Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Bromide-Assisted Catalytic Oxidation of Lead(II) Solids by Chlorine in Drinking Water Distribution Systems

John Orta[†], Samuel Patton^{†‡} and Haizhou Liu^{†*}

† Department of Chemical and Environmental Engineering, University of California at

Riverside, Riverside, CA 92521 USA

[‡] Program of Environmental Toxicology, University of California, Riverside, CA 92521 USA

* Corresponding author, e-mail: haizhou@engr.ucr.edu,

phone (951) 827-2076, fax (951) 827-5696.

Submitted to Chemical Communications

(Invited Submission to Emerging Investigators Issue 2017)

Table of Contents

Figure S1 XRD spectra of synthesized hydroxylpyromorphite Pb ₅ (PO ₄) ₃ OH _(s)
Figure S2 Consumption of chlorine during the oxidation of cerussite $PbCO_{3(s)}$ by
chlorine at varying bromide concentrations. $pH = 7.0$, initial $[Cl_2] = 50 \text{ mg/L}$, initial
$[PbCO_3] = 0.56 \text{ g/L}$, ionic strength = 10 mM, TOTCO ₃ = 1 mM4
Figure S3 Oxidation of $Pb_5(PO_4)_3OH_{(s)}$ by chlorine at varying initial bromide
concentrations. pH = 7.0, initial [Cl ₂] = 50 mg/L, initial [Pb ₅ (PO ₄) ₃ OH _(s)] = 0.56 g/L,
ionic strength = 10 mM , TOTCO ₃ = 1 mM
Figure S4 Oxidation of $Pb_5(PO_4)_3OH_{(s)}$ by bromine at $pH = 7.0$, initial $[Br_2] = 50 \text{ mg/L}$
as chlorine, initial $[Pb_5(PO_4)_3OH_{(s)}] = 0.56 \text{ g/L}$, ionic strength = 10 mM, TOTCO ₃ = 1
mM

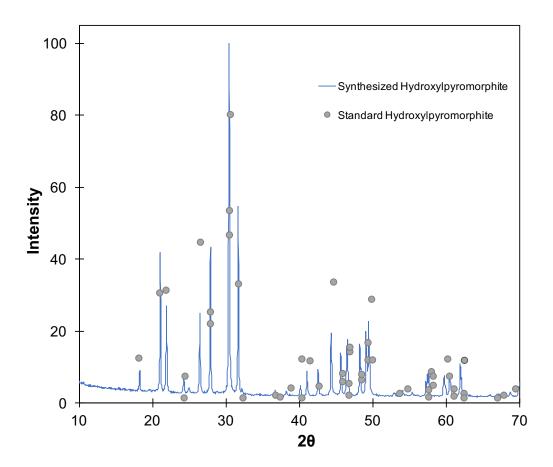
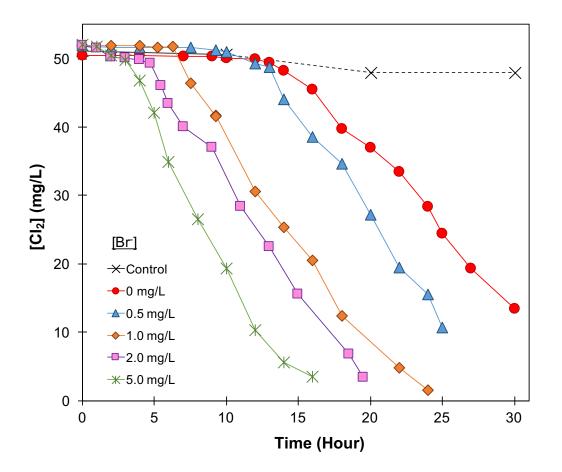



Figure S1 XRD spectra of synthesized hydroxylpyromorphite Pb₅(PO₄)₃OH_(s).

Figure S2 Consumption of chlorine during the oxidation of cerussite $PbCO_{3(s)}$ by chlorine at varying bromide concentrations. pH = 7.0, initial [Cl₂] = 50 mg/L, initial [PbCO₃] = 0.56 g/L, ionic strength = 10 mM, TOTCO₃ = 1 mM.

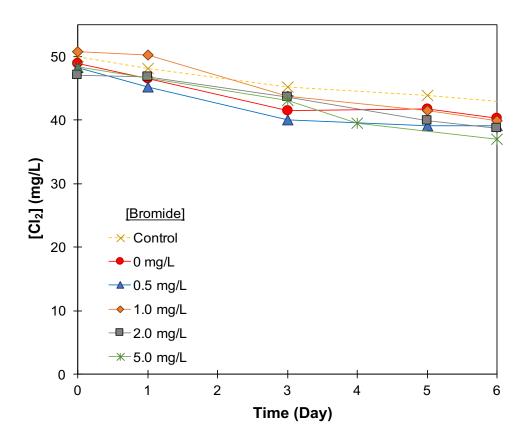
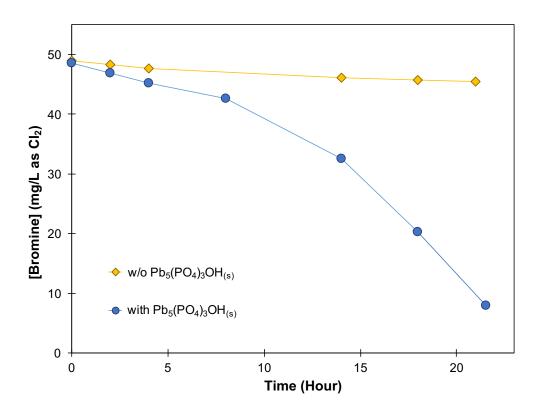



Figure S3 Oxidation of $Pb_5(PO_4)_3OH_{(s)}$ by chlorine at varying initial bromide concentrations. pH = 7.0, initial [Cl₂] = 50 mg/L, initial [Pb₅(PO₄)₃OH_(s)] = 0.56 g/L, ionic strength = 10 mM, TOTCO₃ = 1 mM.

Figure S4 Oxidation of $Pb_5(PO_4)_3OH_{(s)}$ by bromine at pH = 7.0, initial $[Br_2] = 50 \text{ mg/L}$ as chlorine, initial $[Pb_5(PO_4)_3OH_{(s)}] = 0.56 \text{ g/L}$, ionic strength = 10 mM, TOTCO₃ = 1 mM.