Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Radicals-Carbenes Coupling Reactions: Mn-Catalyzed Syn-thesis of Indoles from Tertiary Amines and Diazo Compounds

Huihuang Li, Yanwei Zhao, Liang Ma, Meihua Ma, Jun Jiang, and Xiaobing Wan*

Table of Contents

General Information	.S2
General Procedures for Reactions	S2
Optimization of the Reaction Conditions	S3
Mechanistic studies	.S4
Compound characterizations	.S11
Spectroscopic data for products	.S21
XRD data of the compound 4g	.S51

General Information

All were carried out under air atmosphere. Column manipulations chromatography was generally performed on basic aluminum oxide (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. The ¹H NMR (400MHz) and ¹³C NMR (100MHz) data were recorded with CDCl₃ as solvent at room temperature unless specified otherwise. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. ^{1}H NMR spectra was recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (δ = 77.00 ppm) or DMSO (δ = 40.00 ppm) as internal reference. IR, MS and HRMS were performed by the State-authorized Analytical Center in Soochow University.

General procedures for reactions

Mn(OAc)₂•4H₂O (0.025 mmol), 4,4'-Azobis(4-cyanovaleric acid) (ACVA) (0.63 mmol) were added to a 20 mL test tube with a stirring bar. DMF/EtOH=3:1 (2.0 mL), N,N-Diethylaniline (**1a**) (0.25 mmol, 1.0 eq), diazoacetic ester (0.75 mmol) were added via syringe. The reaction mixture was heated in an oil bath at 65 °C for 24 h under air. The reaction mixture was then poured in brine solution (15 mL) and extracted with diethyl ether (3x20 mL), then dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by basic aluminum oxide column chromatography using petroleum ether/ ethylacetate to give the desired products.

Optimization of the Reaction Conditions

Table S1. Optimization of the Reaction Conditions.^a

^a Reaction conditions: **1a** (0.25 mmol), **2a** (0.75 mmol), catalyst (10 mol%) and initiator (2.5 equiv.) in 2.0 mL of solvent was stirred at 65 °C for 24 h under air. ^b Isolated yields. ^c ACVA = cis-4,4'-azobis(4-cyanovaleric acid). ^d AIBN = 2,2'-dicyano-2,2'-azopropane. ^e AMBN = 2,2'-azodi-(2-methylbutyronitrile). ^f AMVN = 2,2'-azobis(2,4-dimethyl)valeronitrile. ^g MAIB= dimethyl 2,2'azobis(isobutyrate). ^h AAPH = 2,2'-azobis(2-methylpropionamidine) dihydrochloride. ^f argon atmosphere.

Mechanistic studies

(a) Radical scavengers

(b) Trapping of radical intermediates by BHT^a.

^a BHT was added after the standard system being stirred for 15 minutes, the reaction was stopped after another 30 minutes.

Adduct Detected by HRMS

Exact Mass: 368.2948

Exact Mass: 234.1489

(d) Kinetic isotope study

Mn(OAc)₂•4H₂O (0.025 mmol), 4,4'-Azobis(4-cyanovaleric acid) (ACVA) (0.63mmol) were added to a 20mL test tube with a stirring bar. DMF/EtOH=3:1 (2.0 mL), N,N-Diethylaniline (**1a**) (0.25mmol, 1.0eq), **1a**-*d*₅ or **1a**-*d*₈ (0.25mmol, 1.0eq) diazoacetic ester (0.75 mmol) were added via syringe. The reaction mixture was heated in an oil bath at 65 °C for 5 h under air. The reaction mixture was then poured in brine solution (15 mL) and extracted with diethyl ether (3x20 mL), then dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by basic aluminum oxide column chromatography using petroleum ether/ ethylacetate to give the desired product. The KIE value was estimated to be 1.1 or 3.3 by ¹H NMR analysis.

Scheme S1. Kinetic Isotope Effect Study.

(e) Competition experiment

Mn(OAc)₂•4H₂O (0.025 mmol), 4,4'-Azobis(4-cyanovaleric acid) (ACVA) (0.63mmol) were added to a 20mL test tube with a stirring bar. DMF/EtOH=3:1 (2.0 mL), **1b** (0.25mmol, 1.0eq), **1f** (0.25mmol, 1.0eq) diazoacetic ester (0.75 mmol) were added via syringe. The reaction mixture was heated in an oil bath at 65 °C for 10 h under air. The reaction mixture was then poured in brine solution (15 mL) and extracted with diethyl ether (3x20 mL), then dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by basic aluminum oxide column chromatography using petroleum ether/ ethylacetate to give the desired product. The KIE value was estimated to be 2.4 by ¹H NMR analysis.

Compound Characterizations

ethyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (3a)

petroleum ether/ ethylacetate = 20:1, yellow oil, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (m, 1H), 7.26 (m, 1H), 7.20 (m, 2H), 4.39 (q, J = 8.0 Hz, 2H), 4.10 (q, J = 8.0 Hz, 2H), 2.73 (s, 3H), 1.44 (t, J = 8.0 Hz, 3H), 1.31 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 144.3, 135.3, 126.7, 121.8, 121.4, 121.4, 59.2, 37.7, 14.6, 11.4. HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₇NO₂+H⁺: 232.1332, Found: 232.1340; IR (neat, cm-1): v 2984, 1673, 1538, 1412, 1210, 1158, 1105, 783, 752, 737.

ethyl 1-ethyl-2,5-dimethyl-1H-indole-3-carboxylate (3b)

petroleum ether/ ethylacetate = 20:1, yellow oil, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.16 (m, 1H), 7.03 (m, 1H), 4.39 (q, J = 8.0Hz, 2H), 4.10 (q, J = 8.0 Hz, 2H), 2.73 (s, 3H), 2.47 (s, 3H), 1.44 (t, J = 8.0 Hz, 3H), 1.31 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 144.2, 133.7, 130.8,127.0, 123.3, 121.3, 108.7, 103.5, 59.2, 37.8, 21.7, 14.7, 14.6, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₉NO₂+H⁺: 246.1489, Found: 246.1494; IR (neat, cm-1): υ 2978, 1685, 1537, 1416, 1256, 1152, 1106, 1054, 782, 703.

ethyl 5-(tert-butyl)-1-ethyl-2-methyl-1H-indole-3-carboxylate (3c)

petroleum ether/ ethylacetate = 20:1, yellow oil, 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (m, 1H), 7.30 (m, 1H), 7.21 (m, 1H), 4.39 (q, J = 8.0 Hz, 2H), 4.10 (q, J = 8.0 Hz, 2H), 2.73 (s, 3H), 1.46 (t, J = 8.0 Hz, 3H), 1.41 (s, 9H), 1.32 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 144.4, 144.3, 133.5, 126.6, 119.9, 117.5, 108.5, 103.79, 59.1, 37.7, 34.6, 31.8, 14.8, 14.5, 11.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₂₅NO₂+H⁺: 288.1958, Found: 288.1969; IR (neat, cm-1): v 2690, 1681, 1538, 1415, 1168, 1153, 1118, 1097, 827, 800.

ethyl 1-ethyl-5-isopropyl-2-methyl-1H-indole-3-carboxylate (3d)

petroleum ether/ ethylacetate = 20:1, yellow oil, 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (m, 1H), 7.21 (m, 1H), 7.11 (m, 1H), 4.40 (q, J = 8.0 Hz, 2H), 4.11 (q, J = 8.0 Hz, 2H), 3.04 (m, 1H), 2.73 (s, 3H), 1.45 (t, J = 8.0 Hz, 3H), 1.40 – 1.20 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 144.2, 142.2, 133.9, 126.9, 120.8, 118.6, 108.8, 103.6, 59.2, 37.7, 34.3, 24.5, 14.7, 14.5, 11.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₂₃NO₂+H⁺: 274.1802, Found: 274.1808; IR (neat, cm-1): v 2958, 1686, 1537, 1416, 1156, 1107, 1052, 890, 784, 752.

ethyl 1-ethyl-2-methyl-5-phenyl-1H-indole-3-carboxylate (3e)

petroleum ether/ ethylacetate = 20:1, yellow solid, 36% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (m, 1H), 7.68 (m, 2H), 7.45 (m, 3H), 7.33 (m, 2H), 4.41 (q, J = 8.0 Hz, 2H), 4.19 (q, J = 8.0 Hz, 2H), 2.79 (s, 3H), 1.45 (t, J = 8.0 Hz, 3H), 1.38 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 145.0, 142.4, 135.0, 134.9, 128.6, 127.4, 127.3, 126.4, 121.6, 120.2, 109.3 104.4, 59.4, 38.0, 149, 14.6, 11.7. HRMS (ESI-TOF): Anal. Calcd. For C₂₀H₂₁NO₂+H⁺: 308.1645, Found: 308.1665; IR (neat, cm-1): υ 2978, 1686, 1467, 1438, 1377, 1155, 1108, 893, 761, 699.

ethyl 1-ethyl-5-methoxy-2-methyl-1H-indole-3-carboxylate (3f)

petroleum ether/ ethylacetate = 20:1, yellow solid, 41% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (m, 1H), 7.18 (m, 1H), 6.86 (m, 1H), 4.39 (q, J = 8.0 Hz, 2H), 4.13 (q, J = 8.0 Hz, 2H), 3.88 (s, 3H), 2.74 (s, 3H), 1.45 (t, J = 8.0 Hz, 3H), 1.34 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 155.5, 144.4, 130.4, 127.6, 111.6, 109.7, 103.7, 59.2, 55.7, 38.0, 14.9, 14.6, 11.7. HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₉NO₃+H⁺: 262.1438, Found: 262.1448; IR (neat, cm-1): υ 2985, 1684, 1527, 1483, 1417, 1199, 1169, 1107, 849, 783.

ethyl 1-ethyl-5-fluoro-2-methyl-1H-indole-3-carboxylate (3g)

petroleum ether/ ethylacetate = 20:1, yellow oil, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (m, 1H), 7.19 (m, 1H), 6.94 (m, 1H), 4.39 (q, J = 8.0 Hz, 2H), 4.13 (q, J = 8.0 Hz, 2H), 2.75 (s, 3H), 1.45 (t, J = 8.0 Hz, 3H), 1.34 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 160.2, 157.8, 145.7, 131.8, 127.4, 127.3, 110.0, 109.7, 109.6, 109.5, 107.0, 106.7, 104.1, 104.0, 59.4, 38.0, 14.7, 14.5, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₆FNO₂+H⁺: 250.1238, Found: 250.1248; IR (neat, cm-1): υ 2981, 1686, 1536, 1462, 1418, 1168, 1104, 1053, 866, 778.

ethyl 5-chloro-1-ethyl-2-methyl-1H-indole-3-carboxylate (3h)

petroleum ether/ ethylacetate = 20:1, yellow solid, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (m, 1H), 7.15 (m, 2H), 4.39 (q, J = 8.0 Hz, 2H), 4.11 (q, J = 8.0 Hz, 2H), 2.73 (s, 3H), 1.45 (t, J = 8.0 Hz, 3H), 1.32 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 145.5, 133.7, 127.8, 127.3, 122.1, 121.0, 101.0, 103.8, 59.5, 38.0, 14.7, 14.6, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₆ClNO₂+H⁺: 266.0942, Found: 266.0953; IR (neat, cm-1): v 2924, 1688, 1538, 1416, 1210, 1155, 1108, 1068, 779, 690.

ethyl 5-bromo-1-ethyl-2-methyl-1H-indole-3-carboxylate (3i)

petroleum ether/ ethylacetate = 20:1, yellow solid, 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (m, 1H), 7.27 (m, 1H), 7.11 (m, 1H), 4.39 (q, J = 8.0 Hz, 2H), 4.09 (q, J = 8.0 Hz, 2H), 2.73 (s, 3H), 1.44 (t, J = 8.0 Hz, 3H), 1.32 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 145.3, 134.0, 128.3, 124.7, 124.0, 115.0, 110.4, 103.7, 59.5, 38.0, 14.7, 14.6, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₆BrNO₂+H⁺: 310.0437, Found: 310.0446; IR (neat, cm-1): v 2977, 1689, 1561, 1449, 1122, 1156, 1109,1063, 779, 745.

ethyl 5-((tert-butoxycarbonyl)oxy)-1-ethyl-2-methyl-1H-indole-3-carboxylate (3j)

petroleum ether/ ethylacetate = 15:1, yellow solid, 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (m, 1H), 7.22 (m, 1H), 7.02 (m, 1H), 4.38 (q, J = 8.0 Hz, 2H), 4.09 (q, J = 8.0 Hz, 2H), 2.73 (s, 3H), 1.57 (s, 9H), 1.43 (t, J = 8.0 Hz, 3H), 1.30 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 152.7, 146.2, 145.4, 133.0, 127.1, 115.7, 113.7, 109.3, 104.2, 83.0, 59.3, 37.9, 27.6, 14.7, 14.5, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₉H₂₅NO₅+H⁺: 348.1805, Found: 348.1811; IR (neat, cm-1): v 2980, 1753, 1691, 1619, 1370, 1278, 1244, 1141, 1107, 803.

ethyl 1-ethyl-2-methyl-5-(trifluoromethoxy)-1H-indole-3-carboxylate (3k)

petroleum ether/ ethylacetate = 20:1, yellow oil, 45% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (m, 1H), δ 7.24 (m, 1H)., 7.08 (m, 1.5 Hz, 1H), 4.39 (q, J = 8.0 Hz, 2H), 4.14 (q, J = 8.0 Hz, 2H), 2.75 (s, 3H), 1.45 (t, J = 8.0 Hz, 3H), 1.34 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 146.0, 144.4, 133.6, 127.2, 122.1, 119.5, 115.6, 114.1, 109.6, 104.4, 59.6, 38.1, 14.7, 14.5, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₆F₃NO₃+H⁺: 316.1155, Found: 316.1157; IR (neat, cm-1): v 2983, 1692, 1418, 1247, 1212, 1148, 1107, 1054, 780, 746.

ethyl 1-ethyl-2,7-dimethyl-1H-indole-3-carboxylate (3l)

petroleum ether/ ethylacetate = 20:1, yellow solid, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (m, 1H), 7.08 (m, 1H), 6.93 (m, 1H), 4.38 (q, J = 8.0 Hz, 2H), 4.33 (q, J = 8.0 Hz, 2H), 2.75 (s, 3H), 2.71 (s, 3H), 1.44 (t, J = 8.0 Hz, 3H), 1.33 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 144.8, 134.2, 127.6, 125.5, 121.3, 120.0, 119.5, 104.34, 59.3, 39.3, 20.1, 16.7, 14.6, 11.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₉NO₂+H⁺: 246.1489, Found: 246.1497; IR (neat, cm-1): υ 2923, 1674, 1539, 1414, 1231, 1112, 1074, 917, 792, 746.

ethyl 1-ethyl-7-fluoro-2-methyl-1H-indole-3-carboxylate (3m)

petroleum ether/ ethylacetate = 20:1, yellow solid, 33% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (m, 1H), 7.08 (m, 1H), 6.88 (m, 1H), 4.39 (q, J = 8.0 Hz, 2H), 4.32 (q, J = 8.0 Hz, 2H), 2.75 (s, 3H), 1.44 (t, J = 8.0 Hz, 3H), 1.38 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 150.5, 148.1, 145.4, 130.4, 123.2, 123.2, 121.5, 121.5, 117.2, 117.2 107.9, 107.7, 104.9, 59.5, 40.3, 40.3, 16.0, 15.9, 14.5, 11.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₄H₁₆FNO₂+H⁺: 250.1238, Found: 250.1263; IR (neat, cm-1): v 2925, 1685, 1444, 1375, 1251, 1229, 1024, 929, 795, 731.

ethyl 1-ethyl-2,6-dimethyl-1H-indole-3-carboxylate (3na) ethyl 1-ethyl-2,4-dimethyl-1H-indole-3-carboxylate (3nb) petroleum ether/ ethylacetate = 20:1, yellow oil, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J=8.0, 1H), 7.16–7.01 (m, 6H), 6.96 (m, 2H), 4.45–4.31 (m, 6H), 4.19–4.04 (m, 6H), 2.74 (s, 3H), 2.66 (s, 6H), 2.63 (s, 6H), 2.48 (s, 3H), 1.48–1.38 (m, 9H), 1.33 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 166.3, 143.9, 141.7, 135.7, 135.7, 131.6, 131.1, 124.9, 124.5, 123.5, 123.1, 121.9, 121.2, 109.1, 106.8, 106.0, 103.8, 59.9, 59.2, 37.9, 37.7, 22.1, 21.7, 14.8, 14.7, 14.6, 14.4, 11.6, 11.5; HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₉NO₂+H⁺: 246.1489, Found: 246.1488; IR (neat, cm-1): υ 2978, 1687, 1415, 1207, 1150, 1101, 1066, 811, 762, 739.

ethyl 2-ethyl-1-propyl-1H-indole-3-carboxylate (3n)

petroleum ether/ ethylacetate = 20:1, yellow oil, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (m, 1H), 7.29 (m, 1H), 7.21 (m, 2H), 4.40 (q, J = 8.0 Hz, 2H), 4.06 (m, 2H), 3.20 (q, J = 8.0 Hz, 2H), 1.81 (m, 2H), 1.44 (t, J = 8.0 Hz, 3H), 1.28 (t, J = 8.0 Hz, 3H), 0.98 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 150.5, 135.7, 126.8, 121.8, 121.5, 121.5, 109.5, 102.96, 59.2, 44.6, 23.3, 18.9, 14.5, 13.2, 11.3; HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₂₁NO₂+H⁺: 260.1645, Found: 260.1643; IR (neat, cm-1): v 2977, 1681, 1530, 1461, 1210, 1160, 1136, 1108, 788, 742.

ethyl 1-butyl-2-propyl-1H-indole-3-carboxylate (30)

petroleum ether/ ethylacetate = 20:1, yellow oil, 47% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (m, 1H), 7.29 (m, 1H), 7.22 (m, 2H), 4.39 (q, J = 8.0 Hz, 2H), 4.09 (m, 2H), 3.15 (m, 2H), 1.71 (m, 4H), 1.44 (t, J = 8.0 Hz, 3H), 1.06 (t, J = 8.0 Hz, 3H), 0.96 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 149.1, 135.7, 126.9, 121.8, 121.6, 121.5, 109.5, 103.42, 59.2, 43.0, 32.1, 27.5, 23.1, 20.2, 14.5, 14.4, 13.7. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₂₅NO₂+H⁺: 288.1958, Found: 288.1965; IR (neat, cm-1): υ 2960, 1687,1531, 1461, 1421, 1220, 1136, 1106, 789, 739.

isopropyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4a)

petroleum ether/ ethylacetate = 20:1, yellow oil, 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (m, 1H), 7.29 (m, 1H), 7.22 (m, 2H), 5.30 (m, 1H), 4.15 (q, J = 8.0 Hz, 2H), 2.77 (s, 3H), 1.42 (d, J = 8.0 Hz, 6H), 1.34 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 144.3, 135.3, 126.8, 121.8, 121.6, 121.4, 109.0, 104.3, 66.5, 37.8, 22.3, 14.8, 11.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₉NO₂+H⁺:

246.1489, Found: 246.1491; IR (neat, cm-1): v 2977, 1683, 1538, 1414, 1157, 1136, 1097, 995, 832, 751.

tert-butyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4b)

petroleum ether/ ethylacetate = 20:1, yellow oil, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (m, 1H), 7.27 (m, 1H), 7.20 (m, 2H), 4.13 (q, J = 8.0 Hz, 2H), 2.74 (s, 3H), 1.66 (s, 9H), 1.32 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 144.0, 135.2, 126.8, 121.7, 121.4, 121.3, 108.9, 105.24, 79.6, 37.7, 28.7, 14.8, 11.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₂₁NO₂+H⁺: 260.1645, Found: 260.1657; IR (neat, cm-1): v 2975, 1683, 1538, 1413, 1218, 1146, 1105, 994, 765, 752.

2-(trimethylsilyl)ethyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4c)

petroleum ether/ ethylacetate = 20:1, yellow oil, 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (m, 1H), 7.30 (m, 1H), 7.22 (m, 2H), 2.77 (s, 3H), 1.35 (t, J = 8.0 Hz, 3H), 1.22 (m, 2H), 0.09 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 144.4, 135.4, 126.8, 121.8, 121.6, 121.4, 109.0, 104.14, 61.5, 37.8, 17.8, 14.8, 11.6, -1.5. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₂₅NO₂Si+H⁺: 304.1727, Found: 304.1730; IR (neat, cm-1): v 2952, 1686, 1538, 1415, 1212, 1154, 1103, 1054, 835, 751.

but-2-yn-1-yl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4d)

petroleum ether/ ethylacetate = 20:1, yellow solid, 45% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (m, 1H), 7.30 (m, 1H), 7.24 (m, 2H), 4.92 (q, J = 2.4 Hz, 2H), 4.17 (q, J = 8.0 Hz, 2H), 2.78 (s, 3H), 1.88 (t, J = 2.4 Hz, 3H), 1.36 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 145.0, 135.4, 126.7, 122.0, 121.7, 121.7, 109.0, 103.40, 82.3, 76.7, 74.2, 51.6, 37.9, 14.8, 11.7, 3.7. HRMS (ESI-TOF): Anal. Calcd. For C₁₆H₁₇NO₂+H⁺: 256.1332, Found: 256.1347; IR (neat, cm-1): υ 2953, 1688, 1428, 1379, 1343, 1146, 1102, 1003, 784, 753.

allyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4e)

petroleum ether/ ethylacetate = 20:1, yellow oil, 38% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (m, 1H), 7.30 (m, 1H), 7.23 (m, 2H), 6.15 (m, 1H), 5.43 (m, 1H), 5.27 (m, 1H), 4.87 (m, 2H), 4.17 (q, J = 8.0 Hz, 2H), 2.78 (s, 3H), 1.36 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 144.7, 135.34, 133.2, 126.7, 122.0, 121.6, 121.6, 117.5, 109.1, 103.7, 64.1, 37.9, 14.8, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₅H₁₇NO₂+H⁺: 244.1332, Found: 244.1336; IR (neat, cm-1): υ 2928, 1687, 1536, 1413, 1210, 1149, 1102, 994, 783, 751.

cinnamyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4f)

petroleum ether/ ethylacetate = 20:1, yellow oil, 37% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (m, 1H), 7.42 (m, 2H), 7.27 (m, 6H), 6.75 (m, 1H), 6.47 (m, 1H), 5.01 (m, 2H), 4.13 (q, J = 8.0 Hz, 2H), 2.76 (s, 3H), 1.33 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 144.7, 136.5, 135.3, 133.3, 128.5, 127.8, 126.7, 126.55, 124.4, 121.9, 121.6, 121.6, 109.1, 103.7, 64.0, 37.8, 14.7, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₂₁H₂₁NO₂+H⁺: 320.1645, Found: 320.1647; IR (neat, cm-1): v 2978, 1685, 1536, 1414, 1210, 1100, 1044, 965, 739, 692.

phenyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4g)

petroleum ether/ ethylacetate = 20:1, yellow solid, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (m, 1H), 7.43 (m, 2H), 7.35 (m, 1H), 7.26 (m, 5H), 4.21 (q, J = 8.0 Hz, 2H), 2.82 (s, 3H), 1.39 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 151.0, 146.0, 135.5, 129.3, 126.7, 125.4, 122.3, 122.0, 121.7, 109.3, 103.1, 38.0, 14.8, 11.7. HRMS (ESI-TOF): Anal. Calcd. For C₁₈H₁₇NO₂+H⁺: 280.1332, Found: 280.1333; IR (neat, cm-1): v 2985, 1710, 1530, 1408, 1186, 1091, 985, 750, 692.

benzyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4h)

petroleum ether/ ethylacetate = 20:1, yellow solid, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (m, 1H), 7.48 (m, 2H), 7.37 (m, 2H), 7.31 (m, 1H), 7.27 (m, 1H), 7.19 (m, 2H), 5.40 (s, 2H), 4.12 (q, J = 8.0 Hz, 2H), 2.75 (s, 3H), 1.32 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 144.8, 137.0, 135.3, 128.5, 127.9, 127.8, 126.7, 121.9, 121.6, 121.5, 109.0, 103.6, 65.2, 37.8, 14.7, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₉H₁₉NO₂+H⁺: 294.1489, Found: 294.1500; IR (neat, cm-1): υ 2978, 1686, 1536, 1414, 1210, 1148, 1100, 1000, 738, 697.

4-methylbenzyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4i)

petroleum ether/ ethylacetate = 20:1, yellow oil, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (m, 1H), 7.37 (m, 2H), 7.25 (m, 1H), 7.18 (m, 4H), 5.36 (s, 2H), 4.09 (q, J = 8.0 Hz, 2H), 2.73 (s, 3H), 2.34 (s, 3H), 1.30 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 164.8, 145.0, 137.1, 135.2, 134.0, 129.0, 128.0, 126.2, 121.8, 121.3, 120.6, 109.9, 102.5, 64.4, 37.5, 20.7, 14.5, 11.3. HRMS (ESI-TOF): Anal. Calcd. For C₂₀H₂₁NO₂+H⁺: 308.1645, Found: 308.1641; IR (neat, cm-1): v 2922, 1686, 1536, 1414, 1182, 1149, 1100, 997, 782, 751.

4-chlorobenzyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4j)

petroleum ether/ ethylacetate = 20:1, yellow solid, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (m, 1H), 7.41 (m, 2H), 7.33 (m, 2H), 7.28 (m, 1H), 7.21 (m, 2H), 5.35 (s, 2H), 4.13 (q, J = 8.0 Hz, 2H), 2.75 (s, 3H), 1.33 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 145.0, 135.6, 135.4, 133.6, 129.4, 128.7, 126.6, 122.0, 121.7, 121.4, 109.1, 103.4, 64.4 37.8, 14.7, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₉H₁₈ClNO₂+H⁺: 328.1099, Found: 328.1108; IR (neat, cm-1): υ 2922, 1685, 1536, 1416, 1208, 1151, 1105, 1044, 813, 737.

4-(trifluoromethyl)benzyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4k)

petroleum ether/ ethylacetate = 20:1, yellow solid, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (m, 1H), 7.61 (m, 4H), 7.31 (m, 1H), 7.22 (m, 2H), 5.45 (s, 2H), 4.16 (q, J = 8.0 Hz, 2H), 2.77 (s, 3H), 1.35 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 145.2, 141.2, 141.2, 135.4, 127.9, 126.7, 125.5, 125.5, 125.4, 122.1, 121.8, 121.4, 109.2, 103.3, 64.2, 37.9, 14.7, 11.7. HRMS (ESI-TOF): Anal. Calcd. For C₂₀H₁₈F₃NO₂+H⁺: 362.1362, Found: 362.1356; IR (neat, cm-1): v 2923, 1681, 1529, 1326, 1281, 1151, 1103, 1065, 816, 718.

2-methoxy-2-oxo-1-phenylethyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (41)

petroleum ether/ ethylacetate = 15:1, yellow oil, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (m, 1H), 7.63 (m, 2H), 7.42 (m, 3H), 7.31 (m, 1H), 7.22 (m, 2H), 6.26 (s, 1H), 4.17 (q, J = 8.0 Hz, 2H), 3.76 (s, 3H), 2.78 (s, 3H), 1.35 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 164.9, 145.5, 135.5, 134.8, 129.0, 128.8, 127.8, 126.8, 122.1, 121.9, 121.7, 109.1, 103.0, 74.0, 52.5, 37.9, 14.8, 11.8. HRMS (ESI-TOF): Anal. Calcd. For C₂₁H₂₁NO₄+H⁺: 352.1543, Found: 352.1548; IR (neat, cm-1): v 3359, 2919, 2850, 1670, 1415, 1209, 1147, 1097, 781, 696.

furan-2-ylmethyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4m)

petroleum ether/ ethylacetate = 20:1, yellow solid, 46% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (m, 1H), 7.45 (m, 1H), 7.29 (m, 1H), 7.20 (m, 2H), 6.48 (m, 1H), 6.38 (m, 1.9 Hz, 1H), 5.34 (s, 2H), 4.16 (q, J = 8.0 Hz, 2H), 2.76 (s, 3H), 1.34 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 150.5, 144.9, 142.9, 135.4, 126.7, 122.0, 121.7, 121.6, 110.4, 109.9, 109.0, 103.5, 57.1, 37.9, 14.8, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₇NO₃+H⁺: 284.1281, Found: 284.1289; IR (neat, cm-1): υ 2966, 1688, 1530, 1428, 1210, 1154, 1103, 994, 782, 749.

thiophen-2-ylmethyl 1-ethyl-2-methyl-1H-indole-3-carboxylate (4n)

petroleum ether/ ethylacetate = 20:1, yellow solid, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (m, 1H), 7.30 (m, 1H), 7.24 (m, 1H), 7.20 (m, 2H), 7.16 (m, 1H), 5.53 (s, 2H), 4.09 (q, J = 8.0 Hz, 2H), 2.73 (s, 3H), 1.30 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 144.9, 139.2, 135.3, 127.4, 126.7, 126.6, 126.3, 121.9, 121.6, 121.5, 109.0, 103.4, 59.7, 37.8, 14.7, 11.6. HRMS (ESI-TOF): Anal. Calcd. For C₁₇H₁₇NO₂S+H⁺: 300.1053, Found: 300.1064; IR (neat, cm-1): v 2921, 1685, 1531, 1428, 1154, 1134, 1084, 1018, 745, 726.

Spectroscopic data for products

XRD data of the compound 4g

Figure S1. ORTEP structural drawing of 4g. (CCDC: 1501144)

Table S2. Crystallography data for 4g.

complex	4g
Empirical formula	C ₁₈ H ₁₇ NO ₂
Formula weight(g mol ⁻¹)	279.33
Temperature	293 (2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
space group	P 21 21 21
Unit cell dimensions	a = 7.2650(3) Å
	b = 8.2770(5) Å
	c = 24.8418(14) Å
	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$
	$\gamma = 90^{\circ}$
Volume (Å ³)	1493.80(14)
Ζ	4
$\rho(g \text{ cm}^{-3})$	1.242
F(000)	592

Crystal size(mm ³)	0.75 x 0.65 x 0.30	
Theta range for data collection	2.92 ° to 25.00 °	
	-7<=h<=8	
Limiting indices	-9<=k<=9	
	-29<=1<=26	
Reflections collected / unique	5363 / 2503	
Data / restraints / parameters	2503 / 0 /192	
GOF	1.048	
$D I = D 2 [I \times 2 - (I)]$	R1 = 0.0398	
$R_{1,WR_{2}}[1 \ge 26(1)]$	wR2 = 0.0870	
$D_1 \dots D_2(all data)$	R1 = 0.0516	
<i>R1,WR2</i> (all data)	wR2 = 0.0925	
Largest diff. peak and hole(e Å ³)	0.130 and -0.193	

Table S3. Bond lengths [Å] and angles $[\circ]$ for 4g.

O(2)-C(1) 1.367(2)	O(2)-C(13) 1.410(2)	N(1)-C(3) 1.363(2)	N(1)-C(12) 1.390(3)
N(1)-C(5) 1.460(2)	C(7)-C(8) 1.404(3)	C(7)-C(12) 1.407(2)	C(7)-C(2) 1.442(2)
C(2)-C(3) 1.380(3)	C(2)-C(1) 1.453(3)	C(12)-C(11) 1.381(3)	C(3)-C(4) 1.488(3)
O(1)-C(1) 1.197(2)	C(8)-C(9) 1.375(3)	C(13)-C(14) 1.361(3)	C(13)-C(18) 1.369(3)
C(5)-C(6) 1.510(3)	C(11)-C(10) 1.378(3)	C(14)-C(15) 1.373(3)	C(9)-C(10) 1.388(3)
C(18)-C(17) 1.371(3)	C(15)-C(16) 1.385(3)	C(16)-C(17) 1.371(3)	C(1)-O(2)-C(13) 116.18(14)
C(3)-N(1)-C(12) 109.34(14)	C(3)-N(1)-C(5) 126.62(17)	C(12)-N(1)-C(5) 123.48(16)	C(8)-C(7)-C(12) 118.19(17)
C(8)-C(7)-C(2) 135.74(17)	C(12)-C(7)-C(2) 106.06(16)	C(3)-C(2)-C(7) 107.51(16)	C(3)-C(2)-C(1) 124.37(17)
C(7)-C(2)-C(1) 128.05(17)	C(11)-C(12)-N(1) 129.21(18)	C(11)-C(12)-C(7) 122.84(18)	N(1)-C(12)-C(7) 107.95(15)
N(1)-C(3)-C(2) 109.12(16)	N(1)-C(3)-C(4) 121.03(17)	C(2)-C(3)-C(4) 129.82(17)	O(1)-C(1)-O(2) 121.54(17)
O(1)-C(1)-C(2) 127.13(18)	O(2)-C(1)-C(2) 111.31(16)	C(9)-C(8)-C(7) 118.98(19)	C(14)-C(13)-C(18) 121.62(19)
C(14)-C(13)-O(2) 119.20(17)	C(18)-C(13)-O(2) 119.12(18)	N(1)-C(5)-C(6) 112.18(17)	C(10)-C(11)-C(12) 117.32(19)
C(13)-C(14)-C(15) 119.28(19)	C(8)-C(9)-C(10) 121.3(2)	C(11)-C(10)-C(9) 121.3(2)	C(13)-C(18)-C(17) 119.0(2)
C(14)-C(15)-C(16) 120.0(2)	C(17)-C(16)-C(15) 119.6(2)	C(16)-C(17)-C(18) 120.5(2)	