)-6-amino-2-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile.

2b: (S)-6-amino-2-(4-fluorophenyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

2c:(S)-6-amino-2-(3-fluorophenyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

2d: (S)-6-amino-2-(2-fluorophenyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

2e: (S)-6-amino-2-(4-chlorophenyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

2g: (S)-6-amino-2-(3-bromophenyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

2h: (S)-6-amino-2-(4-iodophenyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

2i: (S)-6-amino-2-(4-nitrophenyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

2j: (S)-6-amino-2-(4-cyanophenyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

2k: (S)-6-amino-2-(p-tolyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

21: (S)-6-amino-2-(3-methoxyphenyl)-3,4-dihydro-2H-pyran-5-carbonitrile.

2m: (S)-6-amino-2-(naphthalen-2-yl)-3,4-dihydro-2H-pyran-5-carbonitrile.

Peal	RetTime k (minute)	Area (microvolt/se	econd) Area%	Height (microvolt)	Height%
6	保留时间 (分钟)	面积 (微伏形)	%面积	高度 (微伏)	%高
1	9.212	54421487	49.64	2755344	52.56
2	10.141	55206565	50.36	2487434	47.44

4a. (2S,4S)-6-amino-2,4-diphenyl-3,4-dihydro-2H-pyran-5-carbonitrile.

4b. (2*S*,4*S*)-6-amino-4-(4-fluorophenyl)-2-phenyl-3,4-dihydro-2*H*- pyran-5-carbonitrile.

4c. (2S,4S)-6-amino-4-(4-chlorophenyl)-2-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile.

4d. (2S,4S)-6-amino-4-(3-chlorophenyl)-2-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile.

ID#	峰#	保留时间	面积	面积x	高度	高度 %
1	1	19. 479	791209	1.6144	14081	2.2998
2	2	22.824	40889184	83. 4291	539807	88, 1635
3	3	48.175	7327055	14.9499	58348	9, 5297
1	4	53.136	3271	0.0067	43	0.0070

2

3

34.176

57.634

1346739

4863409

5.05

18.25

13881

28384

4.81

9.85

S83

4f. (2S,4S)-6-amino-2-phenyl-4-(p-tolyl)-3,4-dihydro-2H- pyran-5-carbonitrile.

4g. (2S,4S)-6-amino-2-phenyl-4-(m-tolyl)-3,4-dihydro-2*H*- pyran-5-carbonitrile.

ID#	峰#	保留时间	面积	面积%	高度	高度%
1	1	14.956	830596	0.8344	22432	1.4107
2	2	17.315	78907870	79.2668	1379340	86.7436
3	3	32. 413	19782289	19.8723	187815	11.8113
4	4	40.264	26377	0.0265	548	0.0344

4h. (2*S*,4*S*)-6-amino-4-(4-methoxyphenyl)-2-phenyl-3,4-dihydro-2*H*-pyran-5-carbonitrile.

6	保留时间 (分钟)	面积 (微伏1秒)	% 面积	高度 (微伏)	%高
1	17.949	109859	0.54	2763	0.63
2	19.953	19127457	94.23	420796	95.90
3	29.651	1061743	5.23	15168	3.46
4	39.830	537	0.00	41	0.01

4i. (2S,4S)-6-amino-4-(3-methoxyphenyl)-2-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile.

ID#	峰#	保留时间	面积	面积x	高度	高度%
1	1	24. 729	644556	1.0149	10161	1.3462
2	2	29.142	59032199	92. 9462	718641	95.2092
3	3	61.639	3834894	6.0380	25955	3. 4386
4	4	69.012	562	0.0009	46	0.0061

4j. (2S,4S)-6-amino-2-(4-chlorophenyl)-4-phenyl-3,4-dihydro-2*H*-pyran-5-carbonitrile.

4k. (2S,4S)-6-amino-2-(3-bromophenyl)-4-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile.

4m. (2*S*,4*S*)-6-amino-2-(4-methoxyphenyl)-4-phenyl-3,4-dihydro-2*H*-pyran-5-carbonitrile.

4n. (2*S*,4*S*)-6-amino-2-(3-methoxyphenyl)-4-phenyl-3,4-dihydro-2*H*-pyran-5-carbonitrile.

40. (2*S*,4*S*)-6-amino-2-(naphthalen-2-yl)-4-phenyl-3,4-dihydro-2*H*-pyran-5-carbonitrile.

10#	隆 非	保留时间	面积	面积s	高度	高度\$
1	1	37.184	2078299	1.0445	29724	3.0274
2	2	70.868	162593499	81.7127	803186	81.8033
3	3	81.996	34047288	17.1108	145311	14.7998
4	4	91.580	262735	0.1320	3628	0.3696

4p: (2*S*,4*S*)-6-amino-4-phenyl-2-(thiophen-2-yl)-3,4-dihydro-2*H*-pyran-5-carbonitrile

11#	Ht.	保留时间	面积	面积	高度	高度1
1	1	23.801	37642928	85.6453	551647	90.7327
2	2	28.895	661723	1.5058	10321	1.6975
3	3	45.022	5520116	12.5594	44332	7.2915
4	4	57.339	127360	0.2898	1692	0.2783

4q: (2S,4S)-6-amino-4-ethyl-2-phenyl-3,4-dihydro-2H-pyran-5-carbonitrile

