Ligand Induced Structural Isomerism in Phosphine Coordinated Gold Clusters Revealed by Ion Mobility Mass Spectrometry

Marshall R. Ligare,^a Erin S. Baker,^b Julia Laskin*^a and Grant E. Johnson*^a

a Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, WA 99352

b Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352

Supplemental Information

Other Gold Clusters Observed in this Study: Prior to ligand exchange a range of gold clusters was observed; $(8,7)^{2+}$, $(9,8)H^{2+}$, $(10,8)^{2+}$ and $(11,9)H^{2+}$. After ligand exchange with MePPh₂, Au₈ Au₁₀ and Au₁₁ formed mixed ligand clusters and Au₉ was no longer present in the mass spectrum. Au₁₀ clusters exhibited two arrival times before and after ligand exchange but also show mixed ligand Au₁₀ clusters with both 8 and 9 ligands attached. One of the arrival times of Au₁₀ with 8 ligands coincided with that of Au₁₀ with 9 ligands indicating that the Au₁₀ 9 ligand cluster may be fragmenting through loss of a MePPh₂ ligand leading to one of the two arrival times observed for Au₁₀ with 8 ligands. Thus, the choice to focus our analysis on $(8,7)^{2+}$ and $(11,9)H^{2+}$ in this study was based on two considerations; 1) $(8,7)^{2+}$ showed no evidence that the two arrival times were coming from fragmentation of a larger cluster but rather were truly two different isomers of the mixed ligand $(8,7)^{2+}$ clusters and 2) the $(11,9)H^{2+}$ exhibited interesting chemical bonding behavior post ligand exchange which lead to the binding of either H or Cl⁻ depending on the number of exchanged ligands.

Gold Cluster Synthesis and Ligand Exchange: Phosphine-ligated gold clusters were synthesized in solution according to modified versions of literature procedures.¹ All syntheses were 1.05 mL total volume in methanol (HPLC grade Sigma–Aldrich) carried out in 1.5 mL microcentrifuge tubes with final concentrations of each reagent as follows: 50 µM gold precursor, chloro (triphenylphosphine) gold (I) (99.9% Sigma–Aldrich) and 1.0 mM borane tert-butyl amine complex reducing agent (BTBA) (96% Sigma–Aldrich). The gold precursor and BTBA were allowed to react for 30 minutes prior to the addition of exchange ligand, methyldiphenylphosphine (MePPh₂). Reactions were analyzed as is without any filtering.

Ion Mobility-Orthogonal Time of Flight Mass Spectrometer: The custom-built platform coupling ion mobility spectrometry with a time of flight mass spectrometer (IMS-TOF MS) was used in this study and has previously been described in detail.² Briefly, for IMS measurements, samples were infused directly from a syringe pump into a 20 µm inner diameter fused-silica emitter and following electrospray ionization, the ions were passed through a heated stainless steel capillary, focused by a high pressure ion funnel, and accumulated in a lower pressure ion funnel trap. Ions were then pulsed into the 90 cm-long IMS drift tube filled with ~ 4 Torr of nitrogen gas, where they travel under the influence of a weak electric field (10-20 V/cm). Ions exiting the drift tube were refocused by a rear ion funnel prior to TOF MS detection (6224 TOF, Agilent Technologies, Santa Clara CA, USA). The signal from the TOF detector is then routed to an 8-bit Analog-to-Digital converter (ADC) (AP240, Agilent Technologies, Switzerland) and processed using custom control-software written in C#.

References

 Johnson, G. E.; Olivares, A.; Hill, D.; Laskin, J., Cationic gold clusters ligated with differently substituted phosphines: effect of substitution on ligand reactivity and binding. *Physical Chemistry Chemical Physics* **2015**, *17* (22), 14636-14646.
Ibrahim, Y. M.; Baker, E. S.; Danielson, W. F.; Norheim, R. V.; Prior, D. C.; Anderson, G. A.; Belov, M. E.; Smith, R. D., Development of a new ion mobility (quadrupole) time-of-flight mass spectrometer. *International Journal of Mass Spectrometry* **2015**, *377*, 655-662.

Figure S1. Representative positive mode ESI mass spectra of gold clusters formed after the addition of MePPh₂ to preformed Au_x(PPh₃)_y²⁺ clusters. **Red trace**, 2.5/1 ratio of PPh₃ to MePPh₂. **Blue trace**, 2.5/2 ratio of PPh₃ to MePPh₂. The y-axis of the red trace spectrum is scaled to 100x the blue trace spectrum.