Supporting Information

Development of Ir and La-codoped BaTa₂O₆ photocatalysts using visible light up to 640 nm as an H₂-evolving photocatalyst for Z-schematic water splitting Akihide Iwase, Akihiko Kudo

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Photocatalysis international Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan

Experimental

Preparation of ATa₂O₆ (A= Ca, Sr, and Ba) photocatalysts codoped with iridium and La ions

Ir and Ta-codoped ATa₂O₆ (A= Ca, Sr, and Ba) was prepared by a borate-flux method. Starting materials of CaCO₃, SrCO₃, BaCO₃, Ta₂O₅, IrO₂, and La₂O₃, and a flux agent of H₃BO₃ (Kanto Chemical; 99%) were mixed with a molar ratio of (Ca, Sr, or Ba)/Ta/Ir/La/B = 1.1:2:0.02:0.04:0.2. The mixture was calcined at 1373K for 10h in an alumina crucible. The obtained powder was washed with 0.02mol L⁻¹ HCl to remove borate flux agents. Ir and Ta-codoped BaTa₂O₆ was also prepared by a solid-state reaction and a NaCl-flux method. The materials of BaCO₃, Ta₂O₅, IrO₂, and La₂O₃ were mixed with a molar ratio of Ba/Ta/Ir/La = 1:2:0.02:0.04 for the solid-state reaction. The mixture was calcined in air at 1173K for 1h and then 1423K for 10h in an alumina crucible. The materials of BaCO₃, Ta₂O₅, IrO₂, and a flux agent of NaCl were mixed with a mole ratio of Ba/Ta/Ir/La/Na = 1:2:0.02:0.04:0.2 for the NaCl-flux method. The mixture was calcined in air at 1373K for 10h in an alumina crucible. The materials of BaCO₃, Ta₂O₅, IrO₂, and a flux agent of NaCl were mixed with a mole ratio of Ba/Ta/Ir/La/Na = 1:2:0.02:0.04:0.2 for the NaCl-flux method. The mixture was calcined at 1373K for 10h in an alumina crucible. The mixture was calcined at 1373K for 10h in an alumina crucible.

Characterization of photocatalysts

The crystal phase of the prepared powder was analyzed on an X-ray diffractometer (Rigaku, MiniFlex). Diffuse reflectance spectra were obtained using a UV-vis-NIR spectrometer (JASCO; Ubest-570) equipped with an integrating sphere, and were converted from reflection to absorbance by the Kubelka-Munk method. Morphology of

the photocatalyst powder was observed using a scanning electron microscope (Jeol; JSM-6700F).

Photocatalytic reactions

Sacrificial H₂ evolution and Z-schematic water splitting were carried out using a gas-tight circulation system. The photocatalyst powder (0.1–0.3g) was dispersed in an aqueous solution (120 mL) containing methanol (10 vol%) and H₂[PtCl₄]₂ (0.3 wt% Pt with respect to photocatalysts) for sacrificial H₂ evolution. H₂ evolution as a half reaction of Z-scheme system was also demonstrated using aqueous solutions containing FeCl₂ (2 mmol L⁻¹, pH 2.4), and [Co(bpy)₃]SO₄ 1 mmol L⁻¹, pH 3.7) of electron mediators. H₂SO₄ was used for the pH adjustment of the solutions. Pt(0.3 wt%)- and Ru(0.5 wt%)-cocatalysts were photodeposited on the H₂-evolving photocatalyst from H₂[PtCl₄]₂ and RuCl₃ in an aqueous methanol solution in advance. For the Z-schematic water splitting, Ru-loaded BaTa₂O₆ doped with Ir and La (0.05 g) and BiVO₄ (0.05 g) were dispersed in a 1 mmol L⁻¹ aqueous [Co(bpy)₃]SO₄ solution (pH 3.7). A top-irradiation reaction cell with a Pyrex window and a 300 W Xe lamp (Parkin Elmer, CERMAX PE300BF) with a long-pass filter (L42) were used. Amounts of evolved H₂ and O₂ were determined using an online gas chromatograph (Shimadzu, GC-8A, TCD, MS-5A column, Ar carrier).

Figure S1 XPS peaks of Ir4f, La3d, Ba3d, and Ta4f peaks for BaTa₂O₆:Ir(1%),La(2%) prepared by a borate-flux method at 1373K.

Figure S2 SEM images of $BaTa_2O_6$:Ir(1%),La(2%) synthesized by (a) a solid-state reaction (1423 K), (b) a NaCl-flux method (1373 K), and (c) a borate-flux method (1373 K).

Figure S3 XRD pattern of $BaTa_2O_6$:Ir(1 at%) prepared by a borate-flux method at 1373 K.

Closed mark: tungsten bronze type tetragonal system (PDF: 50-1706), open mark: $CaTa_2O_6$ type orthorhombic system (PDF: 20-146).

Figure S4 SEM image of BaTa₂O₆:Ir(1 at%) prepared by a borate-flux method at 1373 K.

Figure S5 Diffuse reflectance spectra of $BaTa_2O_6$:Ir(1 at%) prepared by a borate-flux method at 1373 K. H₂ reduction was carried out at 473K.