Journal Name

COMMUNICATION

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Xu-Bing Li, Yu-Ji Gao, Hao-Lin Wu, Yang Wang, Qing Guo, Mao-Yong Huang, Bin Chen, Chen-Ho Tung and Li-Zhu Wu*

www.rsc.org/

Due to enhanced light harvesting, favored interfacial charge transfer and excellent proton reduction activity, the hybrid photocatalysts of metallic 1T-MoS₂ nanosheets and inorganic-ligand stabilized CdSe/ZnS QDs obtained *via* a self-aasembled approach can produce H₂ gas with a rate of ~155 ± 3.5 µmol⁻¹ h⁻¹ mg⁻¹ under visible-light irradiation (λ = 410 nm), an exceptional performance of solar H₂ evolution using MoS₂ as cocatalysts known to date.

Water splitting is regarded as a promising avenue to achieve solar-to-fuel conversion via photocatalytic hydrogen (H₂) evolution.¹ In this regard, platinum has shown excellent electrocatalytic and photocatalytic activities toward H₂ evolution. Unfortunately, the high cost and scarcity limit its large-scale application. Therefore, development of earthabundant, low-cost and high-efficient cocatalysts to realize sustainable and large-scale H₂ production is in its great necessity. MoS₂, evidenced by experimental and theoretical results, is a very promising candidate for both electro- and photo-catalytic H₂ evolution.² Due to the extremely large edgesite exposure, excellent electronic conductivity and abundant new formed trap states and vacancies, metallic 1T-MoS₂ nanosheets have attracted special attention in recent years for electrocatalytic H₂ production than the state-of-the-art forms of MoS₂.³

Unlike electrocatalytic H_2 evolution, the use of $1T-MoS_2$ nanosheets for photocatalytic H_2 production is in its infancy.⁴ For establishing a high-efficient photocatalytic H_2 evolution system using $1T-MoS_2$ nanosheets, the following aspects should be achieved: (1) excellent visible-light response and exciton generation of the light absorbers are required; (2) intact coupling between light absorbers and two-dimensional $1T-MoS_2$ nanosheets is preferred; and (3) the energy barrier of

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China E-mail: Izwu@mail.ipc.ac.cn

*Electronic Supplementary Information (ESI) available: see

DOI: 10.1039/x0xx00000x

interfacial electron transfer from light absorbers to the twodimensional nanosheets should be greatly reduced. Among various light absorbers, colloidal semiconductor quantum dots (QDs) are regarded as the ideal candidate due to their predominant advantages in visible-light harvesting, multiexciton generation, charge separation, and easy to surface modification.⁵ Furthermore, modification of QDs with metalfree inorganic ligands, such as chalcogenide anions, can greatly reduce the energy barrier of interfacial charge transport, which would provide advantages for enhanced solar H₂ production.⁶ Therefore, coupling 1T-MoS₂ nanosheets with allinorganic QDs would be a promising approach to achieve high efficiency of solar-to-fuel conversion *via* solar H₂ evolution.

In the present work, we, for the first time, couple metallic 1T-MoS₂ nanosheets with all-inorganic CdSe/ZnS QDs for solar H₂ evolution *via* a self-assembled approach. Under the optimal conditions ($\lambda = 410$ nm), the rate of H₂ evolution was estimated to be ~155 ± 3.5 µmol⁻¹ h⁻¹ mg⁻¹, which is an exceptional performance of solar H₂ evolution using MoS₂ as the cocatalyst. Experimental evidence indicates that the extremely high activity of solar H₂ production arises from the synergistic effect of the enhanced light absorbing and exciton generation of CdSe/ZnS QDs, the reduced energy barrier of interfacial charge transfer and also the abundant active sites for proton reduction of 1T-MoS₂ nanosheets. In virtue of these advantages, the self-assembled photocatalysts show excellent activity towards solar H₂ evolution.

Scheme 1 Schematic illustration of the fabrication of QDs/1T-MoS₂ photocatalysts *via* a self-assembled approach.

COMMUNICATION

Fig. 1 (a) XRD patterns and (b) Raman spectra of bulk 2H-MoS₂ and 1T-MoS₂ nanosheets; (c) TEM image of 1T-MoS₂ nanosheets (inset is the corresponding SAED); (d) High-resolution TEM image of the obtained 1T-MoS₂ nanosheets; (e) TEM characterization of QDs/1T-MoS₂ photocatalysts; (f) high-resolution TEM of QDs in (e) and the corresponding lattice distance of (111) plane; (g) high-resolution TEM of MoS₂ in (e) and the corresponding lattice fringe of (002) plane.

The composite photocatalysts of QDs/1T-MoS₂ were prepared through a self-assembled process, as shown in Scheme 1. Metallic 1T-MoS₂ nanosheets were obtained via lithium intercalation of $bulk-MoS_2$ for one week at room temperature, see details in supporting information. The dramatically diminished intensity of (002) peak of bulk MoS₂ in X-ray diffraction (XRD) pattern indicated the destruction of long-range stacking of the layered structure into exfoliated nanosheets (Fig. 1a). The broadening of all peaks showed poor crystallinity of the obtained materials. The decreased intensity of Raman peaks at 410 cm⁻¹ and 384 cm⁻¹ also indicated the destruction of layered packing structure of bulk MoS₂. Besides, the emergence of new Raman shifts at 152 cm⁻¹, 226 cm⁻¹ and 340 cm⁻¹ could be ascribed to phonon modes of 1T-MoS₂, confirming the transformation of bulk 2H-MoS₂ to 1T-MoS₂ counterparts (Fig. 1b). Transmission electron microscopy (TEM) verified the ultrathin nature of the as-prepared 1T-MoS₂ samples (Fig. 1c). Selected area electron diffraction (SAED)

pattern in the inset panel of Fig. 1c showed a typical hexagonal spot pattern corresponding to 2H-MoS₂. The extra strong hexagonal spot at 30° between the hexagonal spots could be assigned to 1T-MoS₂.⁴ The coexistence of 1T-MoS₂, the regions in red circles, and 2H-MoS₂, the regions in green circles, could be further evidenced by high-resolution TEM image in Fig. 1d. Also, abundant trap sites were directly observed in TEM image as denoted by the white arrows in Fig. 1d, indicating the abundant active sites. All inorganic CdSe/ZnS QDs were obtained by a modified successive ionic layer adsorption and reaction method of growing ZnS shell on the surface CdSe cores, see detailed characterizations in Fig. S1-S3. Because of the strong electrostatic attraction between negatively charged QDs and positively charges MoS₂ nanosheets and the coordination of sulfur with molybdenum,⁷ CdSe/ZnS QDs could spontaneously assemble with 1T-MoS₂ nanosheets to form composite photocatalysts in aqueous solution. TEM image in Fig. 1e directly verified the successfully loading of QDs on the surface of 1T-MoS₂ nanosheets. The enlarged TEM images showed lattice fringes of about 3.45 Å (Fig. 1f) and 6.80 Å (Fig. 1g), which could be ascribed to the (111) plane of QDs and (002) plane of MoS₂ respectively, directly confirming the QDs on 1T-MoS₂ nanosheets.

($\lambda = 410$ nm); (b) the variation of solar H₂ evolution with different weight ratios of MoS₂; (c) solar H₂ evolution under the optimal conditions; (d) the influence of surface ligands on H₂ production. Error bars represent mean \pm s.d. of at least three independent experiments.

The initial photocatalytic H₂ evolution performance of the obtained photocatalysts was examined using triethylamine (Et₃N) as sacrificial reagent under visible-light irradiation (λ = 410 nm). As presented in Fig. 2a, the assembled photocatalysts of CdSe/ZnS QDs and 1T-MoS₂ nanosheets could produce ~1650 ± 40 µmol molecular H₂ in 5.0 hour, which was almost 20-fold to that of CdSe/ZnS QDs and bulk MoS₂ (84 ± 3.0 µmol)

Journal Name

under identical condition. Control experiments indicated that QDs, 1T-MoS₂ nanosheets and sacrificial reagent were all necessary for efficient photocatalytic H₂ evolution (Fig. S4). The effect of weight percentage of 1T-MoS₂ nanosheets on the rate of H₂ production was carefully investigated. As shown in Fig. 2b, progressive increase of the weight percentage of 1T-MoS₂ from o to 4.8 wt% significantly improved the activity of photocatalytic H₂ production. However, further increasing the weight percentage of 1T-MoS₂ reduced the rate of H₂ evolution, which was due to the light-screening effect of excessive amount of cocatalysts. Under the optimal conditions, the assembled photocatalysts of inorganic-ligand stabilized CdSe/ZnS QDs and 1T-MoS₂ nanosheets could evolve H₂ gas with a constant rate of $\sim 156 \pm 3.5 \,\mu mol^{-1} h^{-1} mg^{-1}$ during 10 h irradiation (Fig. 2c). The photocatalytic activity significantly declined after a long-time irradiation. With addition of extra amount of sacrificial reagent into the system, the activity of solar H₂ evolution recovered immediately (Fig. S5). The similar rate of H₂ evolution with that of the initial stage indicated the depletion of electron donor was the major reason of declined H₂ production activity.

Fig. 3 (a) Steady-state emission quenching and (b) corresponding lifetime decay of QDs by coupling with different amounts of $1T-MOS_2$ nanosheets; (c) transient photocurrent responses of bulk MOS_2 , bare CdSe/ZnS QDs/ $1T-MOS_2$ (4.8 wt%) and CdSe/ZnS QDs/bulk MOS_2 (4.8 wt%) and CdSe/ZnS QDs/bulk MOS_2 (4.8 wt%) electrodes to on-off illumination ($\lambda \ge 400$ nm); (d) electrochemical impedance spectroscopy Nyquist plots of bare QDs, bulk MOS_2 and CdSe/ZnS QDs/ $1T-MOS_2$ (4.8 wt%) electrodes.

In order to reveal the intrinsic reasons of the exceptional photocatalytic H_2 evolution performance of this system, various experiments have been performed. As shown in Fig. S6, the obtained CdSe/ZnS QDs acquired much better light response in the realm of visible-light region. Compared with CdSe core, the band-edge emission of CdSe/ZnS QDs was dramatically enhanced along with the decrease of trap-state emission, which would inhibit exciton trapping at trap states

(Fig. S7). As shown in Fig. 3a, the emission intensity of CdSe/ZnS QDs was dramatically quenched by coupling with 1T-MoS₂ nanosheets, suggesting that the recombination of photogenerated electron-hole pairs was efficiently inhibited. Also, the emission lifetime of CdSe/ZnS QDs decayed from ~20 to ~9.0 ns upon assembling with 1T-MoS₂ nanosheets (Fig. 3b), indicating the well interfacial electron transfer from QDs to 1T-MoS₂ nanosheets.

Photoelectrochemical measurements provided more information on the process of facile interfacial charge transfer. As shown in Fig. 3c, the photocurrent transient responses of QDs/1T-MoS₂ (4.8 wt%) electrode were much higher than those of QDs, bulk MoS_2 and QDs/bulk MoS_2 counterparts under the same conditions. The much smaller arc radius of electrochemical impedance spectroscopy (EIS) Nyquist plot of QDs/1T-MoS₂ (4.8 wt%) electrode than those of bare QDs and bulk MoS₂ implied the faster interfacial electron transfer (Fig. 3d). The favored interfacial electron transfer from inorganicligand stabilized QDs to cocatalysts of $1T-MoS_2$ was also directly confirmed by solar H₂ evolution experiments, as shown in Fig. 2d. When the surface ligands of CdSe/ZnS QDs were replaced by organic counterparts, such as 3mercaptopropionic acid, the rate of photocatalytic H_2 evolution decreased to ~68 μ mol h⁻¹, which was only one sixth of the inorganic ligands stabilized counterparts (~400 µmol h⁻¹) under identical conditions.

Besides, the abundant trap states and edge sites of the obtained 1T-MoS₂ contributed a lot to the remarkable solar H₂ production performance. It had been reported that both S-vacancy and Mo-edge of MoS₂ demonstrated an close-to-zero Gibbs free energy change,⁸ thus promoting the processes of proton adsorption and reduction at active sites of 1T-MoS₂ nanosheets (Fig. S8). Taken all together, we can conclude that the enhanced visible-light response, the facilitated interfacial charge transfer, and the excellent proton reduction ability of metallic 1T-MoS₂ nanosheets enable this system to show exceptional activity of solar H₂ evolution.

In summary, we have firstly coupled 1T-MoS₂ nanosheets with inorganic-ligands stabilized CdSe/ZnS QDs *via* a self-assembling approach for solar-to-fuel conversion application. The obtained assembled photocatalysts is able to evolve H₂ gas with a rate of ~155 \pm 3.5 µmol⁻¹ h⁻¹ mg⁻¹ under the optimum conditions. The unprecedented activity of solar H₂ evolution is a result of enhanced light harvesting, the facilitated interfacial charge transfer and excellent proton reduction ability of vacancy-rich 1T-MoS₂ nanosheets. It is anticipated that this research line can lead to the fabrication of smarter, cheaper and more robust artificial photocatalysts for solar H₂ evolution, which is actively undergoing in our research group.

We are grateful for the financial support from the Ministry of Science and Technology of China (2013CB834505, 2014CB239402 and 2013CB834804), the National Natural Science Foundation of China (91027041, 21390404, 21603248 and 51373193), and the Strategic Priority Research Program of the Chinese Academy of Science (XDB17030300), and the Chinese Academy of Sciences.

Notes and references

- 1 (a) W. Wang, J. Chen, C. Li and W. Tian, Nat Commun, 2014, 5, 4647; (b) W. Bi, X. Li, L. Zhang, T. Jin, L. Zhang, Q. Zhang, Y. Luo, C. Wu and Y. Xie, Nat Commun, 2015, 6, 8647; (c) L.-Z. Wu, B. Chen, Z.-J. Li and C.-H. Tung, Acc. Chem. Res., 2014, 47, 2177-2185; (d) J. Barber, Chem. Soc. Rev., 2009, 38, 185-196; (e) S. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag, C. Richmond, T. Stoll and A. Llobet, Chem. Soc. Rev., 2014, 43, 7501-7519; (f) V. Artero, M. Chavarot-Kerlidou and M. Fontecave, Angew. Chem. Int. Ed., 2011, 50, 7238-7266; (g) Y. Zheng, Y. Jiao, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Ed., 2015, 54, 52-65; (h) X.-B. Li, Y.-J. Gao, Y. Wang, F. Zhan, X.-Y. Zhang, Q. Kong, N.-J. Zhao, Q. Guo, H.-L. Wu, Z.-J. Li, Y. Tao, J.-P. Zhang, B. Chen, C.-H. Tung and L.-Z. Wu, J. Am. Chem. Soc., 2017, 139, 4789-4796; (i) K. Maeda, M. Higashi, D. Lu, R. Abe and K. Domen, J. Am. Chem. Soc., 2010, 132, 5858-5868; (j) K. Maeda, ACS Catal., 2013, 3, 1486-1503; (k) S. Wang, W. Yao, J. Lin, Z. Ding and X. Wang, Angew. Chem. Int. Ed., 2014, 53, 1034-1038; (I) S. Wang and X. Wang, Angew. Chem. Int. Ed., 2016, 55, 2308-2320.
- 2 (a) X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li, J. Am. Chem. Soc., 2008, 130, 7176-7177; (b) T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch and I. Chorkendorff, Science, 2007, 317, 100-102; (c) X. Zong, Y. Na, F. Wen, G. Ma, J. Yang, D. Wang, Y. Ma, M. Wang, L. Sun and C. Li, Chem. Commun., 2009, 30, 4536-4538; (d) M. Liu, F. Li, Z. Sun, L. Ma, L. Xu and Y. Wang, Chem. Commun., 2014, 50, 11004-11007; (e) Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song and S. Jin, J. Am. Chem. Soc., 2016, 138, 7965-7972; (f) J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou and Y. Xie, Adv. Mater., 2013, 25, 5807-5813; (g) T. Wang, L. Liu, Z. Zhu, P. Papakonstantinou, J. Hu, H. Liu and M. Li, Energy Environ. Sci., 2013, 6, 625-633; (h) Y. Yan, B. Xia, X. Qi, H. Wang, R. Xu, J.-Y. Wang, H. Zhang and X. Wang, Chem. Commun., 2013, 49, 4884-4886; (i) Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl and I. Chorkendorff, Angew. Chem. Int. Ed., 2013, 52, 3621-3625; (j) Y.-J. Yuan, J.-R. Tu, Z.-J. Ye, D.-Q. Chen, B. Hu, Y.-W. Huang, T.-T. Chen, D.-P. Cao, Z.-T. Yu and Z.-G. Zou, Appl. Catal., B, 2016, 188, 13-22; (k) Y.-J. Yuan, Z.-J. Ye, H.-W. Lu, B. Hu, Y.-H. Li, D.-Q. Chen, J.-S. Zhong, Z.-T. Yu and Z.-G. Zou, ACS Catal., 2016, 6, 532-541; (I) Z. Kong, Y.-J. Yuan, D. Chen, G. Fang, Y. Yang, S. Yang and D. Cao, *Dalton Trans.*, 2017, **46**, 2072-2076.
- (a) M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li and S. Jin, J. Am. Chem. Soc., 2013, 135, 10274-10277; (b) H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov and X. Zheng, Nat. Mater., 2016, 15, 48-53; (c) Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers and S. Jin, J. Am. Chem. Soc., 2014, 136, 8504-8507.
- 4 (a) U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj and C. N. R. Rao, *Angew. Chem. Int. Ed.*, 2013, **52**, 13057-13061; (b) K. Chang, X. Hai, H. Pang, H. Zhang, L. Shi, G. Liu, H. Liu, G. Zhao, M. Li and J. Ye, *Adv. Mater.*, 2016, **28**, 10033-10041.
- 5 (a) H. Zhu, Y. Yang and T. Lian, *Acc. Chem. Res.*, 2012, 46, 1270-1279; (b) M. A. Holmes, T. K. Townsend and F. E. Osterloh, *Chem. Commun.*, 2012, 48, 371-373; (c) A. M. Smith and S. Nie, *Acc. Chem. Res.*, 2009, 43, 190-200; (d) X.-B. Li, Z.-J. Li, Y.-J. Gao, Q.-Y. Meng, S. Yu, R. G. Weiss, C.-H. Tung and L.-Z. Wu, *Angew. Chem. Int. Ed.*, 2014, 53, 2085-2089.

- 6 (a) M. A. Boles, D. Ling, T. Hyeon and D. V. Talapin, *Nat. Mater.*, 2016, **15**, 141-153; (b) M. V. Kovalenko, M. Scheele and D. V. Talapin, *Science*, 2009, **324**, 1417-1420; (c) J.-S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung and D. V. Talapin, *Nat Nano*, 2011, **6**, 348-352.
- 7 (a) F. A. Frame and F. E. Osterloh, *J. Phys. Chem. C*, 2010, **114**, 10628-10633; (b) A. Nag, D. S. Chung, D. S. Dolzhnikov, N. M. Dimitrijevic, S. Chattopadhyay, T. Shibata and D. V. Talapin, *J. Am. Chem. Soc.*, 2012, **134**, 13604-13615;
- 8 (a) G. Li, D. Zhang, Q. Qiao, Y. Yu, D. Peterson, A. Zafar, R. Kumar, S. Curtarolo, F. Hunte, S. Shannon, Y. Zhu, W. Yang and L. Cao, J. Am. Chem. Soc., 2016, 138, 16632-16638; (b) K. Qi, S. Yu, Q. Wang, W. Zhang, J. Fan, W. Zheng and X. Cui, J. Mater. Chem. A, 2016, 4, 4025-4031; (c) Q. Tang and D.-E. Jiang, ACS Catal., 2016, 6, 4953-4961.

тос

