## Supplementary Information:

## Thermosensitive polymer-controlled morphogenesis and phase discrimination of calcium carbonate

Jun Jiang, Klaus Tauer, Yun-Hao Qiu, Ya-Xu Zhong, Min-Rui Gao, Markus Antonietti, Shu-Hong Yu\*

## **Experimental Section:**

*Chemical:* Anhydrous sodium carbonate (Mw = 105.99) and calcium chloride (Mw = 110.99) are commercially available and analytical grade used without further purification. In a typical experimental procedure, crystals of CaCO<sub>3</sub> were produced using a double-jet method. The double-jet experiments were carried out in a thermostated container. PEG-PNIPAM-PAMPS solution (0.2 g L<sup>-1</sup>, 10 mL) was put into the vessel. Then, solution A and solution B (Solution A: 1.5 mL 100 mM [CaCl<sub>2</sub>]; Solution B: 1.5 mL 100 mM [Na<sub>2</sub>CO<sub>3</sub>]) were injected into the vessel containing 10mL PEG-PNIPAM-PAMPS solution (0.2 g L<sup>-1</sup>) at a rate of 2mL h<sup>-1</sup> under mild stirring. In addition, the vessel was covered with parafilm and the two injection needles were inserted, so the reaction was almost performed in a sealing system. Then, the crystals were collected for characterization. All experiments were repeated a minimum of three times to validate the method and results.

*Characterization:* X-ray power diffraction (XRD) analyses were carried out on a Philips X'Pert PRO SUPER X-ray diffractometer equipped with graphite

monochromatized Cu Kα radiation. Field emission scanning electron microscopy (FESEM) was carried out with a field emission scanning electron microanalyzer (JEOL-6700F). Transmission electron microscope (TEM) was performed on JEOL-2010 operated at an acceleration voltage of 200 kV.

**Table S1** The average hydrodynamic radius,  $\langle R_h \rangle$ , and the average gyration radius,  $\langle R_g \rangle$ , of PEG-PNIPAM-PAMPS at 40°C, 50°C, 60°C. The ratios of  $\langle R_g \rangle / \langle R_h \rangle$  indicate the formation of micelle nanoparticles in water.

| Temperature/ °C | $< R_h > / nm$ | $< R_g > / nm$ | $< R_g > / < R_h >$ |
|-----------------|----------------|----------------|---------------------|
| 40              | 73.8           | 42.9           | 0.581               |
| 50              | 76.9           | 44.0           | 0.572               |
| 60              | 74.1           | 44.2           | 0.596               |



**Fig. S1** Distributions of hydrodynamic radius of the PEG-PNIPAM-PAMPS at 40°C, 50°C, 60°C.



**Fig. S2** XRD patterns of the CaCO<sub>3</sub> obtained by double-jet method at a rate of 2 mL·h<sup>-1</sup>. (a) 50 °C, pure aragonite. (b) 45 °C, a mixture of aragonite and vaterite. (c) 40 °C, pure vaterite. (d) 25 °C, pure vaterite. (e) 15 °C, a mixture of vaterite and calcite. (f) 0°C, pure calcite. [CaCl<sub>2</sub>] = [Na<sub>2</sub>CO<sub>3</sub>] = 100 mM. The volume of both injected solutions was 1.5 mL, adding into PEG-PNIPAM-PAMPS solution (0.2 g L<sup>-1</sup>, 10 mL) in the reaction vessel. Note: \*, aragonite phase (JCPDS Card No. 41-1475);  $\Delta$ , vaterite phase (JCPDS Card No. 33-0268); +, calcite phase (JCPDS Card No. 86-2340).



Fig. S3 Scanning electron microscopy (SEM) images of the CaCO<sub>3</sub> obtained by double-jet method at a rate of 2 mL/h at 25°C when the PEG-PNIPAM-PAMPS is absent, pure vaterite.  $[CaCl_2] = [Na_2CO_3] = 100$  mM. The injected solutions was added into 10 mL water in the reaction vessel for 45 minutes.



Fig. S4 Thermogravimetric curves of the obtained CaCO<sub>3</sub> at different temperature



**Fig. S5** Scanning electron microscopy (SEM) images of the CaCO<sub>3</sub> obtained at 50°C by double-jet method. (a) 4 mL·h<sup>-1</sup>, pure aragonite; (b) 9 mL·h<sup>-1</sup>, pure aragonite; (c) 18 mL·h<sup>-1</sup>, a mixture of aragonite and vaterite (aragonite is dominant); (d) 1.5 mL·min<sup>-1</sup>, a mixture of vaterite and calcite.  $[CaCl_2] = [Na_2CO_3] = 100$  mM. The volume of each initial solution injected is 1.5 mL, adding into PEG-PNIPAM-PAMPS solution (0.2 g L<sup>-1</sup>, 10 mL) in the reaction vessel.



**Fig. S6** XRD patterns of the CaCO<sub>3</sub> obtained at 50°C by double-jet method. (a) 4 mL·h<sup>-1</sup>, pure aragonite; (b) 9 mL·h<sup>-1</sup>, pure aragonite; (c) 18 mL·h<sup>-1</sup>, a mixture of aragonite and vaterite (aragonite is dominant); (d) 1.5 mL·min<sup>-1</sup>, a mixture of vaterite and calcite. [CaCl<sub>2</sub>] = [Na<sub>2</sub>CO<sub>3</sub>] = 100 mM. The volume of each initial solution injected is 1.5 mL, adding into PEG-PNIPAM-PAMPS solution (0.2 g L<sup>-1</sup>, 10 mL) in the reaction vessel. Note: \*, aragonite phase (JCPDS Card No. 41-1475);  $\Delta$ , vaterite phase (JCPDS Card No. 33-0268); +, calcite phase (JCPDS Card No. 86-2340).



**Fig. S7** SEM images of the CaCO<sub>3</sub> obtained by the double-jet method at a rate of 2 ml/h in presence of PEG-PNIPAM-PAMPS at 50°C. (a) [polymer] = 0.4 g L<sup>-1</sup>, volume = 10 mL, aragonite; (b) [polymer] = 0.05 g L<sup>-1</sup>, volume = 10 mL, aragonite. [CaCl<sub>2</sub>] = 100 mM, volume = 1.5 mL; [Na<sub>2</sub>CO<sub>3</sub>] = 100 mM, volume = 1.5 mL.



**Fig. S8** XRD patterns of the CaCO<sub>3</sub> obtained by the double-jet method at a rate of 2 ml/h in presence of PEG-PNIPAM-PAMPS at 50°C: (a) [polymer] = 0.4 g L<sup>-1</sup>, volume = 10 mL, aragonite; (b) [polymer] = 0.05 g L<sup>-1</sup>, volume = 10 mL, aragonite. [CaCl<sub>2</sub>] = 100 mM, volume = 1.5 mL; [Na<sub>2</sub>CO<sub>3</sub>] = 100 mM, volume = 1.5 mL.



**Figure S9.** SEM images of the CaCO<sub>3</sub> obtained by single-jet method at a rate of 2 ml/h at 50 °C: (a) CaCl<sub>2</sub> ([CaCl<sub>2</sub>] = 100 mM, volume = 1.5 mL) as the single-jet solution, Na<sub>2</sub>CO<sub>3</sub> ([Na<sub>2</sub>CO<sub>3</sub>] = 100 mM, volume = 1.5 mL) is mixed with PEG-PNIPAM-PAMPS solution (0.2 g L<sup>-1</sup>, 10 mL) in the reaction vessel, aragonite; (b) Na<sub>2</sub>CO<sub>3</sub> ([Na<sub>2</sub>CO<sub>3</sub>] = 100 mM, volume = 1.5 mL) as the single-jet solution, CaCl<sub>2</sub> ([CaCl<sub>2</sub>] = 100 mM, volume = 1.5 mL) is mixed with PEG-PNIPAM-PAMPS solution (0.2 g L<sup>-1</sup>, 10 mL) in the reaction vessel, aragonite; (b) Na<sub>2</sub>CO<sub>3</sub> ([Na<sub>2</sub>CO<sub>3</sub>] = 100 mM, volume = 1.5 mL) as the single-jet solution, CaCl<sub>2</sub> ([CaCl<sub>2</sub>] = 100 mM, volume = 1.5 mL) is mixed with PEG-PNIPAM-PAMPS solution (0.2 g L<sup>-1</sup>, 10 mL) in the reaction vessel, a mixture of aragonite and calcite.



**Figure S10.** XRD patterns of the CaCO<sub>3</sub> obtained by single-jet method at a rate of 2 ml/h at 50 °C: (a) CaCl<sub>2</sub> ([CaCl<sub>2</sub>] = 100 mM, volume = 1.5 mL) as the single-jet solution, Na<sub>2</sub>CO<sub>3</sub> ([Na<sub>2</sub>CO<sub>3</sub>] = 100 mM, volume = 1.5 mL) is mixed with PEG-PNIPAM-PAMPS solution (0.2 g L<sup>-1</sup>, 10 mL) in the reaction vessel, aragonite; (b) Na<sub>2</sub>CO<sub>3</sub> ([Na<sub>2</sub>CO<sub>3</sub>] = 100 mM, volume = 1.5 mL) as the single-jet solution, CaCl<sub>2</sub> ([CaCl<sub>2</sub>] = 100 mM, volume = 1.5 mL) is mixed with PEG-PNIPAM-PAMPS solution (0.2 g L<sup>-1</sup>, 10 mL) in the reaction vessel, aragonite; (b) Na<sub>2</sub>CO<sub>3</sub> ([Na<sub>2</sub>CO<sub>3</sub>] = 100 mM, volume = 1.5 mL) as the single-jet solution, CaCl<sub>2</sub> ([CaCl<sub>2</sub>] = 100 mM, volume = 1.5 mL) is mixed with PEG-PNIPAM-PAMPS solution (0.2 g L<sup>-1</sup>, 10 mL) in the reaction vessel, a mixture of aragonite and calcite.