Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supplementary information

Experimental details

Samples with nominal composition $Ba_{10}(PO_4)_6(Co_xOH_{1-2x})_2$, x = 0.05 (1), 0.3 (2, 2a), and 0.5 (3) were prepared as follows. Stoichiometric quantities of $BaCO_3$, $(NH_4)_2HPO_4$, and Co_3O_4 with 2% excess of $BaCO_3$ were grinded and mixed in an agate mortar (of a total mass of 5 g approx.). The powder was heated to 400 °C for 0.5 h, annealed at this temperature for 0.5 h, heated to 600°C for 0.5 h, annealed at this temperature for 0.5 h, heated to 800°C for 0.5 h, annealed at this temperature for 2.5 h. The furnace cooled powder was grinded and annealed at 1150°C for 4 h. The precursor was grinded, pressed in pellets, annealed at 1300°C for 4 h, and air quenched. The last procedure was repeated once more. The resulting pellets were annealed at 1400°C or 1450°C for 1 – 2 hours and air quenched. All procedures were performed in air atmosphere.

Synchrotron powder X-ray diffraction was carried out at the Diamond Light Source, I12-JEEP beamline¹ ($\lambda = 0.23369$ Å) using 2D area flat panel detector Pixium RF4343. Wavelength calibration and data reduction was performed using the software DAWN.^{2,3} High-precision powder X-ray diffraction was conducted using a D8 Bruker-AXS powder diffractometer (Cu-K α 1 radiation from a primary Ge(111) Johansson-type monochromator; Lynx-Eye position-sensitive detector with an opening angle of 3.5°) in Bragg-Brentano geometry in the 2 θ range 10 – 120°, step 0.009°. The crystal structures were refined with the JANA 2006 computer program.⁴

Scanning electron microscopy with energy-dispersive X-ray (EDX) analysis was performed on a Supra 50 VP LEO electron microscope.

Magnetic properties were measured on a Quantum Design SQUID VSM (I) and on a Quantum Design SQUID MPMS (II) in the temperature range 1.8 - 300 K and magnetic field range -70 - +70 kOe. A piece of a ceramic sample (50 - 200 mg) was fixed with GE-varnish (< 0.3 mg) on a quartz rod (I) or deposited into a gelatin capsule in a plastic straw (II). dc-magnetization was measured in a dc-SQUID mode. Magnetization decay was registered for 2 hour. ac susceptibility (χ_{ac}) was measured under an ac field of 2.5 – 3 Oe in the frequency range 0.1 – 945 Hz (I) or 0.1 – 1420 Hz (II) and in the temperature range 1.8 – 50 K. The data were corrected for the diamagnetism of a gelatin capsule if necessary. The core diamagnetism was subtracted from the magnetization using Pascal's constants. The generalized Debye model was applied to fit simultaneously the χ' and χ'' components of $\chi_{ac}(\omega)$ ($\omega = 2\pi f$) using the following equations⁵

$$\chi'(\omega) = \chi_s + \frac{(\chi_0 - \chi_s)[1 + (\omega\tau)^{1-\alpha} \sin 1/2\alpha\pi]}{1 + 2(\omega\tau)^{1-\alpha} \sin 1/2\alpha\pi + (\omega\tau)^{2(1-\alpha)}},$$

$$\chi''(\omega) = \frac{(\chi_0 - \chi_s)(\omega\tau)^{1-\alpha} \cos 1/2\alpha\pi}{1 + 2(\omega\tau)^{1-\alpha} \sin 1/2\alpha\pi + (\omega\tau)^{2(1-\alpha)}}.$$

Relaxation time τ , low- and high-frequency susceptibilities χ_0 and χ_s , their difference $\Delta \chi = F$ (as a contribution of slowrelaxing magnetization), and a relaxation time distribution parameter α were estimated. All the parameters were refined simultaneously for the temperature interval 15 – 35 K, for which a $\chi''(\omega)$ local maximum is observed. Then $\Delta \chi(T)$ was fitted by Curie-Weiss equation. In order to escape correlations, for higher temperatures, $\Delta \chi$ was fixed to the value calculated using the Curie-Weiss parameters, while all other parameters were refined.

Figure S1. Synchrotron powder X-ray diffraction pattern of **3**. Observed (crosses), calculated (solid line) and difference (solid line below) plots. Positions of Bragg reflections are shown as strokes underneath: (a) the main apatite-type phase $Ba_{10}(PO_4)_6(Co_{0.33}O_{0.72}H_y)_2$, (b) $Ba_3(PO_4)_2$ (12.8%), and (c) CoO (1.4%).

Table S1. Crystal structure refinement data for $Ba_{10}(PO_4)_6(Co_{0.33}O_{0.72}H_y)_2$ (sample 3).

Temperature (K)	293 K
Wavelength (Å)	0.23369
Space group	$P6_3/m$
<i>a</i> (Å)	10.1926(1)
<i>c</i> (Å)	7.7532(1)
$V(Å^3)$	697.56(2)
Ζ	1
2θ range (deg.)	1.47 - 15
$R_{ m wp}$	0.014
$R_{\rm all}$	0.023
$\Delta F_{\text{max}}, \Delta F_{\text{min}} (e \text{ Å}^{-3})$	0.66, -0.63

Table S2. Atomic parameters and thermal displacement parameters (Å²) for $Ba_{10}(PO_4)_6(Co_{0.33}O_{0.72}H_y)_2$ (sample 3).

Atom	Ba(1)	Ba(2)	Р	O(1) ^{a)}	O(2)	O(3)	O(4)	Co ^{b)}
Site	4f	6h	6h	6h	6h	12i	4e	12i
SOF	1	1	1	1	1	1	0.36(2)	0.055(2)
x	1/3	0.24375(17)	0.3996(6)	0.3440(14)	0.5560(14)	0.3537(7)	0	0.033(6)
У	2/3	0.98102(18)	0.3626(7)	0.4748(13)	0.4441(13)	0.2732(8)	0	0
Ζ	-0.0006(4)	1/4	1/4	1/4	1/4	0.0894(8)	0.204(5)	0
$U_{\rm eq},U_{\rm iso}$	0.0261(5)	0.0208(10)	0.016(2)	0.028(2)	0.028(2)	0.028(2)	0.028(2)	0.07(2)
U_{11}	0.0266(7)	0.0330(14)						
U_{22}	0.0266(7)	0.0222(12)						
U_{33}	0.0250(10)	0.0321(9)						
U_{12}	0.0133(3)	0.0101(13)						
U_{13}	0	0						
U_{23}	0	0						

^{a)}An overal $U_{\rm iso}$ value for all oxygen atoms was refined.

^{b)}Initially obtained large U_{11} and U_{22} of 0.15 for Co atom in comparison with $U_{33} = 0.03$ suggested the Co atom to disorder mostly in *ab*-plain. As it was not possible to get a proper displacement direction due to strong correlations, y and z of the Co atom were fixed to zero values.

Table S3. Selected interatomic distances (Å) and angles (degrees) in the crystal structure of $Ba_{10}(PO_4)_6(Co_{0.33}O_{0.72}H_y)_2$ (sample **3**).

Ba(1)-O(1)	2.797(11)	3x	Co-O(4)	1.62(5)	
Ba(1)-O(2)	2.759(12)	3x	Co-O(3)	3.03(6)	
Ba(1)-O(3)	3.011(8)	3x	O(1)-P-O(2)	107.6(9)	
Ba(2)-O(1)	2.913(4)		O(1)-P-O(3)	110.2(5)	2x
Ba(2)-O(2)	2.768(9)		O(2)-P-O(3)	106.6(5)	2x
Ba(2)-O(3)	2.756(4)	2x	O(3)-P-O(3)	115.3(6)	
Ba(2)-O(3)	2.888(4)	2x	O(4)-Co-O(4)	156(4)	
Ba(2)-O(4)	2.611(4)				
P-O(1)	1.509(18)				
P-O(2)	1.380(14)				
P-O(3)	1.474(7)	2x			

Figure S2. Powder X-ray diffraction pattern of **2**. Observed (crosses), calculated (solid line) and difference (solid line below) plots. Positions of Bragg reflections are shown as strokes underneath: (a) the main apatite-type phase $Ba_{10}(PO_4)_6(Co_{0.23}O_{0.88}H_y)_2$, (b) $Ba_3(PO_4)_2$ (2.18%), and (c) CoO (0.33%). Apatite-type phase lattice: Space group P6₃/m, *a* = 10.1962(2) Å, *c* = 7.7486(2) Å.

Table S4. Atomic parameters and thermal displacement parameters (Å²) for Ba₁₀(PO₄)₆(Co_{0.23}O_{0.88}H_y)₂ (sample 2). $R_{wp} = 0.019$, $R_{all} = 0.021$.

Atom	Ba(1)	Ba(2)	Р	O(1)	O(2)	O(3)	O(4)	Со
Site	4f	6h	6h	6h	6h	12i	4e	2b
SOF	1	1	1	1	1	1	0.44(3)	0.228(11)
x	1/3	0.24379(15)	0.4028(6)	0.3398(13)	0.5787(13)	0.3443(8)	0	0
У	2/3	0.98083(15)	0.3702(6)	0.4840(12)	0.4538(12)	0.2627(10)	0	0
Z	-0.0005(3)	1/4	1/4	1/4	1/4	0.0894(7)	0.199(6)	0
$U_{\rm eq},U_{\rm iso}$	0.0165(8)	0.0182(10)	0.015(2)	0.018(4)	0.008(3)	0.025(3)	0.11(2)	0.023(9)
U_{11}	0.0178(10)	0.0225(14)						0.035(12)
U_{22}	0.0178(10)	0.0089(12)						0.035(12)
U_{33}	0.0139(11)	0.0201(11)						0.001(13)
U_{12}	0.0089(5)	0.0056(11)						0.017(6)
U_{13}	0	0						0
U_{23}	0	0						0

Figure S3. Powder X-ray diffraction pattern of **2a**. Observed (crosses), calculated (solid line) and difference (solid line below) plots. Positions of Bragg reflections are shown as strokes underneath: (a) the main apatite-type phase $Ba_{10}(PO_4)_6(Co_{0.23}O_{0.98}H_y)_2$, (b) $Ba_3(PO_4)_2$ (14.4%), and (c) CoO (0.37%). Apatite-type phase lattice: Space group P6₃/m, *a* = 10.1983(2) Å, *c* = 7.7508(2) Å.

Table S5. Atomic parameters and thermal displacement parameters (Å²) for Ba₁₀(PO₄)₆(Co_{0.23}O_{0.98}H_y)₂ (sample **2a**). $R_{wp} = 0.017$, $R_{all} = 0.014$.

Atom	Ba(1)	Ba(2)	Р	O(1)	O(2)	O(3)	O(4)	Со
Site	4f	6h	6h	6h	6h	12i	4e	2b
SOF	1	1	1	1	1	1	0.49(4)	0.235(17)
x	1/3	0.24442(18)	0.4024(7)	0.3391(15)	0.5748(15)	0.3434(9)	0	0
У	2/3	0.98104(19)	0.3699(8)	0.4829(15)	0.4553(15)	0.2646(11)	0	0
Ζ	-0.0006(4)	1/4	1/4	1/4	1/4	0.0920(9)	0.189(7)	0
$U_{\rm eq}$, $U_{\rm iso}$	0.0122(7)	0.0151(11)	0.011(2)	0.013(4)	0.009(4)	0.020(3)	0.11(3)	0.060(16)
U_{11}	0.0140(9)	0.0182(14)						0.09(2)
U_{22}	0.0140(9)	0.0074(13)						0.09(2)
U_{33}	0.0086(10)	0.0156(11)						0.01(2)
U_{12}	0.0070(5)	0.0033(13)						0.044(11)
U_{13}	0	0						0
U_{23}	0	0						0

Figure S4. Powder X-ray diffraction pattern of **1**. Observed (crosses), calculated (solid line) and difference (solid line below) plots. Positions of Bragg reflections are shown as strokes underneath: (a) the main apatite-type phase $Ba_{10}(PO_4)_6(Co_{0.05}O_{0.74}H_y)_2$. Apatite-type phase lattice: Space group P6₃/m, *a* = 10.1808(2) Å, *c* = 7.7106(2) Å.

Table S6. Atomic parameters and thermal displacement parameters (Å²) for Ba₁₀(PO₄)₆(Co_{0.05}O_{0.74}H_y)₂ (sample 1). $R_{wp} = 0.020, R_{all} = 0.019$

Atom	Ba(1)	Ba(2)	Р	O(1)	O(2)	O(3)	O(4)	O(5)/Co
Site	4f	6h	6h	6h	6h	12i	4e	2b
SOF	1	1	1	1	1	1	0.236(16)	0.27(2)/0.05
x	1/3	0.24032(16)	0.4007(6)	0.3401(15)	0.5802(15)	0.3453(8)	0	0
У	2/3	0.98101(17)	0.3690(7)	0.4864(15)	0.4627(15)	0.2658(9)	0	0
Ζ	-0.0009(3)	1/4	1/4	1/4	1/4	0.0907(8)	0.179(5)	0
$U_{\rm eq},U_{\rm iso}$	0.0141(6)	0.0160(10)	0.012(2)	0.027(5)	0.016(4)	0.022(3)	0.02	0.02
U_{11}	0.0141(8)	0.0198(13)						
U_{22}	0.0141(8)	0.0096(12)						
U_{33}	0.0142(9)	0.0154(9)						
U_{12}	0.0071(4)	0.0049(11)						
U_{13}	0	0						
U_{23}	0	0						

(d)

(c)

Figure S5. Frequency (*f*) dependence of ac susceptibility per mol of Co under zero magnetic field for **3**. (a) and (c) – inphase susceptibility χ' , (b) and (d) – out-of-phase susceptibility χ'' . Symbols – experimental points, lines – fitting. The measurement temperature designation: (a) and (b) – blue, cyan, green, orange, red, magenta, purple, violet, navy – 10, 15, 20, 24, 26, 28, 30, 31, 32 K; (c) and (d) - blue, cyan, green, orange, red, magenta, purple, violet, navy, dark cyan, olive – from 33 to 43 K with a step of 1 K.

(c)

(d)

Figure S6. Frequency (*f*) dependence of ac susceptibility per mol of Co under zero magnetic field for **2**. (a) and (c) – inphase susceptibility χ' , (b) and (d) – out-of-phase susceptibility χ'' . Symbols – experimental points, lines – fitting. The measurement temperature designation: (a) and (b) – blue, cyan, green, orange, red, magenta, purple, violet, – 10, 15, 20, 25, 30, 32, 34, 36; (c) and (d) - blue, cyan, green, orange, red, magenta, purple, violet – from 37 to 46 K with a step of 1 K.

(c)

Figure S7. Frequency (*f*) dependence of ac susceptibility per mol of Co under zero magnetic field for **2a**. (a) and (c) – inphase susceptibility χ' , (b) and (d) – out-of-phase susceptibility χ'' . Symbols – experimental points, lines – fitting. The measurement temperature designation: (a) and (b) – blue, cyan, green, orange, red, magenta, purple, – 10, 15, 25, 30, 32, 34, 36; (c) and (d) - blue, cyan, green, orange, red, magenta, purple, violet, navy, olive – from 37 to 46 K with a step of 1 K. The fitting included a small contribution (a few per cent) of a second relaxation process at a lower frequency.

(c)

Figure S8. Frequency (*f*) dependence of ac susceptibility per mol of Co under zero magnetic field for **1**. (a) and (c) – inphase susceptibility χ' , (b) and (d) – out-of-phase susceptibility χ'' . Symbols – experimental points, lines – fitting. The measurement temperature designation: (a) and (b) – blue, cyan, green, orange, red, magenta, purple, violet, – 10, 15, 20, 25, 30, 32, 34, 36; (c) and (d) - blue, cyan, green, orange, red, magenta, purple, violet – from 37 to 46 K with a step of 1 K.

Figure S9. Magnetization *M* per 1 Co atom vs. magnetic field *H* at T = 1.8 K measured with a field sweeping rate of ca. 15 Oe s⁻¹. Blue symbols – **1**, red symbols – **2**.

Figure S10. ac susceptibility of 4. (a) at 5 K in a dc magnetic field of 4 kOe, (b) at 20 K in zero magnetic field.

Figure S11. Powder X-ray diffraction pattern of **4**. Observed (crosses), calculated (solid line) and difference (solid line below) plots. Positions of Bragg reflections are shown as strokes underneath. The main apatite-type phase $Ba_{10}(PO_4)_6(OH_y)_2*0.05Co_2O_3$, space group P6₃/m, a = 10.1772(2) Å, c = 7.6869(2) Å. Two extra peaks with intensity below 1.5% belong to an admixture of BaCO₃. The corresponding 2θ intervals have been excluded (shaded areases).

Table S7. Atomic parameters and thermal displacement parameters (Å²) for Ba₁₀(PO₄)₆(OH_y)₂*0.05Co₂O₃ (sample 4). $R_{wp} = 0.020$, $R_{all} = 0.019$.

Atom	Ba(1)	Ba(2)	Р	O(1)	O(2)	O(3)	O(4)
Site	4f	6h	6h	6h	6h	12i	4e
SOF	1	1	1	1	1	1	0.5
x	1/3	0.2400(2)	0.4014(8)	0.3330(18)	0.5752(18)	0.3472(11)	0
У	2/3	0.9820(3)	0.3681(9)	0.4807(19)	0.460(2)	0.2684(11)	0
Ζ	-0.0011(5)	1/4	1/4	1/4	1/4	0.0881(12)	0.111(3)
$U_{\rm eq},U_{\rm iso}$	0.0135(8)	0.0150(14)	0.005(2)	0.012(6)	0.010(5)	0.017(4)	0.043(13)
U_{11}	0.0140(11)	0.0132(18)					
U_{22}	0.0140(11)	0.0124(17)					
U_{33}	0.0127(13)	0.0155(12)					
U_{12}	0.0070(5)	0.0035(17)					
U_{13}	0	0					
U_{23}	0	0					

Figure S12. Inverted dc-susceptibility χ^1 per 1 mol of Co vs. temperature *T* in a field of 5 kOe for **4**. Symbols – experimental points. Line – fitting with eq. $\chi = C/(T - \theta) + \chi_{TIP}$, C = 3.119(8) emu K mol⁻¹, $\theta = -3.2(1)$ K, $\chi_{TIP} = -2(3)*10^{-5}$ emu mol⁻¹, $R^2 = 0.99997$; $\mu_{eff} = 4.99(1) \mu_B$.

Figure S13. Magnetization (M) per 1 atom of Co vs. magnetic field (H) at 1.8 K. Circles – **2**, Squares – **4**. Measured points are for field up from 0 to 70 kOe and down to 0 kOe. Two points were measured at each field with time interval of 50 s. **4** shows no hysteresis and relaxation. **2** shows hysteresis only at H = 0.5 kOe, the second point for fields both up and down is shifted due to the magnetization relaxation.

Figure S14. Product χT per 1 mol of Co vs. temperature (*T*). Circles – **2**. Squares – **4**.

Modeling electronic structure and magnetic susceptibility using program CONDON.

Imput parameters.

7 d-electrons, 120 basis electron states. Racah parameters (Co²⁺), B = 1115 cm⁻¹, C = 4366 cm⁻¹. Spin-orbital coupling constant $\xi = 533$ cm⁻¹, orbital reduction factor 0.84 (isotropic). Crystal field parameters (Wybourne notation), B₂₀ = 24000 cm⁻¹, B₄₀ = 12000 cm⁻¹, B₂₂ = 3600 cm⁻¹, B₄₂ = 1800 cm⁻¹, B₄₄ = 1700 cm⁻¹.

Output parameters.

Table S8. Energies of first 10 energy doublets and their (negative) magnetic moments under a field of 10 kOe for spins antiparallel (upper row) and parallel (lower row) to the magnetic field.

Energy in zero field (cm ⁻¹)	$\mu_z(\mu_{ m B})$	$\mu_{\mathrm{x}}\left(\mu_{\mathrm{B}} ight)$	$\mu_{y}\left(\mu_{\mathrm{B}} ight)$
0.0000E+00	-0.4994E+01	-0.1606E+00	-0.1375E+00
	0.4992E+01	0.1392E+00	0.1231E+00
0.3351E+03	-0.2089E+01	-0.1804E+01	-0.1891E+01
	0.2082E+01	0.1820E+01	0.1903E+01
0.1305E+04	-0.5239E-01	-0.1480E+01	-0.2138E+01
	0.5998E-01	0.1463E+01	0.2124E+01
0.1628E+04	-0.1115E+01	-0.2453E+00	-0.2453E+00
	0.1117E+01	0.2635E+00	0.2602E+00
0.2560E+04	-0.2427E+00	-0.3589E+00	-0.3360E+01
	0.2877E-01	0.5953E-01	0.3356E+01
0.2583E+04	-0.2029E+01	-0.1756E+01	-0.1099E+01
	0.2243E+01	0.2054E+01	0.1101E+01
0.5398E+04	-0.3797E+01	-0.3705E-01	-0.3886E-01
	0.3796E+01	0.1297E-01	0.1085E-01
0.5588E+04	-0.1519E+01	-0.1703E+01	-0.1587E+01
	0.1516E+01	0.1719E+01	0.1611E+01
0.5993E+04	-0.2433E+00	-0.4388E+00	-0.2744E+01
	0.2423E+00	0.4269E+00	0.2738E+01
0.6201E+04	-0.1865E+01	-0.8761E+00	-0.8399E+00
	0.1869E+01	0.8986E+00	0.8494E+00

Fitting of $\Delta \chi$ (see Fig. 4 insert and the main text).

Model of a Heisenberg dimer.
$$\Delta \chi = \frac{FNg^2 \mu_B^2}{6k_B T} \cdot \frac{6 \exp(2J/k_B T) + 30 \exp(6J/k_B T) + 84 \exp(12J/k_B T)}{1 + 3 \exp(2J/k_B T) + 5 \exp(6J/k_B T) + 7 \exp(12J/k_B T)} + \chi_{TTP}$$

F = 0.140(3), g = 2 (fixed), J = -25.1(3) cm⁻¹, $\chi_{TIP} = 0.00021(2)$ emu mol⁻¹, $R^2 = 0.982$. *F* is a fraction of Co ions left after the exclusion of the FR fraction (90%). Then a fraction of all Co ions present in the sample, which is found in the proposed dimer, is F*90% = 13%.

References

- M. Drakopoulos, Th. Connolley, C. Reinhard, R. Atwood, O. Magdysyuk, N. Vo, M. Hart, L. Connor, B. Humphreys, G. Howell, S. Davies, T. Hill, G. Wilkin, U. Pedersen, A. Foster, N. De Maio, M. Basham, F. Yuan, K. Wanelik. 112: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source. *J. Synchrotron Rad.* 2015, **22**, 828-838.
- 2 J. Filik, A.W. Ashton, P.C.Y. Chang, P.A. Chater, S.J. Day, M. Drakopoulos, M. Gerring, M.L. Hart, O.V. Magdysyuk, S. Michalik, A. Smith, C.C. Tang, N. J. Terrill, M.T. Wharmby and H. Wilhelm. Calibration and Processing of Powder-Diffraction Data in DAWN. *J. Appl. Cryst.* 2016 (submitted).
- 3 M. Basham, J. Filik, M.T. Wharmby, P.C.Y. Chang, B.E. Kassaby, M. Gerring, J. Aishima, K. Levik, B.C.A. Pulford, I. Sikharulidze, D. Sneddon, M. Webber, S.S. Dhesi, F. Maccherozzi, O. Svensson, S. Brockhauser, G, Naray and A.W. Ashton. Data Analysis WorkbeNch (DAWN). *J. Synchrotron Rad.* 2015, **22**, 853–858.
- 4 V. Petříček, M. Dušek, L. Palatinus. Crystallographic Computing System JANA2006: General Features. Z. Kristallogr.-Cryst. Mater. 2014, 229, 345-352.
- 5 S. M. J. Aubin, Z. Sun, L. Pardi, J. Krzystek, K. Folting, L.-C. Brunel, A. L. Rheingold, G. Christou and D. N. Hendrickson. Reduced Anionic Mn₁₂ Molecules with Half-Integer Ground States as Single-Molecule Magnets. *Inorg. Chem.* 1999, **38**, 5329-5340.