Palladium and Visible-Light Mediated Carbonylative Suzuki-Miyaura Coupling of Unactivated Alkyl Halides and Aryl BoronicAcids

Sara Roslin ${ }^{\text {a }}$, Luke R. Odell ${ }^{*}$ a
${ }^{a}$ Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala Biomedical Center, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden

Contents
General information S2
General procedure for optimization of carbonylative Suzuki coupling S2
Synthesis of alkyl iodides S5
General procedure for carbonylative Suzuki coupling - investigation of scope S6
Control experiments S12
Pressure measurement S13
References S15
NMR spectra S16

General information

All reagents were purchased at the highest commercial quality and used without further purification. Yields refer to isolated, homogenous and spectroscopically pure material, unless otherwise stated. Blue light-emitting diodes ($2 \mathrm{~W}, \lambda=465 \mathrm{~nm}$) and white light-emitting diodes ($2 \mathrm{~W}, 3200 \mathrm{~K}$) were used for irradiation of the reaction mixture. Crude reaction mixtures were purified by silica gel chromatography (E . Merck silica gel, particle size $0.043-0.063 \mathrm{~mm}$). The luminous emittance was measured at the surface of the reaction vessel (a distance of 7 cm) to 12900 lux (all LED lists) and 4500 lux (single LED list) with a lux meter (Lux light meter, CL-J18-11-C3). Thin layer chromatography was carried out using E. Merck silica plates (60F-254) with UV light (254 nm) as the visualization agent. Analytical reversed phase HPLC-MS (ESI) was performed on a Dionex Ultimate 3000 system using $\mathrm{MeCN} / 0.05 \% \mathrm{HCOOH}$ in $\mathrm{H}_{2} \mathrm{O}$ as the mobile phase with MS detection, equipped with a C 18 (Phenomenex Kinetex SB-C18 ($4.8 \times 50 \mathrm{~mm}$)) column using a UV diode array detector. Purity determinations were performed on the same instrument with UV detection at 245 nm . Low resolution GC-MS (EI) analyses were performed with a CP-SIL 8 CB low bleed ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}$) capillary column using a $70-300^{\circ} \mathrm{C}$ temperature gradient and electron impact ionization at 70 eV . Accurate mass values were determined on a mass spectrometer equipped with an electron-impact ion source and TOF detector. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra at 100 MHz . The chemical shifts for ${ }^{1} \mathrm{H} \mathrm{NMR}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were referenced to tetramethylsilane via residual solvent signals (${ }^{1} \mathrm{H}^{2} \mathrm{CHCl}_{3} \delta 7.26, \mathrm{CD}_{2} \mathrm{HOD} \delta 3.31{ }^{13} \mathrm{C}: \mathrm{CDCl}_{3} \delta 77.16$, $\mathrm{CD}_{3} \mathrm{OD} \delta 49.00$).

General procedure for optimization of carbonylative Suzuki coupling

At the initiation of the optimization, $\mathbf{1}(0.25 \mathrm{mmol}), \mathbf{2}(0.375 \mathrm{mmol})$, potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$, $0.25 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%), f a c-\mathrm{rr}(\mathrm{ppy})_{3}(1 \mathrm{~mol} \%)$ and Hantzsch ester $(0.5 \mathrm{mmol})$ was added to the reaction chamber (C_{rx}), followed by benzene and water ($2: 1,2 \mathrm{~mL}$ total volume). To the carbon monoxide chamber (C_{co}), molybdenum hexacarbonyl $\left(\mathrm{Mo}(\mathrm{CO})_{6}, 0.75 \mathrm{mmol}\right)$ was added followed by acetonitrile (2 mL). All solvents were sonicated for 15 min before addition to the H -tube. After capping of $C_{r x n}$ and $C_{c 0}$, DBU (1.5 mmol) was added to C_{co}. $\mathrm{C}_{\mathrm{rxn}}$ was then subjected to visible light radiation for 24 h . Both chambers were held at room temperature. After 24 h , the contents of $\mathrm{C}_{\mathrm{rxn}}$ was filtered and washed with dichloromethane. The filtrate was concentrated in vacuo. Anisole (1 eq) was used as the internal standard for calculation of the NMR yield. In experiments with anisole as solvent, 1-hexene (1 eq) was used as the internal standard. See table S 1 for all experiments.

Table S1. Full optimization of reaction parameters

Entry	Solvent $\mathrm{C}_{\mathrm{rxn}}$	Catalyst/ligand	Base	Reductant	Temperature C_{co}	NMR yield $^{\text {a }}$
S1	Benzene	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
S2	Benzene + water $100 \mu \mathrm{~L}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	7\%
S3	Benzene/water 9:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	9\%
S4	Benzene/water 7:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	15\%
S5	Benzene/water 2:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	17\%
S6	Benzene/water 1:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
S7	Acetonitrile	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-

Acetonitrile + water 100 $\mu \mathrm{L}$
Acetonitrile /water 2:1
Methylcyclohexane/water 7:1
Methylcyclohexane/water 2:1
Perfluorobenzene/water 7:1
Perfluorobenzene/water 2:1
Benzene/acetonitrile 2:1
Methylcyclohexane/ acetonitrile 2:1
Benzene/acetonitrile/ water 4:1:1 Water
Benzene/water 2:1
Benzene/water 2:1
Benzene/water 7:1

Benzene/water 2:1

Benzene

Benzene/water 2:1

Benzene + water $100 \mu \mathrm{~L}$

Benzene/water 7:1

Benzene/water 2:1

Benzene/acetonitrile/ water 4:1:1
Benzene/water 2:1
Benzene/water 2:1
Benzene/water 2:1
Benzene/water 2:1

Benzene/water 2:1

Benzene/water 2:1
Benzene/water 2:1
Benzene/water 2:1
Benzene/water 2:1
Benzene/water 2:1
Benzene/water 2:1
Benzene/water 2:1
Benzene/water 2:1

Benzene/water 2:1
Benzene/water 2:1
Benzene/water 2:1
Benzene/water 2:1

Benzene/water 2:1
Benzene/water 2:1

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	Trace ${ }^{\text {b }}$
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	Trace ${ }^{\text {b }}$
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac-Ir $(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac-Ir $(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	6\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (0.5 eq)	$70^{\circ} \mathrm{C}$	32\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}{ }^{\mathrm{c}}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (0.5 eq)	$70^{\circ} \mathrm{C}$	37\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac-	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	7\%
$\operatorname{Ir}(\mathrm{ppy})_{3} /$ Xantphos $^{\text {d }}$				
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac$\operatorname{Ir}(\text { ppy })_{3} /$ Xantphos $^{\text {d }}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}(\mathrm{dba})_{2}$, fac$\operatorname{Ir}(\text { ppy })_{3} /$ Xantphos $^{\text {d }}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}(\mathrm{dba})_{2}$, fac$\operatorname{Ir}(\text { ppy })_{3} /$ Xantphos $^{\text {d }}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}(\mathrm{dba})_{2}$, fac$\operatorname{Ir}(\text { ppy })_{3} /$ Xantphos $^{\text {d }}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$, fac$\operatorname{Ir}(\text { ppy })_{3} /$ Xantphos $^{\text {d }}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$, fac$\operatorname{Ir}(\mathrm{ppy})_{3} /$ Xantphos $^{\mathrm{d}}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	Trace ${ }^{\text {b }}$
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac}-\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	6\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac}-\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	24\%
$\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{fac}^{-\mathrm{Ir}(\mathrm{ppy})_{3}}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}, \mathrm{fac}^{\text {- }} \mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	7\%
$\mathrm{Pd}(\mathrm{dba})_{2}$, fac-	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	-
$\operatorname{Ir}(\mathrm{ppy})_{3} /$ Xphos $^{\text {e }}$				
$\mathrm{Pd}(\mathrm{dba})_{2}$, fac$\operatorname{Ir}(p p y)_{3} /$ Sphos $^{\text {e }}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	RT	Trace ${ }^{\text {b }}$
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac}-\mathrm{Ir}(\mathrm{ppy})_{3}$	CsCO_{3}	HE (2 eq)	RT	18\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	CsCO_{3}	HE (2 eq)	RT	-
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac}$ - $\mathrm{Ir}(\mathrm{ppy})_{3}$	NEt_{3}	HE (2 eq)	RT	8\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	NEt_{3}	HE (2 eq)	RT	Trace ${ }^{\text {b }}$
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac}$ - $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	$70^{\circ} \mathrm{C}$	31\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, f a c-\operatorname{lr}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (1 eq)	$70^{\circ} \mathrm{C}$	19\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (0.5 eq)	$70^{\circ} \mathrm{C}$	21\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac}-\mathrm{Ir}(\mathrm{ppy})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\begin{gathered} \mathrm{HE} \\ (0.25 \mathrm{eq}) \end{gathered}$	$70^{\circ} \mathrm{C}$	37\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac}-\mathrm{Ir}(\mathrm{ppy})_{3}{ }^{\mathrm{c}}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (2 eq)	$70^{\circ} \mathrm{C}$	31\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}{ }^{\mathrm{c}}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (1 eq)	$70^{\circ} \mathrm{C}$	31\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac}-\mathrm{Ir}(\mathrm{ppy})_{3}{ }^{\text {c }}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (0.5 eq)	$70^{\circ} \mathrm{C}$	46\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac}-\mathrm{Ir}(\mathrm{ppy})_{3}{ }^{\text {c }}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\begin{gathered} \text { HE } \\ (0.25 \mathrm{eq}) \end{gathered}$	$70^{\circ} \mathrm{C}$	35\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac}-\mathrm{Ir}(\mathrm{ppy})_{3}{ }^{\mathrm{C}}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (0.1 eq)	$70^{\circ} \mathrm{C}$	29\%
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}{ }^{\text {c }}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$,	HE	$70^{\circ} \mathrm{C}$	32\%

			$\begin{gathered} \text { TBA } \\ (2 \mathrm{eq}) \end{gathered}$	(0.25 eq)		
S47	Benzene/water 2:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac-Ir}(\mathrm{ppy})_{3}{ }^{\mathrm{c}, f}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (0.5 eq)	$70^{\circ} \mathrm{C}$	26\%
S48	Benzene ${ }^{\text {b }}$		$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (0.5 eq)	$70^{\circ} \mathrm{C}$	24\%
S50	Benzene/water 7:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, fac- $\mathrm{Ir}(\mathrm{ppy})_{3}{ }^{\mathrm{c}}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (0.5 eq)	$70^{\circ} \mathrm{C}$	37\%
S51	Dioxane/water 2:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{fac}-\mathrm{Ir}(\mathrm{ppy})_{3}{ }^{\mathrm{c}}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (0.5 eq)	$70^{\circ} \mathrm{C}$	Trace ${ }^{\text {b }}$
S52	Benzene/water 2:1	$\begin{gathered} \mathrm{NiCl}_{2}, \text { fac- } \\ \operatorname{Ir}(\text { ppy })_{3}^{\mathrm{c}} / \mathrm{BBBDP}^{\mathrm{d}} \end{gathered}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (0.5 eq)	RT	-
S53	Dioxane +5 eq water	$\begin{gathered} \mathrm{NiCl}_{2}, \text { fac- } \\ \operatorname{Ir}(\mathrm{ppy})_{3}^{\mathrm{c}} / \mathrm{BBBBDP}^{\mathrm{d}} \end{gathered}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HE (0.5 eq)	RT	-
S54	Benzene/water 2:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-		49\%
S55	Benzene/water 2:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	39\%
S56 ${ }^{\text {h }}$	Benzene/water 2:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	51\%
S57 ${ }^{\text {h }}$	Benzene/water 2:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}{ }^{\text {a }}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	63\%
S58 ${ }^{\text {h }}$	Benzene/water 2:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	56\%
S59 ${ }^{\text {h }}$	Benzene/water 2:1 ${ }^{\text {k }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	60\%
S59 ${ }^{\text {h }}$	Benzene/water 2:1 ${ }^{\text {1 }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	64\%
$560{ }^{\text {h }}$	Benzene/water 2:1 ${ }^{\text {m }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	61\%
S61 ${ }^{\text {h }}$	Benzene/water 2:1 ${ }^{\text {n }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	41\%
S62 ${ }^{\text {h }}$	Benzene/water 2:1 $1^{\text {j, }}$,	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	64\%
S63 ${ }^{\text {h }}$	Benzene/water 2:1,n	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	71\%
S64 ${ }^{\text {h }}$	Benzene/water 2:1 $1^{\text {m, }} \mathrm{n}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	67\%
S65 ${ }^{\text {h }}$	Benzene/water 2:1,0	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	47\%
S66 ${ }^{\text {h }}$	Benzene/water 2:1, ${ }^{1, \mathrm{p}}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	37\%
$567{ }^{\text {h }}$	Benzene/water 2:1, ${ }^{1}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	Ester formed ${ }^{\text {b }}$
S68 ${ }^{\text {h }}$	Benzene/water 2:1, ${ }^{\text {n }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\begin{gathered} {\mathrm{K} 2 \mathrm{CO}_{3}}_{3}^{\text {TBA }} \\ (1 \mathrm{eq}) \end{gathered}$	-	$70^{\circ} \mathrm{C}$	33\%
S69 ${ }^{\text {h }}$	Benzene/water 2:1, ${ }^{\text {n }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\begin{aligned} & \mathrm{K}_{2} \mathrm{CO}_{3} \\ & (2 \mathrm{eq}) \end{aligned}$	-	$70^{\circ} \mathrm{C}$	43\%
$570{ }^{\text {h }}$	Benzene/water 2:1 ${ }^{1, \mathrm{n}}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\begin{aligned} & \mathrm{NaOH} \\ & (2 \mathrm{eq}) \end{aligned}$	-	$70^{\circ} \mathrm{C}$	41\%
S71 ${ }^{\text {h }}$	Anhydrous acetonitrile ${ }^{1, n}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	68\%
S72 ${ }^{\text {h }}$	Benzene ${ }^{1, n}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	38\%
S73 ${ }^{\text {h }}$	Benzene/water 2:1, ${ }^{\text {, }, \mathrm{r}}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	58\%
S74 ${ }^{\text {h }}$	Toluene/water 2:1,n	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	70\%
S75 ${ }^{\text {h }}$	Anisole/water 2:1,n	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	(23\%)
S76 ${ }^{\text {h }}$	Benzene/water 2:1 ${ }^{1, n}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} / \mathrm{dppp}^{5}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	-
S77 ${ }^{\text {h }}$	Benzene/water 2:1, ${ }^{1 / n}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} / \mathrm{dppf}^{5}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	-
S78 ${ }^{\text {h }}$	Benzene/water 2:1 ${ }^{1, n, t}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	71\%
S79	Benzene/water 2:1	-	$\mathrm{K}_{2} \mathrm{CO}_{3}$	-	$70^{\circ} \mathrm{C}$	-
S80	Benzene/water 2:1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}{ }^{\text {u }}$		-		Trace ${ }^{\text {b }}$

Reaction conditions: Chamber ${ }_{\mathrm{rxn}} 0.25 \mathrm{mmol} 1,1.5$ eq 2, $5 \mathrm{~mol} \%$ [Pd], 1 eq $\mathrm{K}_{2} \mathrm{CO}_{3}, 1 \mathrm{~mol} \%$ fac- $\mathrm{Ir}(\mathrm{ppy})_{3}, 2 \mathrm{ml}$ solvent Chamber ${ }_{c o} 2.5$ eq $\mathrm{Mo}(\mathrm{CO})_{6}, 5 \mathrm{eq} \mathrm{DBU}, 2 \mathrm{ml} \mathrm{MeCN}$. Solvents were sonicated for 15 min before addition to H-tube. ${ }^{\text {a }}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{b}}$ Determined by visual inspection of GC. ${ }^{\mathrm{C}} 2 \mathrm{~mol} \%$ fac- $\mathrm{Ir}(\mathrm{ppy})_{3}{ }^{\mathrm{d}} 5$ $\mathrm{mol} \%$ ligand. ${ }^{\mathrm{e}} 10 \mathrm{~mol} \%$ ligand. ${ }^{\mathrm{f}} 10 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \cdot{ }^{\mathrm{g}} 3$ eq water. ${ }^{\mathrm{h}} \mathrm{N}_{2} /$ vacuum sparging for 5 minutes instead of sonication of solvent. ${ }^{i} 7.5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} .{ }^{j} 3 \mathrm{~mL}$ solvent in $\mathrm{C}_{\mathrm{rxn}}$ and $\mathrm{C}_{\mathrm{co}} .{ }^{k} 3.33 \mathrm{~mL}$ solvent in $\mathrm{C}_{\mathrm{rxn}}$ and $\mathrm{C}_{\mathrm{co}} .{ }^{.} 4 \mathrm{~mL}$ solvent in $\mathrm{C}_{\mathrm{rxn}}$ and $\mathrm{C}_{\mathrm{co}} .{ }^{m} 5 \mathrm{~mL}$ solvent in $\mathrm{C}_{\mathrm{rxn}}$ and C_{co}. ${ }^{n}$ Increase in concentration, to 0.3 mmol of cyclohexyl iodide. ${ }^{\circ} 3$ eq of cyclohexyl iodide. ${ }^{p} 1$ eq phenyl boronic acid. ${ }^{q} 5$ eq phenyl boronic acid. ${ }^{r} 1$ eq of naphthalene. ${ }^{5}$ $7 \mathrm{~mol} \%$ ligand. ${ }^{\mathrm{t}}$ Heating both chambers to $50^{\circ} \mathrm{C}$. " Reaction run without light.
Abbrieviations: ppy $=2$-phenylpyridinato $-\mathrm{C}^{2}, \mathrm{HE}=$ Hantzsch ester, $\mathrm{RT}=$ room temperature, BBBDP $=4,4^{\prime}$-di-tert-butyl-2,2'-bipyridine, $\mathrm{TBA}=$ tributylamine.

Synthesis of alkyl iodides

1-[(4-Methylphenyl)sulfonyl]piperidin-4-ol ${ }^{1}$ CAS: 80213-12-3

4-Hydroxypiperidine (2.0 mmol) was dissolved in water (5 mL), to which $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.3 \mathrm{eq})$ and p-toluenesulfonyl chloride (1.6 eq) was added. The reaction mixture was diluted with diethylether (15 mL) and left to stir at room temperature for 24 h . After completion, the reaction mixture was extracted with $3 \times 20 \mathrm{~mL}$ ethyl acetate. The combined organic phases were washed with 30 mL brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purified with silica column chromatography using a gradient (3:1 i-hexane:ethyl acetate $+1 \%$ triethylamine to ethyl acetate $+1 \%$ triethylamine). Isolated as a white solid ($404.0 \mathrm{mg}, 81 \%$). $\mathrm{R}_{\mathrm{f}}=0.59$ (ethyl acetate $+1 \%$ triethylamine). Spectral data were in agreement with literature values. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.66-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.79(\mathrm{~m}, 2 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 143.7, 133.2, 129.8, 127.8, 66.0, 43.3, 33.4, 21.7. MS-ESI $\left[\mathrm{M}+\mathrm{H}^{+}\right]: m / z 256.2$. HPLC purity $>99 \%$.

4-lodo-1-[(4-methylphenyl)sulfonyl]piperidine ${ }^{1}$ CAS: 289890-80-8

1-[(4-methylphenyl)sulfonyl]piperidin-4-ol (1.6 mmol) was dissolved in dichloromethane (10 mL), before addition of PPh_{3} (1.6 eq) and imidazole (1.6 eq). The reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 5 minutes before addition of $I_{2}(2.0 \mathrm{eq})$. The ice-bath was then removed and the mixture stirred at ambient temperature overnight. The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $2 \times 10 \mathrm{~mL}$ diethylether. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purification with silica column chromatography eluting with $3: 1 i$-hexane:ethyl acetate $+1 \%$ trimethylamine afforded the title compound as a beige solid ($413.6 \mathrm{mg}, 72 \%$). $\mathrm{R}_{\mathrm{f}}=0.88$ (3:1 i-hexane:ethyl acetate $+1 \%$ triethylamine). Spectral data were in agreement with literature values. ${ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.34(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.33-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}$, 3H), 2.16 - $2.08(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.9,133.3,129.9,127.7,45.8,36.6,25.7$, 21.7. MS-ESI $\left[\mathrm{M}+\mathrm{H}^{+}\right]: m / z$ 365.9. HPLC purity $>99 \%$.

3-lodobutylbenzene ${ }^{2,3}$ CAS: 59456-20-1

4-Phenyl-2-butanol (6 mmol), $\mathrm{PPh}_{3}(1 \mathrm{eq})$, imidazole (1.5 eq) and $\mathrm{I}_{2}(1.3 \mathrm{eq})$ were dissolved in dichloromethane (15 mL) at $-10^{\circ} \mathrm{C}$ and left to stir for 4 h at room temperature. The reaction mixture was concentrated in vacuo and purified with silica column chromatography eluting with 7:1 i-hexane:ethyl acetate. Isolated as a yellow oil ($1.5 \mathrm{~g}, 96 \%$). $\mathrm{R}_{\mathrm{f}}=0.70$ (29:1 i-hexane:ethyl acetate). Spectral data were in agreement with literature values. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.17-4.06(\mathrm{~m}$, $1 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.93-1.83$ (m, 1H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 140.9,128.6,128.6,126.2,44.5,36.0,29.8,29.1$. El-MS: m / z 260.0.

2-Iodooctane ${ }^{3,4}$ CAS: 557-36-8

2-Octanol (7.7 mmol), $\mathrm{PPh}_{3}(1 \mathrm{eq})$, imidazole (2 eq) and $\mathrm{I}_{2}(1.2 \mathrm{eq})$ were dissolved in dichloromethane (25 mL) at $-10^{\circ} \mathrm{C}$ and left to stir for 3 days at room temperature. The reaction mixture was filtered and concentrated in vacuo and purified with silica column chromatography eluting with 7:1 i-hexane:ethyl acetate. Isolated as a colorless oil ($1.2 \mathrm{~g}, 67 \%$). $\mathrm{R}_{\mathrm{f}}=0.89$ (29:1 i-hexane:ethyl acetate). Spectral data were in agreement with literature values. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.19(\mathrm{dqd}, J=8.5,6.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ $(\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 7 \mathrm{H})$,
$0.93-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס 43.1, 31.8, 31.0, 29.8, 29.1, 28.6, 22.7, 14.2. El-MS: $\mathrm{m} / \mathrm{z} 240.1$.

General procedure for carbonylative Suzuki coupling - investigation of scope

Conditions as in entry S63, table S1. To $\mathrm{C}_{\mathrm{rxn}}$ was added the appropriate alkyl iodide or alkyl bromide (0.3 mmol), boronic acid (1.5 eq), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{eq})$ followed by benzene/water (2:1, 4 mL total volume). To C_{co} was added $\mathrm{Mo}(\mathrm{CO})_{6}(2.5 \mathrm{eq})$ followed by acetonitrile (4 mL). After capping, both chambers were subjected to 5 minutes of $\mathrm{N}_{2} /$ vacuum sparging. When finished, DBU (5 eq) was added to C_{co} and the double chamber system was positioned in a Dry-Syn heating block with C_{co} heated at $70^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{rxn}}$ held at room temperature whilst subjected to visible light for 24 h . Thereafter, 5% citric acid (aq.) was added to the reaction mixture and the mixture was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The organic phase was washed with brine (10 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. Extracted product was purified with silica column chromatography, with $0.5 \%-1 \%$ ethyl acetate in i-hexane or n-pentane as the eluent.

Experimental set-up

The double-chamber system can be seen in figure S1a and the experimental set-up in figure S1b. For a full description of the reaction set-up please see S. Y. Chow et. al. Chem. Eur. J. 2016, 22, 91559161

Figure S1. a) Double-chamber system, C_{co} is the left chamber and $\mathrm{C}_{\mathrm{rxn}}$ is the right chamber. b) Experimental set-up.

Cyclohexylphenylmethanone ${ }^{5}$ (4) CAS: 712-50-5

Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as crystals ($37 \mathrm{mg}, 65 \%$ from cyclohexyl iodide; 20 $\mathrm{mg}, 35$ \% from cyclohexyl bromide; $22 \mathrm{mg}, 39 \%$ from cyclohexyl bromide ($\mathrm{C}_{\mathrm{rxn}}$ and C_{CO} heated to $\left.50^{\circ} \mathrm{C}\right)$). $\mathrm{R}_{\mathrm{f}}=0.52$ (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.98-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{tt}, \mathrm{J}=11.5,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.94-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.24(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.1$, 136.5, 132.9, 128.7, 128.4, 45.8, 29.6, 26.1, 26.0. EI-MS: $m / z 188.1$.

2-Methyl-1,4-diphenylbutan-1-one (5) CAS: 108974-08-9
Synthesized according to the general procedure. Isolated as a colorless oil ($45 \mathrm{mg}, 65 \%$). $\mathrm{R}_{\mathrm{f}}=0.25$ (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}$, $2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 3 \mathrm{H}), 3.57(\mathrm{~h}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.22$ $(\mathrm{m}, 1 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.2,141.9,136.7$, 133.0, 128.7, 128.6, 128.5, 128.4, 126.1, 39.9, 35.3, 33.6, 17.4. EI-MS: $m / z 238.1$. HRMS found: 239.1427 calc: 239.1436.

2-Methyl-1-phenyloctan-1-one ${ }^{6}$ (6) CAS: 132719-12-1

Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a colorless oil ($43 \mathrm{mg}, 64 \%$). $\mathrm{R}_{\mathrm{f}}=$ 0.1 (1\% EtOAc in i-Hexane). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H})$, $7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~h}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.74$ $(\mathrm{m}, 1 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 8 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.80(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 204.8,136.9,132.9,128.7,128.4,40.7,33.9,31.8,29.5,27.5,22.7,17.4,14.2$. ElMS: m/z 218.2.

Cyclopentylphenylmethanone ${ }^{7}$ (7) CAS: 5422-88-8
Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a colorless oil ($34 \mathrm{mg}, 64 \%$). $\mathrm{R}_{\mathrm{f}}=0.75$ (7:1 ihexane:EtOAc). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}$, $1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{p}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.61(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.0,137.1,132.8,128.6,128.6,46.5,30.1,26.5 . \mathrm{El}-\mathrm{MS}: m / z 174.1$.

Phenyl(1-tosylpiperidin-4-yl)methanone (8) CAS: 922504-26-5
Synthesized according to the general procedure. Isolated as a yellow solid ($63 \mathrm{mg}, 60 \%$). $\mathrm{R}_{\mathrm{f}}=0.42$ (3:1 i-hexane:ethyl acetate $+1 \%$ triethylamine). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.69$ $-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32$ $(\mathrm{m}, 2 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.81(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.5,143.8,135.7,133.4,133.2,129.8,128.9,128.3,127.9,45.7,42.4$, 28.0, 21.7. ESI-MS: 344.1 HRMS found: 344.1315 calc: 344.1309 . HPLC purity $>99 \%$.

1-Phenylnonan-1-one ${ }^{8}$ (9) CAS: 6008-36-2

Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a colorless oil ($36 \mathrm{mg}, 55 \%$ from 1-iodooctane,; 20 mg and $27 \mathrm{mg}, 30 \%$ and 40% from 1-bromooctane (24 h and 55 h irradiation)). $\mathrm{R}_{\mathrm{f}}=0.44$ (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-7.83$ (m, 2H), $7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 2 \mathrm{H})$, $1.42-1.20(\mathrm{~m}, 10 \mathrm{H}), 0.91-0.83(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.8,137.2,133.0$, 128.7, 128.2, 38.8, 32.0, 29.6, 29.5, 29.3, 24.5, 22.8, 14.3. EI-MS: $m / z 218.2$.

1-Phenyloctan-1-one ${ }^{9}$ (10) CAS: 1674-37-8

Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a colorless oil ($44 \mathrm{mg}, 71 \%$ from 1-iodoheptane, $25 \mathrm{mg}, 42 \%$ from 1-bromoheptane). $\mathrm{R}_{\mathrm{f}}=0.37$ (29:1 i-Hexane:EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 H), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.23(\mathrm{~m}, 8 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} N \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.8$, 137.2, 133.0, 128.7, 128.2, 38.8, 31.9, 29.5, 29.3, 24.5, 22.8, 14.3. EI-MS: $m / z 204.1$.

3-Methyl-1-phenylbutan-1-one ${ }^{10}$ (11) CAS: 582-62-7
Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a colorless oil ($24 \mathrm{mg}, 50 \%$). $\mathrm{R}_{\mathrm{f}}=0.16$ ($1 \% \mathrm{EtOAc}$ in i-Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{dp}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 200.4,137.5,132.3,128.7,128.2,47.7,25.3,22.9$. EI-MS: $m / z 162.1$.

1,4-Diphenylbutan-1-one ${ }^{8}$ (12) CAS: 5407-91-0

Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a colorless oil ($45 \mathrm{mg}, 67 \%$ from 3-iodo-1-phenylpropane; 28 mg and $33 \mathrm{mg}, 41 \%$ and 48% from 3-bromo-1-phenylpropane (24 h and 55 h irradiation)). $\mathrm{R}_{\mathrm{f}}=0.31$ (29:1 ihexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.91(\mathrm{~m}, 2 \mathrm{H})$, $7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 2.99(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.3,141.8,137.1$, 133.1, 128.7, 128.7, 128.5, 128.1, 126.1, 37.8, 35.3, 25.8. EI-MS: m/z 224.1.

5-Chloro-1-phenylpentan-1-one ${ }^{11}$ (13) CAS: 942-93-8
Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a white solid ($42 \mathrm{mg}, 71 \%$ from 1-chloro-4-iodobutane; $36 \mathrm{mg}, 61 \%$ from 1-chloro-4-bromobutane). $R_{f}=0.73$ (7:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}$, $1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.97(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.8,137.0,133.2,128.8,128.1,44.9,37.7,32.2,21.6$. EI-MS: $\mathrm{m} / \mathrm{z} 196.1,198.1$.

((3r,5r,7r)-Adamantan-1-yl)(phenyl)methanone ${ }^{12}$ (14) CAS: 31919-47-8
Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a white solid (45 mg, 61\% from 1iodoadamantane, $25 \mathrm{mg}, 32 \%$ from 1-bromoadamantane). $\mathrm{R}_{\mathrm{f}}=0.28$ (29:1 i-
hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 3 \mathrm{H}), 2.10-$ $2.04(\mathrm{~m}, 3 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 6 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.4,139.7$, 130.3, 128.1, 127.2, 47.0, 39.2, 36.7, 28.3. EI-MS: $m / z 240.2$.

4-Methyl-1-phenylpentan-1-one ${ }^{9}$ (18) CAS: 2050-07-9
Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a colorless oil (18 mg, 34\%). $\mathrm{R}_{\mathrm{f}}=$ 0.40 (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.94$ (m, $2 H), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.94(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 3 \mathrm{H}), 0.96-0.93(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 201.0,137.2,133.0,128.7,128.2,36.8,33.4,28.0,22.6$. EI-MS: m / z 176.1.

1-PhenyInon-8-en-1-one (19) CAS: 148056-64-8

Synthesized according to the general procedure. Isolated as a colorless oil ($17 \mathrm{mg}, 26 \%$). $\mathrm{R}_{\mathrm{f}}=0.42$ (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}$, $2 \mathrm{H}), 5.86-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.91(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.07$ - $2.01(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.7,139.2$, 137.2, 133.0, 128.7, 128.2, 114.4, 38.7, 33.9, 29.3, 29.1, 28.9, 24.4. EI-MS: $m / z 216.1$ HRMS found: 216.1520 calc: 216.1514 .
[1,1'-Biphenyl]-2-yl(cyclo-hexyl)methanone (20) CAS: 963-92-8

Synthesized according to the general procedure. Isolated as a colorless oil (34 mg , $43 \%) . \mathrm{R}_{\mathrm{f}}=0.41$ (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52$ $7.47(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{tt}, \mathrm{J}=11.4,3.3 \mathrm{~Hz}$, 1H), $1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.00(\mathrm{~m}$, 1H), $0.93-0.80(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.8,140.8,140.7,139.8$, 130.1, 129.9, 128.9, 128.6, 128.0, 127.7, 127.3, 50.3, 29.0, 25.7, 25.6. EI-MS: m/z 264.1 HRMS found: 265.1597 calc: 265.1592.

Cyclohexyl(naphthalen-2-yl)-methanone (21) CAS: 10404-26-9

Synthesized according to the general procedure. Isolated as a white solid ($43 \mathrm{mg}, 59 \%$). $\mathrm{R}_{\mathrm{f}}=0.33$ (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.95(\mathrm{~m}$, $1 \mathrm{H}), 7.92-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{tt}, \mathrm{J}=11.3,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.99-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ (204.0, 135.6, 133.8, 132.7, 129.7, 129.7, 128.6, 128.4, 127.9, 126.8, 124.5, 45.8, 29.7, 26.1, 26.1. EI-MS: $m / z 238.1$ HRMS found: 239.1436 calc: 239.1436.

1-(p-Tolyl)octan-1-one ${ }^{13}$ (22) CAS: 2789-44-8
Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a white solid ($52 \mathrm{mg}, 79 \%$). $\mathrm{R}_{\mathrm{f}}=$ 0.40 (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.89-7.85$ (m , $2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.26(\mathrm{~m}, 8 \mathrm{H})$, $0.93-0.87(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 202.6,145.3,135.8,130.3,129.3,39.4,32.9,30.4$, 30.3, 25.7, 23.7, 21.6, 14.4. EI-MS: $m / z 218.2$.

Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a colorless oil ($39 \mathrm{mg}, 64 \%$). $\mathrm{R}_{\mathrm{f}}=$ 0.42 (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.71$ (m, $2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 4 \mathrm{H})$, $1.78-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.23(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.3,138.5,136.6,133.6$, 128.9, 128.6, 125.6, 45.8, 29.6, 26.1, 26.0, 21.6. EI-MS: $m / z 202.1$.

1-(2-(Trifluoromethyl)-phenyl)octan-1-one (24) CAS: 1778855-78-9

Synthesized according to the general procedure. Isolated as a colorless oil (46 mg , $56 \%) . \%$). $\mathrm{R}_{\mathrm{f}}=0.34$ (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73$ $-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.70(\mathrm{p}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.91-0.84(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.9,140.8(\mathrm{q}, \mathrm{J}=1.9 \mathrm{~Hz}), 131.9,130.0,127.0,127.0(\mathrm{q}, \mathrm{J}=32.8 \mathrm{~Hz}), 126.8(\mathrm{q}, J=5.2$ $\mathrm{Hz}), 123.8(q, J=274.8 \mathrm{~Hz}), 43.4,31.8,29.2,29.1,23.9,22.8,14.2 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-58.1$. EI-MS: m/z 272.1 HRMS found: 273.1460 calc: 273.1461.

1-(4-Fluorophenyl)octan-1-one ${ }^{15}$ (25) CAS: 111829-15-3
Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a white solid ($47 \mathrm{mg}, 71 \%$). $\mathrm{R}_{\mathrm{f}}=$ 0.36 (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.88(\mathrm{~m}$, $2 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.33-1.17(\mathrm{~m}, 8 \mathrm{H}), 0.85-$ $0.78(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.1,165.8(\mathrm{~d}, \mathrm{~J}=254.2 \mathrm{~Hz}), 133.6(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 130.8(\mathrm{~d}$, $J=9.3 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 38.7,31.9,29.5,29.3,24.5,22.8,14.2 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 105.7--105.8 (m). El-MS: m/z 222.1.

4-Chloro-1-(4-fluorophenyl)-butan-1-one ${ }^{16}$ (26) CAS: 3874-54-2
Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a colorless oil ($41 \mathrm{mg}, 68 \%$).
$\mathrm{R}_{\mathrm{f}}=0.27$ (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05-$ $7.98(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.5,165.9(\mathrm{~d}, \mathrm{~J}=254.9 \mathrm{~Hz}), 133.3(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 130.8$ (d, J=9.3 Hz), 115.9 (d, J $=21.8 \mathrm{~Hz}), 44.8,35.3,26.8 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-105.0--105.1 (m). EI-MS: $m / z 200.0$.

1-(4-Chlorophenyl)octan-1-one (27) CAS: 7295-52-5

Synthesized according to the general procedure. Isolated as a white solid (60 $\mathrm{mg}, 83 \%) . \mathrm{R}_{\mathrm{f}}=0.49$ (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.92-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.89(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}$, $2 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 8 \mathrm{H}), 0.91-0.84(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 199.5, 139.4, 135.5, 129.6, 129.0, 38.8, 31.8, 29.4, 29.3, 24.4, 22.8, 14.2. El-MS: $m / z 238.1,240.1$ HRMS found: 239.1195 calc: 239.1197.

1-(2-Methoxyphenyl)octan-1-one (28) CAS: 153644-77-0
Synthesized according to the general procedure. Isolated as a white solid (19 mg , $26 \%) . \mathrm{R}_{\mathrm{f}}=0.29$ (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64$ (dd, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{t}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 8 \mathrm{H}), 0.91-0.84(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 203.6,158.4,133.2,130.3,129.0,120.8,111.6,55.6,43.9,31.9,29.5,29.3,24.6,22.8,14.3$. EI-MS: m / z 234.1 HRMS found: 235.1700 calc: 235.1698.

1-(4-Methoxyphenyl)octan-1-one ${ }^{17}$ (29) CAS: 62170-25-6

Synthesized according to the general procedure. Spectral data were in agreement with literature values. Isolated as a white solid ($57 \mathrm{mg}, 80 \%$). $\mathrm{R}_{\mathrm{f}}=$ 0.30 (29:1 i-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.91$ $(\mathrm{m}, 2 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 8 \mathrm{H}), 0.91-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.4,163.4,130.5$, 130.3, 113.8, 55.6, 38.5, 31.9, 29.5, 29.3, 24.8, 22.8, 14.2. EI-MS: $m / z 234.2$.

Compound 29 was also synthesized using another CO-surrogate. Reactants and reagents were added according to the general procedure apart from the reactants in C_{co}. Instead of $\mathrm{Mo}(\mathrm{CO})_{6}$ followed by DBU, 0.16 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{eq})$ was added to C_{co}, followed by capping of the vial. No solvent was used in $\mathrm{C}_{\text {co }}$. After 5 minutes of N_{2} /vacuum sparging, 0.12 mL of $\mathrm{HCOOH}(10.5 \mathrm{eq})$ was added and the double chamber system was positioned in a Dry-Syn heating block with C_{co} heated at $70^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{rxn}}$ held at room temperature whilst subjected to visible light for 24 h . Work-up and purification according to the general procedure. Spectral data were in agreement with literature values. Isolated as a white solid ($19 \mathrm{mg}, 27 \%$). $\mathrm{R}_{\mathrm{f}}=0.33$ ($29: 1 i$-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97$ - $7.91(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{p}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-$ $1.27(\mathrm{~m}, 8 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.4,163.4,130.5,130.4,113.8,55.6$, 38.5, 31.9, 29.6, 29.3, 24.8, 22.8, 14.2.EI-MS: m / z 234.2.

Cyclohexyl(dibenzo[b,d]thio-phen-4-yl)methanone (30)

Synthesized according to the general procedure. Isolated as an oil (55 mg , $62 \%) . R_{f}=0.40$ (0.5% ethyl acetate in n-pentane). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.86(\mathrm{~m}$, $1 \mathrm{H}), 7.53(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{tt}, J=11.5,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{qd}, \mathrm{J}=12.8,3.2 \mathrm{~Hz}$, $2 H), 1.39(q t, J=12.7,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{tt}, J=12.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.2$, $142.6,140.0,137.7,133.9,129.6,128.3,127.3,126.0,124.6,124.2,122.9,121.5,45.5,29.9,26.1$, 26.1. EI-MS: $m / z 294.1$ HRMS found: 295.1150 calc: 295.1130.

1-(2-(Methylthio)phenyl)octan-1-one (31) CAS: 1778855-66-5 Synthesized according to the general procedure. Isolated as a colorless oil $(40 \mathrm{mg}$,
$53 \%) . \mathrm{R}_{\mathrm{f}}=0.21\left(29: 1 \mathrm{i}\right.$-hexane:ethyl acetate). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{dd}$,
$J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H})$,
$2.94(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.90-$ $0.84(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 202.0,142.3,134.8,132.1,130.2,125.3,123.6,40.2,31.8$, 29.4, 29.3, 24.6, 22.8, 16.2, 14.2. EI-MS: m / z 250.1 HRMS found: 251.1472 calc: 251.1470.

1-(4-Fluorophenyl)-4-(4-methylpiperidin-1-yl)butan-1-one (Melperone) CAS: 3575-80-2

26 (0.20 mmol), 4-methylpiperidine (2.0 eq), KI (0.2 eq) and $\mathrm{NaHCO}_{3}(2.0 \mathrm{eq})$ were dissolved in toluene (5 mL). The reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 22 h . After completion, the reaction mixture was concentrated in vacuo and purified with silica column chromatograpy using a gradient (3:1 i-hexane:ethyl acetate

[^0](3:1 i-hexane:ethyl acetate $+1 \%$ trimethylamine). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.96(\mathrm{~m}, 2 \mathrm{H})$, $7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.84(\mathrm{~m}$, $4 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.6,166.7(\mathrm{~d}, \mathrm{~J}=254.1 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 115.6(\mathrm{~d}, J$ $=21.7 \mathrm{~Hz}$), 58.2, 54.0, 36.4, 34.3, 30.8, 21.9 (2 carbons). MS-ESI $\left[\mathrm{M}+\mathrm{H}^{+}\right]: m / z 264.2$. HPLC purity $>$ 99\%.

Control experiments

To learn more about the reaction, a set of control experiments were conducted (table S2).
Table S2. Control experiments for the visible-light mediated carbonylative Suzuki-Miyaura cross-coupling

 $X=I$ entries 1-3, 5-6 $\mathrm{X}=\mathrm{Br}$ entries 4 and 7		 2	Chamber $r_{\text {rxn }}$: catalyst, additive, $\mathrm{K}_{2} \mathrm{CO}_{3}$, benzene/water 2:1, blue/white LEDs, rt, 24 h Chamber $_{\mathrm{co}}: \mathrm{Mo}(\mathrm{CO})_{6}, \mathrm{DBU}$, $70^{\circ} \mathrm{C}, \mathrm{MeCN}$,		 3
Entry	Catalyst	Additive	Irradiation		Outcome ${ }^{\text {a }}$
1	-	-	LED		No product
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	TEMPO (1 eq)	LED		No product
3	-	TEMPO (1 eq)	LED		No product
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	TEMPO (1 eq)	LED		No product
$5^{\text {b }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	-		Trace
6	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	Ambient light		Trace
$7{ }^{\text {b }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	TEMPO (1 eq)	-		No product
$8{ }^{\text {b }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	-		No product
$9{ }^{\text {c }}$	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		LED	Trace (f coupling product)

Reaction conditions: As in entry S63, table S1. ${ }^{\text {a }}$ Outcome determined by GCMS- and LCMS-analysis. ${ }^{\text {b }}$ Reaction performed in the dark. ${ }^{\text {c }} \mathrm{No} \mathrm{Mo}(\mathrm{CO})_{6}$.

Pressure measurement

Figure S2. Pressure measurement set-up. To the left, a schematic illustration and to the right, the actual set-up.

To $\mathrm{C}_{\mathrm{rxn}}$ was added benzene/water $2: 1(4 \mathrm{~mL})$ and to C_{CO} was added $\mathrm{Mo}(\mathrm{CO})_{6}(0.75 \mathrm{mmol})$ followed by acetonitrile (4 mL). After capping, both chambers were subjected to 5 minute of $\mathrm{N}_{2} /$ vacuum sparging. $C_{r \times n}$ was pierced with a capillary connected to a manometer and DBU (1.5 mmol) was added to C_{co} and the H -tube was positioned in a Dry-Syn heating block with C_{co} heated at $70^{\circ} \mathrm{C}$ (figure S2). The temperature in $\mathrm{C}_{\mathrm{rxn}}$ was measured to $34^{\circ} \mathrm{C}$. The resulting pressure increase due to the CO release was monitored at regular time points (see table S3 and figure S3). Maximum pressure measured was 2.6 bar, reached within 20-25 minutes of the start of the reaction.

Table S3. Pressure measurements.
Pressure

Time (min)	Measurement $\mathbf{1}(\mathbf{b a r})$	Measurement $\mathbf{2}$ (bar)	Average pressure (bar)
0	1,1	1,1	1,1
5	1,7	1,8	1,75
10	2,3	2,3	2,3
15	2,5	2,5	2,5
20	2,5	2,6	2,55
25	2,6	2,6	2,6
30	2,6	2,6	2,6
40	2,6	2,6	2,6
50	2,6	2,6	2,6
60	2,6	2,5	2,55
210	2,5	2,2	2,35

Figure S3. Graphic representation of pressure measurements. Maximum pressure reached within 2025 minutes of the start of the reaction.

References

(1) Gonnard, L.; Guérinot, A.; Cossy, J. Chem. - A Eur. J. 2015, 21, 12797-12803.
(2) Ellwood, A. R.; Porter, M. J. J. Org. Chem. 2009, 74, 7982-7985.
(3) Vurchio, C.; Cordero, F. M.; Faggi, C.; Macchi, B.; Frezza, C.; Grelli, S.; Brandi, A. Tetrahedron 2015, 71, 5806-5813.
(4) Kawaguchi, S. I.; Ogawa, A. Org. Lett. 2010, 12, 1893-1895.
(5) Hsieh, J. C.; Chen, Y. C.; Cheng, A. Y.; Tseng, H. C. Org. Lett. 2012, 14, 1282-1285.
(6) Sumino, S.; Ui, T.; Ryu, I. Org. Lett. 2013, 15, 2011-2014.
(7) Li, L.; Cai, P.; Guo, Q.; Xue, S. J. Org. Chem. 2008, 73, 3516-3522.
(8) Vautravers, N. R.; Regent, D. D.; Breit, B. Chem. Commun. 2011, 47, 6635-6637.
(9) Cho, C. S. J. Mol. Catal. A Chem. 2005, 240, 55-60.
(10) Malosh, C. F.; Ready, J. M. J. Am. Chem. Soc. 2004, 126, 10240-10241.
(11) Komissarov, V. V.; Kritzyn, A. M. Russ. J. Bioorganic Chem. 2010, 36, 477-487.
(12) Lo Fiego, M. J.; Lockhart, M. T.; Chopa, A. B. J. Organomet. Chem. 2009, 694, 36743678.
(13) Fausett, B. W.; Liebeskind, L. S. J. Org. Chem. 2005, 70, 4851-4853.
(14) Gooßen, L. J.; Mamone, P.; Oppel, C. Adv. Synth. Catal. 2011, 353, 57-63.
(15) Döbele, M.; Vanderheiden, S.; Jung, N.; Bräse, S. Angew. Chemie - Int. Ed. 2010, 49, 5986-5988.
(16) Gowda, M. S.; Pande, S. S.; Ramakrishna, R. A.; Prabhu, K. R. Org. Biomol. Chem. 2011, 9, 5365-5368.
(17) Ruan, J.; Saidi, O.; Iggo, J. A.; Xiao, J. J. Am. Chem. Soc. 2008, 130, 10510-10511.

NMR spectra

Parameter	Value
2 Solvent	CDCl3
3 Spectrature	298.0
4 Nucleus	130.62

4-lodo-1-[(4-methylphenyl)sulfonyl]piperidine ${ }^{1}$ CAS: 289890-80-8

Parameter	Value
1 Solvent	CDC13
2 Temperature	298.0
3 Spectrometer Frequency	100.62
4	Nucleus

[^1]| Parameter | Value |
| :--- | :--- |
| 1 Solvent | cdcl3 |
| 2 Temperature | 25.0 |
| 3 Spectrometer Frequency | 399.94 |
| 4 Nucleus | 1H |

Parameter Value
1 Solvent CDCl3
2 Temperature 298.0
3 Spectrometer Frequency 100.62
4 Nucleus
4 Nucleus
13C

Cyclohexylphenylmethanone ${ }^{5}$ (4) CAS: 712-50-5 (from cyclohexyl iodide)

Parameter Value

1 Solvent
2 Temperature
298.0

3 Spectrometer Frequency 400.13
4 Nucleus

Parameter	Value
1 Solvent	CDCI3
2 Temperature	298.0
3 Spectrometer Frequency	100.62
4 Nucleus	$13 C$

Cyclohexylphenylmethanone ${ }^{5}$ (4) CAS: 712-50-5 (from cyclohexl bromide)

CyclohexyIphenyImethanone ${ }^{5}$ (4) CAS: 712-50-5 (from cyclohexl bromide, heating C_{rx} and C_{CO} to $50^{\circ} \mathrm{C}$)

Parameter	Value
1 Solvent	cdcl3
2 Temperature	25.0
3 Spectrometer Frequency 399.94	
4 Nucleus	1 H

Parameter Value
1 Solvent
2 Temperature cdcl3
3 Spectrometer Frequency 100.57
4 Nucleus 13C

2-Methyl-1,4-diphenylbutan-1-one (5) CAS: 108974-08-9

Parameter	Value
1 Solvent	CDCl3
2 Temperature	298.0
3 Spectrometer Frequency	400.13
4 Nucleus	1H

oñ

人
でう人
1 Solvent
3 Spectrometer Frequer 298.0
4 Nucleus
13 C

2－Methyl－1－phenyloctan－1－one ${ }^{6}$（6）CAS：132719－12－1

Cyclopentylphenylmethanone ${ }^{7}$ (7) CAS: 5422-88-8

Phenyl(1-tosylpiperidin-4-yl)methanone (8) CAS: 922504-26-5

$$
\int 11
$$

Parameter	Value
1 Solvent	CDCl3
2 Temperature	298.0
3 Spectrometer	Frequency
4	100.62
4 Nucleus	$13 C$

1-PhenyInonan-1-one ${ }^{8}$ (9) CAS: 6008-36-2 (from 1-iodooctane)

1-PhenyInonan-1-one ${ }^{8}$ (9) CAS: 6008-36-2 (from 1-bromooctane, 24 h irradiation)

\quad Parameter	Value
1 Solvent	$C D C 13$

Temperature CDCI
298.0

3 Spectrometer Frequency 100
4 Nucleus
13C

1-PhenyInonan-1-one ${ }^{8}$ (9) CAS: 6008-36-2 (from 1-bromooctane, 55 h irradiation)

3 Spectrometer Frequency 100.62
4 Nucleus
$13 C$

1-Phenyloctan-1-one ${ }^{9}$ (10) CAS: 1674-37-8 (from 1-iodoheptane)

Parameter	Value
1 Colvent	cdcl3
2 Temperature	25.0
3 Spectrometer Frequency 399.94	
4 Nucleus	1 H

Parameter	Value
1 Solvent	cdcl3
2 Temperature	25.0
3 Spectrometer Frequency 100.57	
4 Nucleus	13 C

1-Phenyloctan-1-one ${ }^{9}$ (10) CAS: 1674-37-8 (from 1-bromoheptane)

3-Methyl-1-phenylbutan-1-one ${ }^{10}$ (11) CAS: 582-62-7

1,4-Diphenylbutan-1-one ${ }^{8}$ (12) CAS: 5407-91-0 (from 3-iodo-1-phenylpropane)

1,4-Diphenylbutan-1-one ${ }^{8}$ (12) CAS: 5407-91-0 (from 3-bromo-1-phenylpropane, 24 h irradiation)

1,4-Diphenylbutan-1-one ${ }^{8}$ (12) CAS: 5407-91-0 (from 3-bromo-1-phenylpropane, 55 h irradiation)

5-Chloro-1-phenylpentan-1-one ${ }^{11}$ (13) CAS: 942-93-8 (from 1-chloro-4-iodobutane)

5-Chloro-1-phenylpentan-1-one ${ }^{11}$ (13) CAS: 942-93-8 (from 4-bromo-1-chlorobutane)

4-Methyl-1-phenylpentan-1-one ${ }^{9}$ (18) CAS: 2050-07-9

1-PhenyInon-8-en-1-one (19) CAS: 148056-64-8

[1,1'-Biphenyl]-2-yl(cyclo-hexyl)methanone (20) CAS: 963-92-8

Cyclohexyl(naphthalen-2-yl)-methanone (21) CAS: 10404-26-9

1-(p-Tolyl)octan-1-one ${ }^{13}$ (22) CAS: 2789-44-8

Cyclohexyl(m-tolyl)methanone ${ }^{14}$ (23) CAS: 3277-78-9

(1)

Parameter	Value
1 Solvent	CDCI3
2 Temperature	298.0
3 Spectrometer	Frequency
	100.62
4 Nucleus	$13 C$

1-(2-(Trifluoromethyl)-phenyl)octan-1-one (24) CAS: 1778855-78-9

$$
\begin{aligned}
& 4 \text { Nucleus 19F }
\end{aligned}
$$

1-(2-(Trifluoromethyl)-phenyl)octan-1-one (24) CAS: 1778855-78-9
1

Parameter	Value
1 Solvent	CDCl3
2 Temperature	298.0
3 Spectrometer Frequency 100.62	
4 Nucleus	13 C

1-(4-Fluorophenyl)octan-1-one ${ }^{15}$ (25) CAS: 111829-15-3

1-(4-Fluorophenyl)octan-1-one ${ }^{15}$ (25) CAS: 111829-15-3

上isini

									$\stackrel{\text { ¢ }}{\substack{\text { - } \\- \\ \hline}}$		¢															
12.5	12.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	$\begin{aligned} & 6.0 \quad 5.5 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1.
		$\stackrel{\sim}{6}$				¢														$\stackrel{m}{\infty}$	$\stackrel{\infty}{\infty}$					
		\|				11													\|	\|	$\stackrel{\sim}{\mid}$					

1 Solvent
2 Temperature
3 Spectrometer Frequency 100.62
4 Nucleus
13C

4-Chloro-1-(4-fluorophenyl)-butan-1-one ${ }^{16}$ (26) CAS: 3874-54-2

4-Chloro-1-(4-fluorophenyl)-butan-1-one ${ }^{16}$ (26) CAS: 3874-54-2

1-(4-Chlorophenyl)octan-1-one (27) CAS: 7295-52-5

1-(2-Methoxyphenyl)octan-1-one (28) CAS: 153644-77-0

$$
\begin{array}{ll}
\text { Parameter } & \text { Value } \\
1 \text { Solvent } & \text { CDC13 } \\
2 \text { Temperature } & 298.0 \\
3 \text { Spectrometer Frequency } 400.13 \\
4 \text { Nucleus } & 1 \mathrm{H}
\end{array}
$$

1-(4-Methoxyphenyl)octan-1-one ${ }^{17}$ (29) CAS: 62170-25-6

1-(4-Methoxyphenyl)octan-1-one ${ }^{17}$ (29) CAS: 62170-25-6 (CO-surrogate synthesis)

1 Solvent
2 Temperature
3 Spectrometer Frequency 400.13

$$
4 \text { Nucleus }
$$

1H

\[

\]

1-(2-(Methylthio)phenyl)octan-1-one (31) CAS: 1778855-66-5

Parameter	Value
1 Solvent	CDCl3
2 Temperature	298.0
3 Spectrometer Frequency	400.13
4 Nucleus	1H

Nucleus ,

1-(4-Fluorophenyl)-4-(4-methylpiperidin-1-yl)butan-1-one (Melperone) CAS: 3575-80-2

[^0]: $+1 \%$ triethylamine to ethyl acetate $+1 \%$ triethylamine). Isolated as a red solid ($29 \mathrm{mg}, 55 \%$). $\mathrm{R}_{\mathrm{f}}=0.16$

[^1]: 3-lodobutylbenzene ${ }^{2,3}$ CAS: 59456-20-1

