Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Reversible conversion between the pleated oligo-Tetrathiafulvalene radical foldamer and folded donoracceptor [3]pseudorotaxane under redox condition

Tian-Guang Zhan, ‡^a Lin Wu, ‡^a Zhixiong Zhao, ^b Zhi-Bei Zhou, ^a Meng-Yan Yun, ^a Jie Wei, ^a Si-Tai

Zheng,^a Huan-Huan Yin^a and Kang-Da Zhang *a

^a College of Chemistry and Life Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.

E-mail: Kangda.Zhang@zjnu.cn

^b Department of Pharmacy, School of Stomatology and Medicine, Foshan University, Foshan, 528000, China.

Contents

General Methods2
Synthesis
Figure S1 Cyclic voltammograms of the TTF oligomers in CHCl ₃
Figure S2 Solution color changes of Me-2TTF and Me-4TTF in CHCl ₃
Figure S3 UV- <i>vis</i> -NIR dilution absorption spectra of 1 and Me-2TTF in CHCl ₃
Figure S4 ¹ H NMR spectra of Me-4TTF and CBPQT ⁴⁺ ring in acetone- d_6
Figure S5 UV-vis-NIR titration spectra of Me-4TTF with CBPQT ⁴⁺ in acetone7
Figure S7 Job's plot of Me-4TTF with CBPQT ⁴⁺ ring
Figure S7 DFT calculated model of the folded donor-acceptor [3]pseudorotaxane8
Figure S8-S11 ¹ H NMR and ¹³ C NMR spectra of new compounds9-12

General Methods

All the chemical reagents were obtained from commercial sources and used without further purification unless otherwise noted, and the solvents for synthesis have been purified by standard procedures before use.

Cyclic voltammetry (CV) experiments: n-Bu₄NPF₆ (0.1M) was used as the supporting electrolyte and saturated calomel electrode (SCE) as the reference electrode. The internal resistances of the TTF solutions were measured and the IR compensation was considered before CV scanning. The CV diagrams were recorded at the scan rate of 0.1 V/S in CHCl₃ at ambient temperature. 4.0 mL of each sample was used and bubbling with argon gas for 30 seconds before CV scanning.

UV-*vis*-NIR Experiments: absorption spectra were recorded with Agilent Technologies Cary 60 UV-Vis spectrometer at 25 °C. The solutions of TTF oligomers samples and $Fe(ClO_4)_3$ were freshly prepared, and 2.5 mL of each TTF sample was used.

EPR experiments: TTF samples were prepared by carefully injecting the corresponding solution of an as-prepared radical solution into a capillaron, respectively, and then submitted to an electron paramagnetic resonance spectrometer at 25 °C.

NMR Experiments: ¹H NMR and ¹³C NMR spectra of the TTF oligomers and intermediates were recorded with a Bruker Advance 400 MHz and 600 MHz spectrometer at 25 °C, respectively. **Me-4TTF** was firstly dissolved in acetone- d_6 with a concentration of 2.0 mM, and then two equivalent of CBPQT⁴⁺ ring was added into the NMR tube, which was mixed well before submit to the NMR spectrometer.

DFT Calculation: All computations were carried out with GAUSSIAN 09 program ^[1]. The initial complex structure was modified from the crystallographic data CCDC 946414 ^[2] in Cambridge Structural Database (CSD). Molecular geometries were optimized with B3LYP/6-31G method ^[3-4]. To hold the flexible complex structure, the **CBPQT**⁴⁺ moieties were firstly kept frozen during the optimization and then released to a further optimization. The optimized complex structure was shown in Fig.S5 and the [C–H···O] interactions in optimized complex structure were

analyzed and depicted by MOE 2014 program.

Synthesis

Compound 4 and Me-2TTF. Compound **2** (0.414 g, 1.31 mmol) was dissolved in 10 mL anhydrous DMF, which was then degassed by Ar bubbling for 2 min and poured into a 50 mL flask under Ar protection. CsOH•H₂O (0.26 g, 1.55 mmol) was dissolved in 1 mL CH₃OH (degassed by Ar bubbling) and added to the above solution of compound **2** and the resulting mixture was stirred for another 2 hours at room temperature. 3 mL degassed DMF solution containing (0.86 g, 2.08 mmol) compound **3** was added and the resulting mixture was stirred overnight. After the reaction was completed (monitered by TLC), 5 mL ethyl acetate was added and the mixture was poured into 15 mL water, the water phase was extracted by ethyl acetate ($25 \text{ mL} \times 2$), organic phase was combined and washed with brine, dryed by Na₂SO₄ and purified by column chromatogram (PE/EA = 4:1), compound **4** was obtained as yellow oil (0.22 g, 30%); **Me-2TTF** was also isolated as yellow oil (0.13 g, 14%).

Me-2TTF: ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) 6.89 (s, 2H), 6.74 (s, 2H), 3.59 (t, $J_1 = 4.0$ Hz, $J_2 = 4.0$ Hz, 4H), 3.52 (s, 8H), 2.97 (t, $J_1 = 4.0$ Hz, $J_2 = 4.0$ Hz, 4H), 2.43 (s, 6H). ¹³C NMR (150MHz, CDCl₃): δ (ppm) 129.15, 126.87, 123.32, 119.83, 119.76, 70.96, 70.85, 70.02, 35.50, 30.01 and 19.76. MS (ESI): m/z 722 [M + H]⁺. HRMS (MALDI-TOF) Calcd. for C₂₂H₂₆O₃S₁₂Na [M + Na]⁺ 744.8428, Found: 744.8422.

Compound 4: ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 6.90 (s, 1H), 6.75 (s, 1H), 3.66 (t, $J_1 = 4.0$ Hz, $J_2 = 4.0$ Hz, 2H), 3.59 (t, $J_1 = 4.0$ Hz, $J_2 = 4.0$ Hz, 2H), 3.56-3.53 (m, 8H), 3.31(t, $J_1 = 4.0$ Hz, $J_2 = 4.0$ Hz, 2H), 2.97 (t, $J_1 = 4.0$ Hz, $J_2 = 4.0$ Hz, 2H), 2.43 (s, 3H). ¹³C NMR (150MHz, CDCl₃): δ (ppm) 129.01 (128.95), 126.67, 123.25 (123.21), 119.66 (119.54), 112.51 (112.37), 72.13, 70.84, 70.80, 70.69, 70.41, 69.88, 35.34, 19.64 and 3.37. MS (ESI): m/z 568 [M + H]⁺. HRMS (ESI) Calcd. for C₁₅H₂₁IO₃S₆Na [M + Na]⁺ 590.8757, Found: 590.7850. **Compound 5.** Compound 1 (0.176 g, 0.47 mmol) was dissolved in 8 mL degassed anhydrous DMF under Ar protection, and 0.5 mL CH₃OH solution of CsOH•H₂O (0.095 g, 0.57 mmol) was then added. The resulting mixture was stirred for 2 hours at room temperature, 3.0 mL degassed anhydrous DMF solution of compound 4 (0.22 g, 0.38 mmol) was added and the resulting mixture was stirred overnight. After the reaction was completed (monitered by TLC), 10 mL ethyl acetate was added and the mixture was poured into 15 mL water, the water phase was extracted by ethyl acetate (50 mL×2), organic phase was combined and washed with brine, dryed by Na₂SO₄ and purified by column chromatogram (PE/EA = 3:2), compound **5** was obtained as brown oil (0.114 g, 40%).

¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 7.00 (s, 1H), 6.89 (s, 2H), 6.74 (s, 1H), 3.59 (t, *J*₁ = 4.0 Hz, *J*₂ = 4.0 Hz, 4H),, 3.52 (s, 8H), 3.06 (t, *J*₁ = 8.0 Hz, *J*₂ = 4.0 Hz, 2H), 2.97 (t, *J*₁ = 8.0 Hz, *J*₂ = 8.0 Hz, 4H), 2.83 (t, *J*₁ = 8.0 Hz, *J*₂ = 8.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 129.13, 126.96, 126.67, 126.55, 124.18, 124.10, 123.39, 123.33, 123.30, 119.71, 117.79, 70.94, 70.85, 69.99, 60.71, 35.52, 30.90, 28.28, 19.41, 18.82 and 14.52. MS (ESI): *m*/*z* 761 [M + H]⁺. HRMS (ESI) Calcd. for C₂₄H₂₇NO₃S₁₂Na [M + Na]⁺ 783.8537, Found: 783.8506.

Me-4TTF. Compound **5** (0.114 g, 0.15 mmol) was dissolved in 8 mL degassed anhydrous DMF under Ar protection, and 1.0 mL CH₃OH solution of CsOH•H₂O (0.72 g, 4.3 mmol) was then added. The resulting mixture was stirred for 2 hours at room temperature, 3.0 mL degassed anhydrous DMF solution of compound **3** (0.035 g, 0.084 mmol) was added and the resulting mixture was stirred overnight. After the reaction was completed (monitered by TLC), 15 mL ethyl acetate was added and the mixture was poured into 15 mL water, the water phase was extracted by ethyl acetate (50 mL×2), organic phase was combined and washed with brine, dryed by Na₂SO₄ and purified by column chromatogram (PE/EA = 3:1), **Me-4TTF** was obtained as brown oil (0.065 g, 28%).

¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 6.87 (s, 6H), 6.73 (s, 2H), 3.59 (t, *J*₁ = 8.0 Hz, *J*₂ = 8.0 Hz, 12H), 3.52 (s, 24H), 2.97 (t, *J*₁ = 4.0 Hz, *J*₂ = 8.0 Hz, 12H), 2.43 (s, 6H). ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 129.16, 126.85, 123.30, 119.82, 119.69, 112.53, 70.96, 70.86, 70.01, 35.50 and 19.75. MS (ESI): *m/z* 1574 [M + H]⁺. HRMS (MALDI-TOF) Calcd. for C₅₀H₆₃O₉S₂₄ [M + H]⁺1574.7699, Found 1574.7685.

Fig. S1 The cyclic voltammograms of (a) compound **1**; (b) **Me-2TTF** and (c) **Me-4TTF** recorded at a scan rate of 0.1 V/S in CHCl₃ at 25 °C, the total TTF unit concentration is 2.0 mM, n-Bu₄NPF₆ (0.1 M) was used as the supporting electrolyte and saturated calomel electrode (SCE) as the reference electrode.

Fig. S2 The solution color of (a) **Me-2TTF** and (b) **Me-4TTF** in CHCl₃ with 0, 1.0 and 2.0 equiv of $Fe(ClO_4)_3$ respected to the total TTF concentration.

Fig. S3 The UV-vis-NIR dilution absorption spectra of (a) **1** in CHCl₃; (b) **Me-2TTF** in CHCl₃ (inset: absorption changes vs concentration recorded at 821 nm); (c) **Me-4TTF** in CHCl₃ (inset: absorption changes vs concentration recorded at 855 nm)

Fig. S4 (a) The UV-vis-NIR titration absorption spectra of Me-4TTF (2 mM) with CBPQT⁴⁺ (0 to

1.0 equiv) in acetone- d_6 at 20°C.

Fig. S5 (a) The UV-vis-NIR titration absorption spectra of **Me-4TTF** (0.02 mM) with CBPQT⁴⁺ (0 to 4.0 equiv) in acetone at 25°C; (b) Fitting plot of the maximum CT absorption band at 800 nm of **Me-4TTF** with CBPQT⁴⁺ ring to a nonlinear self-binding equation.

Fig. S6 Job's plot of **Me-4TTF** with CBPQT⁴⁺ (total concentration was 0.06 mM) in acetone at 25°C.

Fig. S7 The top view (a) and the side view (b) of the optimized folded donor-acceptor [3]pseudorotaxane in space-filling mode (75% atomic van der Waals radii). The **TTF** and **CBPQT**⁴⁺ moieties were colored by yellow and blue, respectively. The view (c) in stick mode showed the [C-H…O] interactions (depicted by dash line) between the hydrogens α to pyridinium nitrogens in **CBPQT**⁴⁺ and glycol oxygens in **Me-4TTF**.

Fig. S8 The ¹H NMR (DMSO- d_6 , 400 MHz, 298K) and ¹³C NMR (CDCl₃, 150 MHz, 298K) spectra of Me-2TTF.

spectra of compound 4.

Fig. S10 The ¹H NMR (DMSO-*d*₆, 400 MHz, 298K) and ¹³C NMR (CDCl₃, 150 MHz, 298K) of compound **5**.

Fig. S11 The ¹H NMR (DMSO-*d*₆, 400 MHz, 298K) and ¹³C NMR (CDCl₃, 150 MHz, 298K) of **Me-4TTF**.

References

[1] M. J. Frisch, et al. Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009.

[2] C. Wang, S. M. Dyar, D. Cao, A. C. Fahrenbach, N. Horwitz, M. T. Colvin, R. Carmieli, C. L. Stern, S. K. Dey, M. R. Wasielewski and J. Fraser Stoddart, *J. Am. Chem. Soc.*, 2012, **134**, 19136-19145.

[3] A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.

[4] C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 1988, 37, 785-789.