Supplementary Information

for

Benz-amidinato calcium iodide catalyzed aldehyde and ketone hydroboration with unprecedented functional group tolerance

Sandeep Yadav, Sanjukta Pahar and Sakya S. Sen*

Contents:

- 1. General consideration.
- 2. General Procedure for Catalytic Hydroboration of Aldehydes.
- 3. Solvent Screening.
- 4. Spectroscopic data for aldehyde hydroboration products.
- 5. TON and TOF table for aldehyde hydroboration.
- 6. General Procedure for Catalytic Hydroboration of Ketone.
- 7. Spectroscopic data for ketone hydroboration products.
- 8. TON and TOF table for ketone hydroboration.
- 9. NMR spectra.
- 10. Chemoselective hydroboration of aldehydes versus ketones.
- 11. References.

- 1. General consideration : All reactions were operated under argon atmosphere using glovebox and Schlenk line. Dried solvents were used directly from M-Braun solvent purification system MB SPS-800. CDCl₃ was degassed by repeated freeze-thaw cycles and stored over activated 4 Å molecular sieves. ¹H and ¹³C NMR spectra were recorded in CDCl₃ at room temperature using a Bruker Advance DPX 200 spectrophotometer. NMR chemical shifts were reported in ppm with repstect to tetramethylsilane. Chemicals were purchased from Sigma-Aldrich, Alfa-aesar, TCI chemicals and used without further purification. Compound **1** was prepared according to the literature procedure.¹
- 2. General Procedure for Catalytic Hydroboration of Aldehydes :Aldehyde (0.25 mmol), pinacolborane (0.25mmol), LCaI(0.5-2 mol%) [benzene (1ml)] were charged in Schlenk tube inside glove box. The reaction mixture was allowed to run at room temperature. The progress of the reaction was monitored by ¹H NMR, which indicated the completion of the reaction by the disappearance of the aldehyde proton and appearance of a new CH₂ peak. Upon completion of reaction, the solvent was removed using high vacuum in Schlenk line and mesitylene (0.25mmol) as internal standard, was added while making the NMR in CDCl₃.
- **3. Solvent Screening** : The reaction of benzaldehyde (0.25 mmol), pinacolborane(0.25mmol) was performed using different solvents as shown in table. The reaction conversion was found to be highest when we used benzene as reaction solvent.

Table	S1.
-------	------------

Entry	Cat. (mol%)	Solvent	Time (min)	Conversion
				(%)
1	2	THF	40	94
2	2	Hexane	40	90
3	2	Xylene	40	96
4	2	Toluene	40	96
5	2	Benzene	40	>99

4. Spectroscopic data for aldehyde hydroboration products -

 PhCH₂OBpin (2a): product from hydroboration of benzaldehyde.¹H NMR (CDCl₃, 200 MHz),

 O
 δ1.17 (s,12 H, Bpin-CH₃), 4.82 (s, 2H, pinBOCH₂), 7.24 (m, 5H, Ar-H); ¹³C

 NMR (CDCl₃, 50.28 MHz), δ 24.68 (Bpin-CH₃), 66.77 (OCH₂Ph), 83.06

 H
 (Bpin-C), 126.82, 127.00, 128.37, 137.77, 139.31 (Ar-C)

4-CH₃PhCH₂OBpin (2b): product from hydroboration of 4-Methylbenzaldehyde.¹H NMR (CDCl₃, 200 MHz), δ 1.17 (s,12 H, Bpin-CH₃), 2.25 (s, 3H, Ar-CH₃), 4.80 (s, 2H, pinBOCH₂), 7.07 (d,³J_{HH} = 7.7 Hz, 2H, Ar-H), 7.14 (d,³J_{HH} = 8.2 Hz, 2H, Ar-H); ^{H₃C} H); ¹³C NMR (CDCl₃, 50.28 MHz), 21.26(PhCH3), 24.67 (Bpin-CH₃), 66.66 (OCH₂Ph), 82.96 (Bpin-C), 126.98, 129.02, 129.93, 137.05, 137.75 (Ar-C).

2-BrPhCH₂OBpin (2c): product from hydroboration of 2-Bromobenzaldehyde.¹H NMR (CDCl₃, 200 MHz), $\delta 1.19$ (s,12 H, Bpin-CH₃), 4.90 (s, 2H, pinBOCH₂), 7.03(d,³J_{HH} = 7.2 Hz, 1H, Ar-H), 7.27(m, 1H, Ar-H), 7.40 (m, 1H, Ar-H), 7.44(dd, ³J_{HH} = 7.1 Hz, 1H, Ar-H)¹³C NMR (CDCl₃, 50.28 MHz) 24.66 (Bpin-CH₃), 66.37 (OCH₂Ph), 83.23 (Bpin-C), 126.97, 127.41, 127.88, 128.68, 132.32 (Ar-C).

3-BrPhCH₂OBpin (2d): product from hydroboration of 3-Bromobenzaldehyde.¹H NMR (CDCl₃, 200 MHz), $\delta 1.17$ (s,12 H, Bpin-CH₃), 4.80 (s, 2H, pinBOCH₂), 7.08(d, ³J_{HH} = 7.6 Hz, 1H, Ar-H), 7.14(m, 1H, Ar-H), 7.26 (m, 1H, Ar-H), 7.43(s, 1H, Ar-H) ¹³C NMR (CDCl₃, 50.28 MHz) 24.67(Bpin-CH₃), 65.91 (OCH₂Ph), 83.23 (Bpin-C), 122.53, 125.22, 126.99, 128.40,130.50 (Ar-C).

CH₃), 65.23 (OCH₂Ph), 82.37 (Bpin-C), 120.48, 126.18, 128.68, 130.64, 136.94 (Ar-*C*).

2-OCH₃PhCH₂OBpin (2f): product from hydroboration of 2-Methoxylbenzaldehyde.¹H NMR (CDCl₃, 200 MHz), δ 1.18 (s,12 H, Bpin-CH₃), 3.70 (s, 3H, Ar-OCH₃), 4.90 (s, 2H, pinBOCH₂), 6.89 (m, 2H, Ar-H), 7.14 (m, 1H, Ar-H), 7.34 (m, 1H, Ar-H); ¹³C NMR (CDCl₃, 50.28 MHz), 24.50 (Bpin-CH₃), 55.03 (PhOCH₃), 62.17 (OCH₂Ph), 82.72 (Bpin-C), 120.21, 127.22, 128.12, 137.58, 156.38 (Ar-C).

3-OCH₃PhCH₂OBpin (2g): product from hydroboration of 3-Methoxybenzaldehyde.¹H NMR (CDCl₃, 200 MHz), § 1.18 (s,12 H, Bpin-CH₃), 3.70 (s, 3H, PhOCH₃), 4.82 (s, 2H, pinBOCH₂), 6.84 (d, 2H, Ar-H, J = 15.2 Hz), 7.11 (m, 2H, Ar-H); ¹³C NMR (CDCl₃, 50.28 MHz) 25.07 (Bpin-CH₃), 65.81 (OCH₂Ph), 83.48 (Bpin-C), 126.99, 129.06, 129.65, 131.81, 137.48(Ar-C), 153.42(PhOCH₃).

4-OHPhCH₂OBpin (2h): product from hydroboration of 4-Hydroxybenzaldehyde.¹H NMR

H₂CC

(CDCl₃, 200 MHz), δ 1.18 (s,12 H, Bpin-CH₃), 4.75 (s, 2H, pinBOCH₂), 6.77 $(d, {}^{3}J_{HH} = 8.4 \text{ Hz}, 2\text{H}, \text{Ar-}H), 7.07 (d, {}^{3}J_{HH} = 8.5 \text{ Hz}, 2\text{H}, \text{Ar-}H); {}^{13}\text{C} \text{ NMR}$ (CDCl₃, 50.28 MHz) 24.49 (Bpin-CH₃), 66.54 (OCH₂Ph), 83.09 (Bpin-C), 119.32, 128.68, 130.91, 137.64, 155.35 (Ar-C).

2-OHPhCH₂OBpin (2i): product from hydroboration of 2-Hydroxybenzaldehyde.¹H NMR

(CDCl₃, 200 MHz), δ 1.18 (s,12 H, Bpin-CH₃), 4.88 (s, 2H, pinBOCH₂), 6.87 $(d_{,}^{3}J_{HH} = 8.4 \text{ Hz}, 2\text{H}, \text{Ar-}H), 7.07 (d_{,}^{3}J_{HH} = 8.5 \text{ Hz}, 2\text{H}, \text{Ar-}H); ^{13}\text{C NMR}$ (CDCl₃, 50.28 MHz) 25.07 (Bpin-CH₃), 72.54 (OCH₂Ph), 83.42 (Bpin-C), 121.48, 128.86, 131.83, 138.21, 144.14 (Ar-C).

4-NO₂PhCH₂OBpin (2j): product from hydroboration of 4-Nitrobenzaldehyde.¹H NMR (CDCl₃,

200 MHz), $\delta 1.19$ (s,12 H, Bpin-CH₃), 4.93 (s, 2H, pinBOCH₂), 7.43(d, ³J_{HH} = 8.6 Hz, 2H, Ar-*H*), 8.12(d,³J_{HH} = 8.9 Hz, 2H, Ar-*H*);¹³C NMR (CDCl₃, 50.28 MHz) 24.63(Bpin-CH₃), 65.59 (OCH₂Ph), 83.43 (Bpin-C), 123.62, 126.93, 128.39, 130.49, 137.72(Ar-C).

4-CNPhCH₂OBpin (2k): product from hydroboration of 4-Cyanobenzaldehyde.¹H NMR (CDCl₃,

200 MHz), δ 1.19 (s,12 H, Bpin-CH₃), 4.89 (s, 2H, pinBOCH₂), 7.37 (d, ³J_{HH} = 8.0 Hz, 2H, Ar-*H*), 7.51 (d,³J_{HH} = 8.4 Hz, 2H, Ar-*H*); ¹³C NMR (CDCl₃, 50.28 MHz), 21.71 (Bpin-CH₃), 66.27 (OCH₂Ph), 83.85 (Bpin-C), 111.60 (PhCN), 119.38, 128.85, 132.68, 138.20, 145.12 (Ar-C).

4-FPhCH₂OBpin (2l): product from hydroboration of 4-Fluorobenzaldehyde.¹H NMR (CDCl₃,

200 MHz), $\delta 1.17$ (s,12 H, Bpin-CH₃), 4.79 (s, 2H, pinBOCH₂), 6.92 (d,³J_{HH} = 8.9 Hz, 2H, Ar-H), 7.22 (d,³J_{HH} = 7.8 Hz, 2H, Ar-H); ¹³C NMR (CDCl₃, 50.28 MHz) 24.62(Bpin-CH₃), 66.12 (OCH₂Ph),83.10 (Bpin-C), 126.96, 128.77, 132.19, 135.08, 137.75(Ar-C).

 FurfuralOBpin (2m): product from hydroboration of Furfural.¹H NMR (CDCl₃, 200 MHz), δ 1.18

 (s,12 H, Bpin-CH₃), 4.74 (s, 2H, pinBOCH₂), 6.22(s, 1H, Ar-H), 6.72 (s, 2H, Ar-H); ¹³C NMR (CDCl₃, 50.28 MHz), 23.54 (Bpin-CH₃), 58.16 (OCH₂Ph), 82.02 (Bpin-C), 125.87, 136.64, 141.40, 151.42, (Ar-C).

2,6-MePhCH₂OBpin (2n): product from hydroboration of 2,6-Dimethylbenzaldehyde.¹H NMR (CDCl₃, 200 MHz), δ 1.17 (s,12 H, Bpin-CH₃), 2.34 (s, 6H, PhCH₃), 4.91(s, 2H, pinBOCH₂), 6.93(m, 3H, Ar-*H*); ¹³C NMR (CDCl₃, 50.28 MHz), 19.42, 21.11(PhCH₃), 24.52 (Bpin-CH₃), 61.29 (OCH₂Ph), 82.71 (Bpin-C), 128.05,

PhC₃H₄OBpin (20): product from hydroboration of trans-Cinnamaldehyde.¹H NMR (CDCl₃, 200 MHz), δ 1.19 (s,12 H, Bpin-CH₃), 4.45 (d, 2H, ³J=5.2 Hz,CH₂), 6.14-6.24 (m,

134.94, 137.60 (Ar-C).

1H, CHC*H*), 6.50-6.58 (d, 1H, ³J=15.7 Hz,ArC*H*), 7.22 (m, 5H, Ar-*H*); ¹³C NMR (CDCl₃, 50.28 MHz) 21.10(Bpin-CH₃), 65.18 (OCH₂Ph), 82.82 (Bpin-C), 126.35 (PhCHCH), 127.41, 128.43, 130.55, 136.78, 137.59 (Ar-*C*).

C₆H₅PhOBpin (2p): product from hydroboration of Napthaldehyde.¹H NMR (CDCl₃, 200 MHz), δ

1.19 (s,12 H, Bpin-CH₃), 5.32 (s, 2H, pinBOCH₂), 7.39 (m, 4H, Ar-*H*), 7.67 (m, 2H, Ar-*H*), 7.93 (m, 1H, Ar-*H*); ¹³C NMR (CDCl₃, 50.28 MHz) 25.20(Bpin-CH₃), 65.58(OCH₂Ph), 83.58 (Bpin-C), 124.03, 125.42, 125.91, 126.22, 126.66, 128.73, 129.11, 131.52, 134.13, 135.22, 138.26 (Ar-*C*).

5. Table S2 :TON and TOF table for aldehyde hydroboration.

Entry	Substrate	Time (min)	Catalyst Mol%	Yield (NMR)	TON	TOF[h ⁻¹]
2a	° L	40 min	0.5	83 %	166	249
2b	H ₃ C-	40 min	1	81 %	81	121.5
2c	O H Br	40 min	2	96 %	48	72

2d	Br O H	40 min	3	95 %	47.5	71.25
2e	Br - H	40min	2	81 %	40.50	60.75
2f	O OCH ₃	40 min	2	83 %	41	62
2g	H ₃ CO	40 min	2	76%	38	57
2h	но-	40 min	2	79 %	40	60
2i	о Н ОН	40 min	2	71 %	35.5	53.25
2j	O₂N-⟨H	40 min	2	97 %	48.5	72.75

2k		40 min	2	80 %	40	60
21	F	40 min	2	82%	41	62
2m	C H	40 min	2	72 %	36	54
2n	CH ₃ CH ₃ CH ₃	40 min	1	95 %	94	142
20	H-CO	40 min	2	91 %	46	69
2p	H_O C	40 min	2	83 %	42	63

6. General Procedure for Catalytic Hydroboration of Ketone:

Ketone (0.25 mmol), pinacolborane (0.25mmol), LCaI (3mol%) [benzene (1ml)] were charged in Schlenk tube inside glove box. The reaction mixture was allowed to run at room temperature. The progress of the reaction was monitored by ¹H NMR, which indicated the completion of the reaction by the appearance of a new CH peak. Upon completion of reaction, the solvent was removed using high vacuum in Schlenk line and mesitylene as internal standard, (0.25mmol) was added while making the NMR in CDCl₃.

7. Spectroscopic data for ketone hydroboration products:

(Ph)(Me)CHOBpin (3a):product from hydroboration of acetophenone.¹H NMR (CDCl₃, 200

MHz), δ 1.13 (s,6 H, Bpin-C*H*₃), 1.16 (s, 6H, Ar-C*H*₃), 1.40 (d, ³*J*_{HH} = 6.3 Hz, 3H, OCHC*H*₃), 5.18 (q, 1H, pinBOC*H*), 7.17 (m, 5H, Ar-*H*); ¹³C NMR (CDCl₃, 50.28 MHz), 21.10 (Bpin-CH₃), 72.51 (OCH₂Ph), 82.66 (Bpin-C), 125.25, 127.0, 128.11, 137.60, 144.49 (Ar-C).

(4-CH₃Ph)(Me)CHOBpin (3b):product from hydroboration of 4-Methylacetophenone.¹H NMR

(CDCl₃, 200 MHz), δ 1.13 (s,6 H, Bpin-C*H*₃), 1.16 (s, 6H, Ar-C*H*₃), 1.38 (d, ³*J*_{HH} = 6.3 Hz, 3H, OCHC*H*₃), 2.24 (s, 3H, PhC*H*₃), 5.16 (q, 1H, pinBOC*H*), 7.01 (d, ³*J*_{HH} = 7.4 Hz, 2H, Ar-*H*), 7.16 (d, ³*J*_{HH} = 8.6 Hz, 2H, Ar-*H*); ¹³C NMR (CDCl₃, 50.28 MHz), 21.24(PhCH3), 24.57 (Bpin-CH₃), 25.97 (OCHCH₃), 72.49 (OCH₂Ph), 83.14 (Bpin-C), 126.96, 128.39, 130.77, 137.75, 145.48 (Ar-*C*).

(4-OCH₃Ph)(Me)CHOBpin (3c):product from hydroboration of 4-Methoxyacetophenone.¹H

NMR (CDCl₃, 200 MHz), δ 1.21 (s,6 H, Bpin-CH₃), 1.23 (s, 6H, Ar-CH₃), 1.46 (d, ${}^{3}J_{HH} = 6.4$ Hz, 3H, OCHCH₃), 3.78 (s, 3H, PhOCH₃), 5.19 (q, 1H, pinBOCH), 6.87 (d, ${}^{3}J_{HH} = 8.1$ Hz, 2H, Ar-H), 7.31(d, ${}^{3}J_{HH} = 8.9$ Hz, 2H, Ar-H); 13 C NMR (CDCl₃, 50.28 MHz),23.48 (Bpin-CH₃), 24.31 (OCHCH₃), 54.16 (PhOCH3), 71.20 (OCH₂Ph),81.63 (Bpin-C), 125.87, 129.58, 135.78, 136.65, 157.70(Ar-C).

(4-NH₂Ph)(Me)CHOBpin (3d):product from hydroboration of 4-Aminoacetophenone.¹H NMR

(CDCl₃, 200 MHz), δ 1.68 (s, 12H, Bpin-CH₃),1.94 (d,³J_{HH} = 6.5 Hz, 3H, OCHCH₃), 4.09 (s, 2H, PhONH₂), 5.63 (q, 1H, pinBOCH), 7.11(d, ³J_{HH} = 7.8 Hz, 2H, Ar-H), 7.61 (d,³J_{HH} = 8.7 Hz, 2H, Ar-H); ¹³C NMR (CDCl₃, 50.28 MHz), 21.22 (OCHCH₃), 24.63 (Bpin-CH₃), 65.59 (OCH₂Ph),83.43(Bpin-C), 123.62, 126.93, 128.36, 137.72, 146.65(Ar-C).

(4-NO₂Ph)(Me)CHOBpin (3e):product from hydroboration of 4-Nitrolacetophenone.¹H NMR

 $(CDCl_3, 200 \text{ MHz}), \delta 1.71 \text{ (s,6 H, Bpin-C}H_3), 1.73 \text{ (s, 6H, Ar-C}H_3), 2.02(d, {}^3J_{HH} = 6.4 \text{ Hz}, 3\text{H}, OCHCH_3), 5.82 (q, 1\text{H}, pinBOCH), 7.96 (d, {}^3J_{HH} = 7.7 \text{ Hz}, 2\text{H}, \text{Ar-}H), 8.16 (d, {}^3J_{HH} = 8.0 \text{ Hz}, 2\text{H}, \text{Ar-}H); {}^{13}\text{C} \text{ NMR} (CDCl_3, 50.28 \text{ MHz}), 21.22(OCHCH_3), 24.57(Bpin-CH_3), 71.72 (OCH_2Ph), 83.18(Bpin-C), 126.93, 129.31, 131.59, 133.84, 137.72(Ar-C).$

(4-BrPh)(Me)CHOBpin (3f):product from hydroboration of 4-Bromoacetophenone.¹H NMR

(CDCl₃, 200 MHz), δ 1.12 (s,6 H, Bpin-CH₃), 1.15 (s, 6H, Ar-CH₃), 1.35 (d, ³J_{HH} = 6.5 Hz, 3H, OCHCH₃), 5.12 (q, 1H, pinBOCH), 7.16 (d, ³J_{HH} = 8.4 Hz, 2H, Ar-H), 7.26 (d, ³J_{HH} = 8.6 Hz, 2H, Ar-H); ¹³C NMR (CDCl₃, 50.28 MHz), 21.22(OCHCH₃), 23.80 (Bpin-CH₃), 68.91 (OCH₂Ph), 71.26 (Bpin-C), 120.14, 127.59, 130.55, 136.94, 142.87 (Ar-C).

(Ph)(Ph)CHOBpin (3g):product from hydroboration of Benzophenone.¹H NMR (CDCl₃, 200

MHz), δ 1.11 (s, 12H, Bpin-CH₃), 6.12 (s, 1H, pinBOCH), 7.21 (m, 10H Ar-H);
¹³C NMR (CDCl₃, 50.28 MHz), 20.46 (Bpin-CH₃), 82.25 (Bpin-C), 125.77,
126.18, 126.56, 127.51, 129.33, 136.94, 142.38, 143.17 (Ar-C).

(2-CIEt)(Me)CHOBpin (3h):product from hydroboration of 2-Chloroethylmethylketone.¹H NMR

 $(CDCl_3, 200 \text{ MHz}), \delta 1.18 \text{ (s,12 H, Bpin-C}H_3), 1.40 (dd, {}^3J_{HH} = 6.4 \text{ Hz}, 3\text{H}, OCHCH_3), 4.19 (q, 1H, pinBOCH); {}^{13}C \text{ NMR} (CDCl_3, 50.28 \text{ MHz})18.61 (CClCH_3), 20.03 (OCHCH_3), 21.75 (Bpin-CH_3), 61.24 (CClCH_3), 74.36 (BpinOCCH_3), 83.47 (Bpin-C).$

(3-OHEt)(Me)CHOBpin (3i):product from hydroboration of 3-Hydroxyoropylmethylketone.¹H

NMR (CDCl₃, 200 MHz), δ 1.17 (s,12H, Bpin-CH₃), 1.37 (m, 2H,
HOCH₂CH₂),1.39 (dd, ³J_{HH} = 6.4 Hz, 3H, OCHCH₃), 3.85 (q, 1H, pinBOCH),
4.16 (m, 2H); ¹³C NMR (CDCl₃, 50.28 MHz), 20.16 (OCHCH₃), 23.54(Bpin-CH₃), 60.85 (OHCH₂), 66.92 (OHCH₂CH₂), 83.18 (Bpin-C).

(ⁱPr)(Me)CHOBpin (3j):product from hydroboration of Methyl isopropyl ketone. ¹H NMR (CDCl₃, 200 MHz), $\delta 0.79$ (d, ³J_{HH}= 2.79, 3H, EtH), 0.81(d, ³J_{HH}= 2.8Hz, 3H, EtH), 1.04 (d, ³J_{HH}= 6.09Hz, 3H, MeH), 1.16 (s, 12 H, Bpin-CH₃), 1.56 (m,1H,EtHCH), 3.87 (q, 1H, pinBOCH); ¹³C NMR (CDCl₃, 50.28 MHz), 18.07 (EtC), 21.12 (OCHCH₃), 24.47(Bpin-CH₃), 34.31 (EtCHCHOBpin),

82.32(Bpin-C).

8. Table S3: TON and TOF table for ketone hydroboration:

Entry	Substrate	Time (h)	Catalyst	Yield	TON	TOF[h ⁻¹]
			mol%	(NMR)		
3a	CH3	5 h	3	95 %	47	9.5
þ	H ₃ C-CH ₃	5 h	3	79 %	26	5.2
3c	H ₃ CO-CH ₃	5 h	3	78 %	26	5.2

3d	H ₂ N-CH ₃	5 h	3	80 %	40	8
Зе	O ₂ N-CH ₃	5 h	3	73 %	24	4.8
3f	Br CH ₃	5 h	3	83 %	27	5.5
3g	o - C	5 h	3	86 %	43	8.6
3h	H ₃ C CI	5 h	3	75 %	23.6	4.73
3i	но снз	5 h	3	64 %	21.3	4.27
3ј	CH3	5 h	3	72 %	23.3	4.67

¹H NMR of PhCH₂OBpin (CDCl₃, 200 MHz):

9.

¹³C NMR of PhCH₂OBpin (CDCl₃, 50.28MHz):

¹H NMR of 2-BrPhCH₂OBpin (CDCl₃, 200 MHz):

¹³C NMRof2-BrPhCH₂OBpin(CDCl₃, 50.28 MHz)

¹H NMR of 3-BrPhCH₂OBpin (CDCl₃, 200 MHz):

¹³C NMRof3-BrPhCH₂OBpin(CDCl₃, 50.28 MHz)

¹H NMR of 4-BrPhCH₂OBpin (CDCl₃, 200 MHz):

¹³C NMR of 4-BrPhCH₂OBpin (CDCl₃, 200 MHz):

¹³C NMR of 4-NO₂PhCH₂OBpin (CDCl₃, 200 MHz):

¹H NMR of 4-FPhCH₂OBpin (CDCl₃, 200 MHz):

¹³C NMRof4-FPhCH₂OBpin(CDCl₃, 50.28 MHz):

¹³C NMRof4-CH₃PhCH₂OBpin(CDCl₃, 50.28 MHz):

¹³C NMRof2-OCH₃PhCH₂OBpin(CDCl₃, 50.28 MHz):

¹H NMR of 3-OCH₃PhCH₂OBpin (CDCl₃, 200 MHz):

¹³C NMRof3-OCH₃PhCH₂OBpin(CDCl₃, 50.28 MHz):

¹H NMR of 4-OHPhCH₂OBpin (CDCl₃, 200 MHz):

¹³C NMRof4-OHPhCH₂OBpin(CDCl₃, 50.28 MHz):

¹H NMR of 2-OHPhCH₂OBpin (CDCl₃, 200 MHz):

S23

¹³ C NMR of 4-CNPhCH₂OBpin (CDCl₃, 50.28 MHz):

¹H NMR of C₆H₅PhCH₂OBpin (CDCl₃, 200 MHz):

¹³C NMR of C₆H₅PhCH₂OBpin (CDCl₃, 50.28 MHz):

¹H NMR of PhC₃H₄OBpin (CDCl₃, 200 MHz):

¹³C NMR of PhC₃H₄OBpin (CDCl₃, 50.28 MHz):

¹³C NMR of 2,6-MePhCH₂OBpin (CDCl₃, 50.28 MHz):

¹H NMR of FurfuralOBpin (CDCl₃, 200 MHz):

¹³C NMRofFurfuralOBpin(CDCl₃, 50.28 MHz):

Ketone

¹H NMR of (Ph)CHOBpin (CDCl₃, 200 MHz):

¹³C NMR of (4-CH₃Ph)(Me)CHOBpin (CDCl₃, 50.28 MHz):

¹H NMR of (4-OCH₃Ph)(Me)CHOBpin (CDCl₃, 200 MHz):

¹³C NMR of (4-OCH₃Ph)(Me)CHOBpin (CDCl₃, 50.28 MHz)

¹H NMR of (4-NH₂Ph)(Me)CHOBpin (CDCl₃, 200 MHz):

¹³C NMR of (4-NH₂Ph)(Me)CHOBpin (CDCl₃, 50.28 MHz):

¹H NMR of (4-NO₂Ph)(Me)CHOBpin (CDCl₃, 200 MHz):

¹³C NMR of (4-NO₂Ph)(Me)CHOBpin (CDCl₃, 50.28 MHz):

¹H NMR of (4-BrPh)(Me)CHOBpin (CDCl₃, 200 MHz):

¹³C NMR of (4-BrPh)(Me)CHOBpin (CDCl₃, 50.28 MHz):

¹³C NMR of(2-ClEt)(Me)CHOBpin(CDCl₃, 50.28 MHz):

¹H NMR of (4-OHEt)(Me)CHOBpin(CDCl₃, 200 MHz):

¹³ C NMR of (4-OHEt)(Me)CHOBpin(CDCl₃, 50.28 MHz):

¹H NMR of(Et)(Me)CHOBpin(CDCl₃, 200 MHz):

¹³ C NMR of(Et)(Me)CHOBpin (CDCl₃, 50.28 MHz):

¹³ C NMR of(Ph)(Ph)CHOBpin (CDCl₃, 50.28 MHz):

10. Chemoselective hydroboration of aldehydes versus ketones:

1 Equivalent of benzaldehyde and 1 equivalent of acetophenone were charged in Schlenk tube with catalyst and 1 equivalent of HBPin, it led to almost quantitative hydroboration of benzaldehyde and complete recycle of acetophenone. Subsequent addition of a second equivalent of HBpin afforded both hydroborated products in more than 90% yield.

A. 1 Eq. PhCHO + 1 Eq. PhCOCH3 + 1 Eq. HBPin + Catalyst

B. 1 Eq. PhCHO + 1 Eq. PhCOCH3 + 2 Eq. HBPin + Catalyst

11. References

1. S. Yadav, V.S. V. S. N. Swamy, R. Gonnade and S. S. Sen, *ChemistrySelect*, 2016, 1, 1066-1071.