Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

2
4
6
11

Experimental section

General

¹H NMR, ¹³C NMR, ¹¹B NMR, ²⁹Si NMR, and ¹⁹F NMR spectra were measured on a Bruker Avance 300 (300 MHz) spectrometer. Chemical shifts of ¹H NMR were expressed in parts per million downfield from CHCl₃ as an internal standard ($\delta = 7.26$) in CDCl₃. Chemical shifts of ¹³C NMR were expressed in parts per million downfield from CDCl₃ as an internal standard ($\delta = 77.16$) in CDCl₃. Chemical shifts of ¹¹B NMR were expressed in parts per million downfield from BF₃·OEt₂ as an external standard (δ = 0) in CDCl₃. Chemical shifts of ²⁹Si NMR were expressed in parts per million downfield from Me₄Si as an external standard ($\delta = 0$) in CDCl₃. Chemical shifts of ¹⁹F NMR were expressed in parts per million downfield from benzotrifluoride as an internal standard ($\delta = -63.24$) in CDCl₃. Mass spectra were measured on a JEOL JMS-T100LC spectrometer. Analytical thin layer chromatography (TLC) was performed on a glass plates pre-coated with silica-gel (Merck Kieselgel 60 F₂₅₄, layer thickness 0.25 mm). Visualization was accomplished by UV light (254 nm) and anisaldehyde, Column chromatography was performed on KANTO Silica Gel 60N (spherical, neutral).

Preparation of 3a

To a mixture of 2-bromo-1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1*H*-1,3,2-diazaborole^{S1,2} (467.3 mg, 1.0 mmol, 82% purity) and naphthalene (64.0 mg, 0.50 mmol) in THF (3 mL) was added lithium powder (41.6 mg, 6.0 mmol) at -40 °C. After the reaction suspension was stirred for 12 h at -40 °C, gaseous HCF₃ (**2a**, 112 μ L, 5.0 mmol) was bubbled into the suspension at -78 °C. After stirring for 3 h at this temperature, the mixture was quenched with 2-propanol, and the solvent was removed *in vacuo*. Purification by deactivated silica-gel column (hexane/NEt₃ = 200/1) gave the product **3a** as a colourless solid (202.2 mg, 56% yield). In this reaction, the B-H compound was obtained as a colourless solid (17.9 mg, 23% yield). NMR spectra of the B-H compound corresponded reasonably well with that reported.^{S2}

¹H NMR (CDCl₃, 300 MHz) δ 1.20 (d, ³*J*_{HH}= 6.9 Hz, 24H), 2.96 (sept, ³*J*_{HH} = 6.9 Hz, 4H), 5.74 (t, ²*J*_{HF} = 47.2 Hz, 1H), 6.25 (s, 2H), 7.22 (d, ²*J*_{HH} = 7.8 Hz, 4H), 7.34 (t, ²*J*_{HH} = 7.8 Hz, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ –131.8 (d, ²*J*_{FH} = 47.2 Hz); ¹¹B NMR (CDCl₃, 96 MHz) δ 21.5 (brs); ¹³C NMR (CDCl₃, 75 MHz) δ 23.8, 25.2, 28.7, 120.3,

123.7, 128.2, 137.2, 146.3 (CF₂H was not characterized). HRMS (APCI-TOF) calcd for $C_{27}H_{37}BF_2N_2 [M+H]^+$: 439.3096, found: 439.3106. Mp 112–113 °C.

Preparation of 3b

To a mixture of 2-bromo-1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro– 1*H*-1,3,2-diazaborole ^{S1,2} (46.7 mg, 0.10 mmol, 82% purity) and naphthalene (6.4 mg, 0.050 mmol) in THF (1 mL) was added lithium powder (7.4 mg, 1.0 mmol) at –40 °C and stirred for 15 min. After the reaction suspension was stirred for 12 h at –40 °C, TMSCF₃ (**2b**, 30 μ L, 0.2 mmol) was added at once to the suspension at –78 °C. After stirring for 3 h at this temperature, the mixture was quenched with 2-propanol, and the solvent was removed *in vacuo*. Purification by silica-gel column (hexane/AcOEt = 50/1) gave the product **3b** as a brownish oil (30.1 mg, 73% yield).

¹H NMR (CDCl₃, 300 MHz) δ –0.26 (s, 9H), 1.19 (d, ${}^{3}J_{HH} = 6.8$ Hz, 12H), 1.29 (d, ${}^{3}J_{HH} = 6.8$ Hz, 12H), 3.10 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 4H), 6.20 (s, 2H), 7.23 (d, ${}^{2}J_{HH} = 7.2$ Hz, 4H), 7.34 (t, ${}^{2}J_{HH} = 7.2$ Hz, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ –124.5; ¹¹B NMR (CDCl₃, 96 MHz) δ 22.7 (brs); ²⁹Si NMR (CDCl₃, 60 MHz) δ 2.75 (t, ${}^{2}J_{SiF} = 32.1$ Hz); ¹³C NMR (CDCl₃, 75 MHz) δ –4.8 (t, ${}^{3}J_{CF} = 2.6$ Hz), 23.2, 26.1, 28.4, 120.8, 123.4, 127.7, 139.0, 145.9 (<u>CF₂TMS</u> was not characterized). HRMS (ESI-TOF) calcd for C₃₀H₄₅BF₂N₂Si [M+K]⁺: 549.3050, found: 549.3038.

X-ray Crystallography

X-ray diffraction data were collected on a Rigaku RAXIS-Rapid diffractometer. The structures were solved by a direct method (SHELXL-2014).^{S3} The X-ray structure solution and refinement were carried out using the Yadokari-XG software.^{S4}

3a: C₂₇H₃₇BF₂N₂, colourless prisms (THF), $M_W = 438.39$, crystal dimensions = 0.26 × 0.22 × 0.19 mm³, triclinic, space group *P*2₁/n (#14), *a* = 19.382(3), *b* = 14.1960(15), *c* = 19.505(2) Å, $\beta = 103.166(3)^{\circ}$, V = 5225.6(10) Å³, Z = 8, $\lambda = 0.71075$ Å, T = 153 K, $\rho_{calcd} = 1.114$ g cm⁻³, $\mu_{MoK_s} = 0.074$ mm⁻¹, $F_{000} = 1888$, 49617 total reflections ($2\theta_{max} = 54.97^{\circ}$), index ranges = $-25 \le h \le 25$, $-18 \le k \le 18$, $-25 \le l \le 24$, 11970 unique reflections ($R_{int} = 0.112$), R1 = 0.0775 ($I > 2\sigma(I)$), 0.1734 (all data), wR2 = 0.1728 ($I > 2\sigma(I)$), 0.2159 (all data), S = 1.006 (857 parameters). CCDC-1530683.

Figure S1. Crystal structure of 3a.

Completed metric parameters of 3a

Parameter (Å, °)	Molecule 1	Molecule 2
B-N1	1.414(4)	1.420(4)
B-N2	1.420(4)	1.424(4)
N1-C1	1.406(4)	1.413(3)
N2-C2	1.412(3)	1.413(3)
C1–C2	1.326(4)	1.337(4)
N1–C _{Dipp}	1.446(4)	1.443(3)
N2–C _{Dipp}	1.446(3)	1.442(3)
В-СЗ	1.589(4)	1.578(4)
C3–F1	1.378(4)	1.357(4)
C3–F2	1.378(3)	1.361(5)
С3–Н	1.00(3)	0.97(3)
N1-B-N2	107.3(2)	105.9(2)
N1-B-C3	128.0(3)	129.4(3)
N2-B-C3	126.0(3)	124.8(3)
B-N1-C1	105.9(2)	107.7(2)
B-N2-C2	107.3(2)	107.9(2)
N1C1C2	109.3(2)	109.6(2)
N2-C2-C1	109.5(2)	108.9(2)
B-C3-F1	111.7(2)	112.1(3)
B-C3-F2	110.7(2)	112.2(3)
F1C3F2	103.3(2)	102.8(3)

Copies of NMR charts

References

- S1 A. J. Arduengo III, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall and M. Unverzagt, *Tetrahedron*, 1999, 55, 14523.
- S2 Y. Segawa, Y. Suzuki, M. Yamashita and K. Nozaki, J. Am. Chem. Soc., 2008, 130, 16069.
- S3 G. Sheldrick, T. Schneider, Acta Cryst. C, 2015, 71, 3.
- S4 Yadokari-XG, Software for Crystal Structure Analyses, K. Wakita (2001); Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, C. Kabuto, S. Akine, T. Nemoto and E. Kwon, J. Cryst. Soc. Jpn., 2009, 51, 218.