Electronic Supplementary Information

Temperature dependency of aqueous biphasic systems: an alternative approach for exploring the differences between Coulombic-dominated salts and ionic liquids

Francisca A. e Silva,^{*a*} Jorge F. B. Pereira^{*b**}, Kiki A. Kurnia,^{*c*} Artur M. S. Silva,^{*d*} Robin D. Rogers,^{*e*} João A. P. Coutinho,^{*a*} and Mara G. Freire^{*a**}

^a CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

^b Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Câmpus (Araraquara), Department of Bioprocess and Biotechnology, Araraquara, SP 14800-903, Brazil.

^c Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia.

^d QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

^e Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal QC H3A 0B8 Canada.

*Corresponding author:

E-mail: jfbpereira@fcfar.unesp.br; Tel: +55 16 33014675

Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Câmpus (Araraquara), Department of Bioprocess and Biotechnology, Rodovia Araraquara-Jaú/ km 01, Campos Ville - Araraquara/SP, 14800-903 - Araraquara - SP/Brasil.

List of contents

Experimental methods

Ternary phase diagrams

¹H NMR

Differential scanning calorimetry

Computational methods

COSMO-RS predictions section

Tables

Table S.1: Summary of the ¹H NMR spectroscopic studies: solutions, chemicalshift deviations calculation and relevant conditions.

Table S.2: Weight fraction (w_x) experimental data for the ternary systems composed of [N₁₁₁₁]Cl + PEG 2000 + water at 40, 50 and 60 °C.

Table S.3: Weight fraction (w_x) for the ternary systems composed of [N_{2222}]Cl + PEG 2000 + water at 40, 50 and 60 °C.

Table S.4: Weight fraction (w_x) experimental data for the ternary systems composed of [$N_{1112(OH)}$]Cl + PEG 2000 + water at 40, 50 and 60 °C.

Table S.5: Weight fraction (w_x) experimental data for the ternary systems composed of $[N_{3333}]$ Cl + PEG 2000 + water at 40, 50 and 60 °C.

Table S.6: Weight fraction (w_x) experimental data for the ternary systems composed of [N₁₄₄₄]Cl + PEG 2000 + water at 40, 50 and 60 °C.

Table S.7: Weight fraction (w_x) experimental data for the ternary systems composed of [N₄₄₄₄]Cl + PEG 2000 + water at 30, 40 and 50 °C.

Figures

Figure S.1: Phase diagrams of the ternary system $[N_{2222}]Cl + PEG + water at 40, 50 and 60 °C; partial molar excess enthalpies of the ammonium anion in the ternary mixture predicted by COSMO-RS as a function of PEG molality at 40, 50 and 60 °C.$

Figure S.2: Phase diagrams of the ternary system $[N_{1112(OH)}]Cl + PEG +$ water at 40, 50 and 60 °C; partial molar excess enthalpies of the ammonium anion in the ternary mixture predicted by COSMO-RS as a function of PEG molality at 40, 50 and 60 °C.

Figure S.3: Phase diagrams of the ternary system $[N_{1444}]Cl + PEG + water at 40, 50 and 60 °C; partial molar excess enthalpies of the ammonium anion in the ternary mixture predicted by COSMO-RS as a function of PEG molality at 40, 50 and 60 °C.$

Figure S.4: Phase diagrams of the ternary system $[N_{4444}]Cl + PEG + water at 30, 40 and 50 °C; partial molar excess enthalpies of the ammonium anion in the ternary mixture predicted by COSMO-RS as a function of PEG molality at 30, 40 and 50 °C.$

Figure S.5: ¹H NMR chemical shift deviations of $[N_{1111}]$ Cl protons relative to those of the initial $[N_{1111}]$ Cl/water binary mixture as a function of PEG 200 molality at 25, 40 and 60 °C.

Figure S.6: ¹H NMR chemical shift deviations of $[N_{3333}]$ Cl protons relative to those of the initial $[N_{3333}]$ Cl/water binary mixture as a function of PEG 200 molality at 25, 40 and 60 °C.

Figure S.7: ¹H NMR chemical shift deviations of $[N_{1111}]$ Cl and PEG 200 protons relative to those of the initial $[N_{1111}]$ Cl/PEG 200 binary mixture as a function of

water molality at 25, 40 and 60 °C.

Figure S.8: ¹H NMR chemical shift deviations of $[N_{3333}]$ Cl and PEG 200 protons relative to those of the initial $[N_{3333}]$ Cl/PEG 200 binary mixture as a function of water molality at 25, 40 and 60 °C.

References

Experimental methods

Ternary phase diagrams

The poly(ethylene) glycol polymer with an average molecular weight of 2000 g mol⁻¹ (abbreviated as PEG 2000) was purchased from Sigma Aldrich[®]. The ammonium halides used, namely tetramethylammonium chloride, [N₁₁₁₁]Cl (purity 97 %), tetraethylammonium chloride, $[N_{2222}]Cl$ (purity ≥ 98 %), tetrapropylammonium chloride, [N₃₃₃₃]Cl (purity 98 %), methyltributylammonium chloride, [N₁₄₄₄]Cl (75 wt% in water), 2-hydroxyethyltrimethylammonium chloride, $[N_{1112(OH)}]Cl$ (purity ≥ 98 %), and tetrabutylammonium chloride, $[N_{4444}]Cl$ (purity \geq 97 %) were acquired from Sigma Aldrich[®]. The ammonium halide [N₁₄₄₄]Cl was dried under vacuum, for a minimum of 48 h, in order to remove the water content since this was received as an aqueous solution. The ammonium chlorides purities were checked using ¹H and ¹³C NMR spectroscopy and found to fit the purity levels stated by the suppliers.

Two distinct approaches were adopted for the ternary phase diagrams determination: one for the shorter side chains ammonium halides (i.e., [N₁₁₁₁]Cl, [N₂₂₂₂]Cl and [N_{1112(OH)}]Cl) and another for the longer side chains ones (*i.e.*, [N₃₃₃₃]Cl, [N₁₄₄₄]Cl and [N₄₄₄₄]Cl). The first set of binodal curves was established through the cloud point titration method at controlled temperatures (40, 50 and 60 °C), at atmospheric pressure and under constant stirring. The protocol conducted was according to literature.^{1, 2} Aqueous solutions of ammonium halides at ca. 60 – 80 wt% and of PEG 2000 at ca. 60 – 80 wt% and water were used. The protocol consisted on the sequential and alternate drop-wise addition of the PEG 2000 solution to each ammonium halide solution until the visual inspection of a cloudy point (biphasic region), followed by the drop-wise addition of water until the detection of a clear solution (monophasic region). The determination of each system composition was based on the weight quantification of the mixture components added within an uncertainty of \pm 10⁻⁴ g. The second group of phase diagrams, *i.e.*, for the longer side chains halides, was determined based on a protocol firstly established by Ruiz-Angel et al.³ and already adopted by us in a previous work.⁴ At least four distinct binary mixtures composed of PEG 2000 + ammonium chloride (80 wt% + 20 wt%; 60 wt% + 40 wt%; 40 wt% + 60 wt%) are prepared and placed at 30, 40, 50 or 60 °C under constant stirring. Water was then added until the detection of a clear solution (monophasic region). This step was followed by the addition of either pure PEG 2000 or pure ammonium halide until the visualization of a cloudy solution (biphasic region). This procedure was repeated several times. The same procedure for determining the phase diagrams was applied.

¹H NMR

Poly(ethylene) glycol polymer with an average molecular weight of 200 g mol⁻¹ (abbreviated as PEG 200) was purchased from Fluka[®]. Only the most representative ammonium halides, *i.e.* [N₁₁₁₁]Cl and [N₃₃₃₃]Cl that display different trends in what concerns their ABS dependence on temperature, were considered for the ¹H NMR measurements. Deuterium oxide (D₂O) with 99.90 % D atoms and 3- (trimethylsilyl)propionic-2,2,3,3-d₄ acid sodium salt (TSP) with 99 % D atoms were supplied by Euriso-top[®].

¹H NMR experiments were carried out according to a protocol previously employed by us⁵, notwithstanding some modifications. Three distinct sets of experiments, as shown in Table S.1, were performed: (i) varying the PEG 200 molalities, (ii) different [N₁₁₁₁]Cl or [N₃₃₃₃]Cl molalities, and (iii) changing the water concentration. Aqueous solutions of [N₁₁₁₁]Cl or [N₃₃₃₃]Cl (1st approach) or PEG 200 (2nd approach) were initially prepared at ca. 0.5 mol kg⁻¹ in distilled water. Solutions of PEG 200 ranging from 0 to 0.5 mol kg⁻¹ (1st approach) and of [N₁₁₁₁]Cl or [N₃₃₃₃]Cl ranging from 0 to 0.5 mol kg⁻¹ in the corresponding initial solution were gravimetrically prepared (± 10⁻⁴ g). For the third approach, instead, the initial solution is composed of [N₁₁₁₁]Cl or [N₃₃₃₃]Cl at ca. 0.5 mol kg⁻¹ in PEG 200, being then used to gravimetrically produce aqueous solutions with increasing water content (from 0 – 5 mol kg⁻¹). In all cases, the mixtures belong to regions of complete miscibility (monophasic regime). The ¹H NMR spectra were obtained using a Bruker Avance 300 spectrometer operating at 300.13 MHz and varying the temperature within 25, 40 and 60 °C in flame-sealed capillaries. D_2O was employed as external lock and TSP as internal reference. The chemical shift deviations ($\Delta \delta_{\rm H}$) were determined as the difference between the chemical shift of the protons ($\delta_{\rm H}$) in the ternary mixture and those in the initial mixture, as provided in detail in Table S.1.

Differential scanning calorimetry

A differential scanning calorimeter (DSC) Hitachi DSC7000X which operates at atmospheric pressure was used to determine the melting temperatures of pure ammonium halides. Prior to carry out such measurements, the DSC was calibrated using primary calibration standards, namely indium and tin, with purities >99 wt%, at a heating rate of 2 K.min⁻¹. The samples weight was *circa* 6 to 10 mg and these were firmly sealed in aluminium crucibles in each experiment. All halides were submitted to one cooling-heating cycle at 2 K.min⁻¹ from an initial temperature of 100 °C for [N₁₁₁₁]Cl, [N₂₂₂₂]Cl and [N₃₃₃₃]Cl, of 80 °C for [N₄₄₄₁]Cl and of 60 °C for [N₄₄₄₄]Cl up to a temperature higher than their melting temperatures. Aiming to avoid water condensation at lower temperatures inside the oven, the DSC cell was fed with a constant nitrogen flow of 50 cm³.min⁻¹. At the end, the pure halides melting temperatures were taken as the peak temperature.

Computational methods

COSMO-RS predictions section

The standard procedure for COSMO-RS modelling comprises two major steps. First, the continuum solvation COSMO calculations of electronic density and molecular geometry of PEG-2000, ammonium-based compounds, and water were performed with the TURBOMOLE 6.1 program package on the density functional theory, utilizing the BP functional B88-P86 with a triple-ζ valence polarized basis set (TZVP) and the resolution of identity standard (RI).⁶ All the optimized structures were confirmed to be minima on potential energy surface *via* vibrational frequency analysis. The absence of imaginary or negative frequencies indicated that the structure is a global minimum.⁷ In a second step, the thermodynamic properties calculations, namely partial excess molar enthalpy, were performed with the COSMOthermX_2.1 program using the parameter file BP_TZVP_C21_0111 (COSMOlogic GmbH & Co KG, Leverkusen, Germany).⁸ In all calculations, the salts and ILs were treated as isolated ions. Further details on calculating the partial excess molar enthalpy can be found in the literature.⁹

Tables

Table S.1: Summary of the ¹H NMR spectroscopic studies: solutions, chemical shift deviations calculation and relevant conditions.

	Component	Solvent	Molality (mol kg ⁻¹)	T/°C		
1 st approach						
Initial mixture	[N ₁₁₁₁]Cl or [N ₃₃₃₃]Cl	Water	0.5			
Mixtures for ¹ H NMR measurements	PEG 200	Ammonium + water	0-0.5	25, 40, 60		
$\Delta \delta_{H}$ definition	$\Delta \delta_{ m H} = \delta_{ m H}$ (ammoniun	n + PEG 200 + wate	er) - $\delta_{ m H}$ (ammonium + water)			
2 nd approach						
Initial mixture	PEG 200	Water	0.5			
Mixtures for ¹ H NMR measurements	[N ₁₁₁₁]Cl or [N ₃₃₃₃]Cl	PEG 200 + Water	0 – 0.5	25, 40, 60		
$\Delta \delta_{H}$ definition	$\Delta \delta_{\rm H}$ = $\delta_{\rm H}$ (ammonium + PEG 200 + water) - $\delta_{\rm H}$ (PEG 200 + water)					
3 rd approach						
Initial mixture	[N ₁₁₁₁]Cl or [N ₃₃₃₃]Cl	PEG 200	0.5			
Mixtures for ¹ H NMR measurements	Water	Ammonium + PEG 200	0 – 5	25, 40, 60		
$\Delta \delta_{H}$ definition	n $\Delta \delta_{\rm H} = \delta_{\rm H}$ (ammonium + PEG 200 + water) - $\delta_{\rm H}$ (ammonium + PEG 200)					

[N ₁₁₁₁]Cl + PEG 2000 + water						
<i>T</i> = 40 °C		<i>T</i> = 50 °C		<i>T</i> = 60 °C		
100 <i>w</i> [<i>N</i> 1111] <i>C</i>	100 w _{PEG 2000}	100 <i>w</i> [<i>N</i> 1111] <i>C</i> /	100 w _{PEG 2000}	100 <i>w</i> [<i>N</i> 1111] <i>C</i> /	100 w _{PEG 2000}	
32.022	17.137	27.760	20.594	23.211	28.867	
29.500	21.366	24.797	25.913	21.155	31.217	
27.377	24.779	23.491	28.286	19.235	34.628	
23.619	30.808	21.633	31.253	18.253	36.404	
21.251	34.949	20.182	34.290	15.766	39.434	
19.997	37.166	19.214	36.263	13.940	43.113	
18.944	38.737	18.441	36.664	13.082	44.057	
17.621	40.767	17.586	38.558	11.462	46.755	
16.486	42.927	15.433	41.412	10.256	49.285	
15.365	44.873	13.632	45.121	9.590	50.172	
14.277	46.782	12.603	47.314	9.029	51.115	
13.289	48.556	11.702	49.325			
12.066	50.000	11.220	50.517			
		10.700	51.473			
		10.410	52.021			
		9.675	52.494			
		9.220	53.100			

Table S.2: Weight fraction (w_x) experimental data for the ternary systems composed of $[N_{1111}]$ Cl + PEG 2000 + water at 40, 50 and 60 °C.

[N ₂₂₂₂]Cl + PEG 2000 + water							
<i>T</i> = 40 °C		<i>T</i> = 50 °C		<i>T</i> = 60 °C			
100 w _{[N2222]Cl}	100 w _{PEG 2000}	100 w _{[N2222]Cl}	100 w _{PEG 2000}	100 <i>w</i> [N2222]Cl	100 w _{PEG 2000}		
46.643	9.695	36.115	21.914	40.867	13.707		
41.966	15.282	34.735	23.449	39.152	15.904		
37.665	20.989	33.946	24.607	36.481	19.290		
34.648	25.487	32.930	26.170	32.431	25.018		
29.396	33.467	29.625	31.026	31.267	26.801		
21.264	45.185	26.483	35.520	29.740	28.649		
17.151	51.503	17.256	50.531	28.244	29.933		
				27.241	31.078		
				26.505	31.604		
				25.139	32.334		
				24.602	32.785		

Table S.3: Weight fraction (w_x) experimental data for the ternary systems composed of $[N_{2222}]$ Cl + PEG 2000 + water at 40, 50 and 60 °C.

[N _{1112(OH)}]Cl + PEG 2000 + water						
<i>T</i> = 40 °C		<i>T</i> = 50 °C		<i>T</i> = 60 °C		
100 w _{[N1112(OH)}]Cl	100 w _{PEG 2000}	100 w _{[N1112(OH)}]Cl	100 w _{PEG 2000}	100 w _{[N1112(OH)}]Cl	100 w _{PEG 2000}	
52.439	8.126	43.531	11.483	43.597	8.209	
51.222	7.561	40.088	15.972	38.142	14.624	
47.098	10.583	34.780	22.475	33.610	21.814	
43.901	14.005	32.111	26.584	31.888	23.154	
35.666	24.829	30.073	29.167	28.110	27.975	
32.995	28.768	29.295	29.826	24.945	33.513	
19.980	47.307	23.703	37.392	23.986	34.864	
16.880	52.116	21.866	40.752	23.415	35.632	
15.195	54.066			19.957	41.195	
				19.732	41.313	
				17.694	43.805	
				16.238	46.936	
				15.931	46.574	
				13.608	50.344	
				12.150	52.534	
				11.438	56.116	
				9.614	59.418	

Table S.4: Weight fraction (w_x) experimental data for the ternary systems composed of $[N_{1112(OH)}]$ Cl + PEG 2000 + water at 40, 50 and 60 °C.

[N ₃₃₃₃]Cl + PEG 2000 + water						
<i>T</i> = 40 °C		<i>T</i> = 50 °C		T= 60 °C		
100 <i>w</i> [N3333]Cl	100 w _{PEG 2000}	100 <i>w</i> [N3333]Cl	100 w _{PEG 2000}	100 <i>w</i> [N3333]Cl	100 w _{PEG 2000}	
54.370	22.626	46.842	41.267	56.395	34.385	
50.934	25.635	44.922	45.343	38.271	56.215	
49.467	26.150	40.093	49.818	23.218	72.530	
48.425	27.912	32.336	57.498	20.320	75.775	
45.437	29.427	30.014	59.756	10.789	87.167	
44.342	32.560	25.481	64.016			
40.466	36.472	15.609	75.250			
36.399	40.081	10.228	83.796			
31.882	43.243					
28.886	47.241					
27.603	48.755					
26.485	52.892					
23.813	56.725					
16.573	65.754					

Table S.5: Weight fraction (w_x) experimental data for the ternary systems composed of $[N_{3333}]$ Cl + PEG 2000 + water at 40, 50 and 60 °C.

[N ₁₄₄₄]Cl + PEG 2000 + water						
<i>T</i> = 40 °C		<i>T</i> = 50 °C		<i>T</i> = 60 °C		
100 w _{[N1444]Cl}	100 w _{PEG 2000}	100 w _{[N1444]Cl}	100 w _{PEG 2000}	100 <i>w</i> _{[N1444]Cl}	100 w _{PEG 2000}	
42.755	39.992	68.131	19.188	64.424	27.552	
39.279	44.221	63.01	26.991	54.842	34.973	
36.272	45.382	54.709	36.605	47.669	44.054	
29.140	55.218	34.658	59.709	46.046	45.259	
27.333	57.887	10.714	85.193	41.725	51.323	
18.134	65.980			41.177	51.556	
15.104	70.264			39.207	59.106	
				33.457	61.112	
				29.468	69.285	

Table S.6: Weight fraction (w_x) experimental data for the ternary systems composed of $[N_{1444}]$ Cl + PEG 2000 + water at 40, 50 and 60 °C.

[N ₄₄₄₄]Cl + PEG 2000 + water							
<i>T</i> = 30 °C		<i>T</i> = 40 °C		<i>T</i> = 50 °C			
100 w _{[N4444]Cl}	100 w _{PEG 2000}	100 w _{[N4444]Cl}	100 w _{PEG 2000}	100 w _{[N4444]Cl}	100 w _{PEG 2000}		
81.768	2.442	86.736	4.813	90.872	6.002		
80.674	3.361	81.451	9.200	76.534	20.065		
80.244	4.567	71.626	16.632	58.081	38.672		
76.989	6.639	70.987	19.205	47.800	48.309		
76.346	8.989	67.785	17.584				
73.158	11.390	65.635	22.337				
69.196	13.282	59.429	29.121				
67.223	16.845	41.899	44.731				
61.654	21.627						

Table S.7: Weight fraction (w_x) experimental data for the ternary systems composed of $[N_{4444}]$ Cl + PEG 2000 + water at 30, 40 and 50 °C.

Figures

Figure S.1: Phase diagrams of the ternary system $[N_{2222}]Cl + PEG +$ water at 40, 50 and 60 °C; partial molar excess enthalpies of the ammonium anion in the ternary mixture predicted by COSMO-RS as a function of PEG molality at 40, 50 and 60 °C.

Figure S.2: Phase diagrams of the ternary system $[N_{1112(OH)}]Cl + PEG + water at 40, 50 and 60 °C; partial molar excess enthalpies of the ammonium anion in the ternary mixture predicted by COSMO-RS as a function of PEG molality at 40, 50 and 60 °C.$

Figure S.3: Phase diagrams of the ternary system $[N_{1444}]Cl + PEG +$ water at 40, 50 and 60 °C; partial molar excess enthalpies of the ammonium anion in the ternary mixture predicted by COSMO-RS as a function of PEG molality at 40, 50 and 60 °C.

Figure S.4: Phase diagrams of the ternary system [N₄₄₄₄]Cl + PEG + water at 30, 40 and 50 °C.

Figure S.5: ¹H NMR chemical shift deviations of $[N_{1111}]$ Cl protons relative to those of the initial $[N_{1111}]$ Cl/water binary mixture as a function of PEG 200 molality at 25, 40 and 60 °C.

Figure S.6: ¹H NMR chemical shift deviations of $[N_{3333}]$ Cl protons relative to those of the initial $[N_{3333}]$ Cl/water binary mixture as a function of PEG 200 molality at 25, 40 and 60 °C.

Figure S.7: ¹H NMR chemical shift deviations of $[N_{1111}]$ Cl and PEG 200 protons relative to those of the initial $[N_{1111}]$ Cl/PEG 200 binary mixture as a function of water molality at 25, 40 and 60 °C.

Figure S.8: ¹H NMR chemical shift deviations of $[N_{3333}]$ Cl and PEG 200 protons relative to those of the initial $[N_{3333}]$ Cl/PEG 200 binary mixture as a function of water molality at 25, 40 and 60 °C.

References

- 1. C. M. S. S. Neves, S. P. M. Ventura, M. G. Freire, I. M. Marrucho and J. A. P. Coutinho, *J. Phys. Chem. B*, 2009, **113**, 5194-5199.
- 2. S. P. M. Ventura, C. M. S. S. Neves, M. G. Freire, I. M. Marrucho, J. Oliveira and J. A. P. Coutinho, *J. Phys. Chem. B*, 2009, **113**, 9304-9310.
- 3. M. J. Ruiz-Angel, V. Pino, S. Carda-Broch and A. Berthod, *J. Chromatogr. A*, 2007, **1151**, 65-73.
- 4. L. I. N. Tomé, J. F. B. Pereira, R. D. Rogers, M. G. Freire, J. R. B. Gomes and J. A. P. Coutinho, *Phys. Chem. Chem. Phys.*, 2014, **16**, 2271-2274.
- 5. L. I. N. Tomé, J. F. B. Pereira, R. D. Rogers, M. G. Freire, J. R. B. Gomes and J. A. P. Coutinho, *J. Phys. Chem. B*, 2014, **118**, 4615-4629.
- 6. University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, TURBOMOLE V6.1 2009, 1989–2007, 25 GmbH, since 2007; available from http://www.turbomole.com.
- 7. J. B. Foresma and A. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd ed. 1996, Pittsburgh: Gaussian Inc.
- 8. F. Eckert and A. Klamt, COSMOtherm Version C2.1 Release 01.08, COSMOlogic GmbH & Co. KG, Leverkusen, Germany, 2006.
- 9. K. A. Kurnia and J. A. P. Coutinho, *Ind. Eng. Chem. Res.*, 2013, **52**, 13862-13874.