Supporting Information

Rhodium-Catalyzed C2 and C4 C-H Activation/Annulation of indoles with internal alkynes: A Facile Access to Substituted and Fused Carbazoles

Tao Zhou,† Bin Li,† and Baiquan Wang*,†,‡,§

[†]State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, and [‡]Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China

§State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,
Chinese Academy of Sciences, Shanghai 200032, China

bqwang@nankai.edu.cn

Contents

Table of Contents	S1
Experimental Section: General Considerations	S2
Table S1	S3
General Procedure for the Rh(III)-Catalyzed Cascade Synthesis (A–E)	S4-S6
Preparation and Characterization of Products 3, 4, 6, 8	S6-S21
Mechanism Research	S22-S23
X-ray Crystallography	S24
Fluorescence Spectra	S25
NMR Spectra	S26-S67
References	S68

Experimental Section:

General Considerations. All reactions were carried out under argon atmosphere using standard Schlenk technique. ¹H NMR (400 MHz), ¹⁹F (376 MHz), and ¹³C NMR (100MHz) were recorded on Bruker AV400 NMR spectrometer with CDCl₃ as solvent. Chemical shifts of ¹H, ¹⁹F, and ¹³C NMR spectra are reported in parts per million (ppm). The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.00$ ppm). All coupling constants (J values) were reported in Hertz (Hz). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), and multiplet (m). Column chromatography was performed on silica gel 200–300 mesh. Analytical thin-layer chromatography (TLC) was performed on pre-coated. glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm). IR spectra were recorded as KBr disks on a Nicolet 380 FT-IR spectrometer. High-resolution mass spectrometry (HRMS) were done on Varian 7.0 T FTICR-mass spectrometer. [Cp*RhCl₂]₂ was prepared from RhCl₃.xH₂O following a literature procedure. [1] The substrates 1a-11 was prepared according to the literature we reported before. [2] Unless otherwise noted below, all other compounds have been reported in the literature or are commercially available from Alfa Aesar China (Tianjin) Chemical Co., Ltd. without any further purification.

Table1 S1 Optimization studies^{a, b}

entry	Ratio	Solvent	Additive	T (°C)	Yield of 3aa	Yield of 4aa
	(1a:2a)				[%]	[%]
1	1.1:1	DMF		100	55	7
2	1.5:1	DMF		100	75	Trace
3	1.5:1	CF ₃ CH ₂ OH		100	59	trace
4	1.5:1	NMP		100	33	trace
5	1.5:1	DMSO		100	20	trace
6	1.5:1	MeCN		100	24	trace
7	1.5:1	DMF	АсОН	100	74	trace
8	1.5:1	DMF	MesCO ₂ H	100	71	trace
9	1.5:1	DMF	NaOAc	100	61	trace
10	1.5:1	DMF	KOAc	100	57	trace
11 ^c	1.5:1	DMF		100	trace	trace
12^d	1.5:1	DMF		100	n.r.	n.r.
13^e	1.5:1	DMF		100	n.r.	n.r.
14 ^f	0.5:1	DMF		100	trace	53
15 ^f	0.6:1	DMF		100	trace	65
16 ^f	0.7:1	DMF		100	19	65
17 ^f	0.65:1	DMF		100	6	70
$18^{f,g}$	0.6:1	DMF	$AgSbF_6$	100	16	52
19 ^f	0.65:1	DMF		120	trace	63

^a Reaction conditions: **1a** (0.6–1.5 equiv.), **2a** (1.0 equiv.), [{Cp*RhCl₂}₂] (5 mol %), Cu(OAc)₂·H₂O (2.5 equiv.), additive (50 mol %), solvent (0.5 mL), 12 h, under Ar. ^b Yields of isolated products. ^c under air. [d] without [Cp*RhCl₂]₂. ^e without Cu(OAc)₂·H₂O. [f] 24 h, Cu(OAc)₂·H₂O (2.2 equiv.). ^g AgSbF₆ (20 mol %). n.r. = no reaction. Cp* = C₅Me₅, DMF = N,N-dimethylformamide.

General Procedure for the Rh(III)-Catalyzed Cascade Synthesis (A)

A mixture of substituted 3-(1H-indol-3-yl)-3-oxopropanenitrile (1) (0.3 mmol, 1.5 equiv), alkyne (2) (0.2 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (6.2 mg, 0.01 mmol, 5.0 mol %), and Cu(OAc)₂·H₂O (100 mg, 0.5 mmol, 2.5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DMF (0.5 mL) was added and the mixture was stirred at 100 °C for 12 h under Ar atmosphere. Afterwards, it was diluted with CH₂Cl₂ and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel with EtOAc/petroleum ether.

General Procedure for the Rh(III)-Catalyzed Cascade Synthesis (B)

A mixture of substituted 3-(1H-indol-3-yl)-3-oxopropanenitrile (1) (0.195 mmol, 0.65 equiv), alkyne (2) (0.3 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (9.3 mg, 0.01 mmol, 5.0 mol %), and Cu(OAc)₂·H₂O (132 mg, 0.66 mmol, 2.2 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DMF (0.5 mL) was added and the mixture was stirred at 100 °C for 24 h under Ar atmosphere. Afterwards, it was diluted with CH₂Cl₂ and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel with DCE/petroleum ether.

General Procedure for the Rh(III)-Catalyzed Cascade Synthesis (C)

A mixture of substituted 4-hydroxy-1,2-diphenyl-9*H*-carbazole-3-carbonitrile (**3**) (0.12 mmol, 1.2 equiv), alkyne (**2**) (0.1 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol, 5.0 mol %), and Cu(OAc)₂·H₂O (50 mg, 0.25 mmol, 2.5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DMF (0.5 mL) was added and the mixture was stirred at 100 °C for 12 h under Ar atmosphere. Afterwards, it was diluted with CH₂Cl₂ and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel with EtOAc/petroleum ether.

General Procedure for the Rh(III)-Catalyzed Cascade Synthesis (D)

A mixture of substituted 4-hydroxy-1,2-diphenyl-9*H*-carbazole-3-carbonitrile (3) (0.1 mmol, 1.0 equiv), ethyl acrylate (5) (0.15 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol, 5.0 mol %), and Cu(OAc)₂·H₂O (50 mg, 0.25 mmol, 2.5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DMF (0.5 mL) was added and the mixture was stirred at 100 °C for 12 h under Ar atmosphere. Afterwards, it was diluted with CH₂Cl₂ and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel with EtOAc/petroleum ether.

General Procedure for the Rh(III)-Catalyzed Cascade Synthesis (E)

A mixture of substituted 4-hydroxy-1,2-diphenyl-9*H*-carbazole-3-carbonitrile (**3**) (0.1 mmol, 1.0 equiv), diethyl 2-diazomalonate (**7**) (0.15 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol, 5.0 mol %), and AgSbF₆ (6.8 mg, 0.02 mmol, 20 mol %) were weighted in a Schlenk tube equipped with a stir bar. Dry DCE (0.5 mL) was added and the mixture was stirred at 100 °C for 12 h under Ar atmosphere. Afterwards, it was diluted with CH₂Cl₂ and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under reduced pressure. The purification was performed by flash column chromatography on silica gel with EtOAc/petroleum ether.

Characterization of Products 3, 4, 6, 8

4-Hydroxy-1,2-diphenyl-9H-carbazole-3-carbonitrile (3aa)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 75% yield (54.3 mg, 0.150mmol) following the general procedure A. Mp:

244–246 °C. ¹H NMR (DMSO, 400 MHz): δ 11.09 (s, 1H), 11.05 (d, J = 1.7 Hz, 1H), 8.32 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 8.1 Hz, 1H), 7.42 – 7.37 (m, 1H), 7.33 – 7.11 (m, 11H).¹³C NMR (DMSO, 100 MHz): δ 155.78, 141.99, 140.57, 139.81, 138.18, 135.69, 130.63, 130.27, 128.23, 127.47, 127.17, 126.96, 125.48, 122.18, 121.29, 119.91, 118.25, 117.73, 111.59, 111.32, 91.84. HRMS (ESI): Calcd for C25H17N2O [M+H]⁺ 361.1335, found: 361.1334.

4-Hydroxy-1,2-di-p-tolyl-9*H*-carbazole-3-carbonitrile (3ab)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 68% yield (53.2mg, 0.136 mmol) following the general procedure A. Mp: 260–262 °C. ¹H NMR (DMSO, 400 MHz): δ

11.00 (s, 1H), 10.96 (s, 1H), 8.29 (d, J = 7.9 Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.40 – 7.36 (m, 1H), 7.26 – 7.21 (m, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.10 – 7.01 (m, 6H), 2.29 (s, 3H), 2.27 (s, 3H). ¹³C NMR (DMSO, 100 MHz): δ 155.84, 142.40, 140.67, 139.98, 136.42, 136.13, 135.55, 133.01, 130.66, 130.34, 129.19, 128.37, 125.61, 122.34, 121.50, 120.06, 118.41, 118.03, 111.80, 111.37, 92.21, 20.92. HRMS (ESI): Calcd for C₂₇H₂₁N₂O [M+H]⁺ 389.1648, found: 389.1645.

4-Hydroxy-1,2-bis(4-methoxyphenyl)-9*H*-carbazole-3-carbonitrile (3ac)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/1) as a yellow solid in 40% yield (33.6 mg, 0.080 mmol) following the general

procedure A. Mp: 263–265 °C. ¹H NMR (DMSO, 400 MHz): δ 10.99 (s, 1H), 10.90 (s, 1H), 8.29 (d, J = 7.9 Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.39 (d, J = 7.4 Hz, 1H), 7.24 (d, J = 7.4 Hz, 1H), 7.09 (dd, J = 8.4, 3.9 Hz, 4H), 6.88 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 3.75 (s, 3H), 3.73 (s, 3H). ¹³C NMR (DMSO, 100 MHz): 13C NMR (101 MHz,) δ 158.54, 158.39, 155.96, 142.82, 140.74, 140.17, 132.13, 131.87, 130.86, 128.29, 125.78, 122.54, 121.76, 120.22, 118.52, 114.19, 113.36, 111.96, 111.49, 92.53, 55.32, 55.28. HRMS (ESI): Calcd for $C_{27}H_{21}N_2O_3$ [M+H]⁺ 421.1547, found: 421.1545.

1,2-Bis(4-fluorophenyl)-4-hydroxy-9*H*-carbazole-3-carbonitrile (3ad)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 67% yield (52.9 mg, 0.134mmol) following the general

procedure A. Mp: 238–241 °C. ¹H NMR (DMSO, 400 MHz): δ 11.15 (s, 1H), 11.11 (s, 1H), 8.32 (d, J = 7.8 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.41 (s, 1H), 7.27 – 7.06 (m, 9H). ¹³C NMR (DMSO, 100 MHz): δ 162.47, 162.42, 160.04, 159.99, 155.81, 142.09, 139.77, 139.64, 134.36, 132.72, 132.63, 132.32, 132.23, 131.86, 125.58, 122.22, 121.25, 119.98, 117.60,

117.45, 115.28, 115.06, 114.58, 114.37, 111.49, 111.38, 91.78. ¹⁹**F NMR (DMSO, 376 MHz):** δ -114.74, -115.19. **HRMS (ESI):** Calcd for C₂₅H₁₅F₂N₂O [M+H]⁺ 397.1147, found: 397.1145.

1,2-Bis(4-chlorophenyl)-4-hydroxy-9H-carbazole-3-carbonitrile (3ae)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 62% yield (53.0 mg, 0.124 mmol) following the general

procedure A. Mp: 250–252 °C. ¹H NMR (DMSO, 400 MHz): δ 11.19 (s, 2H), 8.31 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.45 – 7.33 (m, 5H), 7.29 – 7.18 (m, 5H). ¹³C NMR (DMSO, 100 MHz): δ 156.00, 141.93, 139.79, 139.22, 136.86, 134.38, 132.54, 132.26, 132.10, 132.00, 128.44, 127.72, 125.69, 122.26, 121.20, 120.08, 117.55, 117.07, 111.49, 91.58. HRMS (ESI): Calcd for C₂₅H₁₅Cl₂N₂O [M+H]⁺ 429.0556, found: 429.0544.

1,2-Bis(4-bromophenyl)-4-hydroxy-9*H*-carbazole-3-carbonitrile (3af)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 49% yield (50.5 mg 0.148 mmol) following the general

procedure C. Mp: 251–254 °C. ¹H NMR (DMSO, 400 MHz): ¹H NMR (400 MHz,) δ 11.19 (s, 2H), 8.31 (d, J = 7.7 Hz, 1H), 7.66 – 6.95 (m, 12H). ¹³C NMR (DMSO, 100 MHz): δ ¹H NMR (101 MHz,) δ 156.23, 142.08, 139.99, 139.36, 137.43, 134.96, 133.07, 132.61, 131.57, 130.85, 125.90, 122.45, 121.39, 121.19, 120.93, 120.29, 117.74, 117.20, 111.72, 91.74. HRMS (ESI): Calcd for C₂₅H₁₅Br₂N₂O [M+H]⁺ 516.9546, found: 516.9540.

4-Hydroxy-1,2-bis(4-(trifluoromethyl)phenyl)-9*H*-carbazole-3-carbonitrile (3ag)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 52% yield (51.8 mg, 0.104 mmol) following the general

procedure B. Mp: 228–230 °C. ¹H NMR (DMSO, 400 MHz): δ 11.56 – 11.07 (m, 2H), 8.34 (d, J = 7.3 Hz, 1H), 7.72 – 7.61 (m, 4H), 7.55 – 7.37 (m, 6H), 7.32 – 7.23 (m, 1H). ¹³C NMR (DMSO, 100 MHz): δ 156.30, 142.09, 141.71, 139.85, 139.73, 139.06, 131.59, 131.20, 128.10, 127.89, 127.79, 127.58, 125.85, 125.51, 125.40, 125.21, 124.52, 122.80, 122.69, 122.33, 121.14, 120.22, 117.35, 116.87, 111.80, 111.56, 91.46. ¹⁹F NMR (DMSO, 376 MHz): δ -60.94, -60.98. HRMS (ESI): Calcd for C₂₇H₁₅F₆N₂O [M+H]⁺ 497.1083, found: 497.1076.

HO CN S N S

4-Hydroxy-1,2-di(thiophen-2-yl)-9*H*-carbazole-3-carbonitrile (3ah)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 46% yield (34.3mg, 0.092 mmol) following the general procedure A. Mp: 227–229 °C. ¹H NMR

(DMSO, 400 MHz): δ 11.34 (s, 2H), 8.31 (d, J = 7.8 Hz, 1H), 7.63 – 7.55 (m, 3H), 7.46 – 7.40 (m, 1H), 7.27 (t, J = 7.5 Hz, 1H), 7.17 – 7.09 (m, 3H), 7.07 – 7.02 (m, 1H). ¹³C NMR (DMSO, 100 MHz): δ 156.37, 142.31, 139.79, 138.00, 135.58, 133.88, 129.57, 129.20, 127.95, 127.64, 127.14, 126.61, 125.91, 122.32, 121.17, 120.24, 117.20, 111.95, 111.80, 92.90. HRMS (ESI): Calcd for C₂₁H₁₃N₂OS₂ [M+H]⁺ 373.0464, found: 373.0469.

11-Methoxy-7,7-dimethyl-4,9-dioxo-1,2,4,5,6,7,8,9-octahydrobenzo[4,5]azepino[3,2,1-hi]indole-5-carbonitrile (3ai)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 17% yield (9.0)

mg, 0.034 mmol) following the general procedure A. Mp: 186–188 °C. ¹H NMR (DMSO, 400 MHz): ¹H NMR (400 MHz,) δ 11.54 (s, 1H), 10.54 (s, 1H), 8.20 (d, J = 7.8 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.38 (s, 1H), 7.20 (d, J = 7.6 Hz, 1H), 2.94 – 2.82 (m, 4H), 1.26 – 1.19 (m, 6H). ¹³C NMR (DMSO, 100 MHz): ¹³C NMR (101 MHz,) δ 154.69, 142.49, 140.52, 139.13, 124.81, 121.75, 121.38, 119.29, 117.75, 117.26, 110.69, 110.03, 90.73, 23.89, 19.75, 15.41, 14.62. HRMS (ESI): Calcd for C₁₇H₁₇N₂O [M+H]⁺ 265.1335, found: 265.1334.

4-Hydroxy-1-methyl-2-phenyl-9H-carbazole-3-carbonitrile (3al)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 16% yield (9.3 mg, 0.032 mmol) following the general procedure A. Mp:

206-208 °C. ¹H NMR (DMSO, 400 MHz): δ 11.70 (s, 1H), 10.72 (s, 1H), 8.27 (d, J = 7.8 Hz, 1H), 7.58 – 7.42 (m, 5H), 7.36 (d, J = 6.9 Hz, 2H), 7.24 (t, J = 7.5 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (DMSO, 100 MHz): δ 154.39, 142.70, 140.27, 139.30, 138.21, 129.36, 127.89, 127.44, 125.16, 122.05, 121.33, 119.56, 117.66, 111.42, 110.86, 110.67, 91.25, 13.91. HRMS (ESI): Calcd for C₂₀H₁₄N₂NaO [M+Na]⁺ 221.0998 found: 221.0999.

4-Hydroxy-6-methyl-1,2-diphenyl-9*H*-carbazole-3-carbonitrile (3ba)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in

71% yield (53.3 mg, 0.142 mmol) following the general procedure A. Mp: 237–239 °C. ¹H NMR (DMSO, 400 MHz): δ 10.95 (s, 2H), 8.11 (s, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.32 – 7.21 (m, 7H), 7.20 – 7.14 (m, 4H), 2.48 (s, 3H). ¹³C NMR (DMSO, 100 MHz): δ 155.79, 142.16, 140.34, 138.22, 138.03, 135.74, 130.63, 130.29, 128.60, 128.22, 127.46, 127.14, 126.93, 126.83, 121.98, 121.49, 118.23, 117.84, 111.30, 111.10, 91.50, 21.19. HRMS (ESI): Calcd for C₂₆H₁₉N₂O [M+H]⁺ 375.1492, found: 375.1487.

4-Hydroxy-6-methoxy-1,2-diphenyl-9*H*-carbazole-3-carbonitrile (3ca)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid

in 60% yield (47.1 mg, 0.120 mmol) following the general procedure A. Mp: 241–243 °C. ¹H NMR (DMSO, 400 MHz): δ 11.00 (s, 1H), 10.92 (s, 1H), 7.85 (d, J = 2.4 Hz, 1H), 7.43 (d, J = 8.8 Hz, 1H), 7.36 – 7.14 (m, 10H), 7.06 (dd, J = 8.8, 2.5 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (DMSO, 100 MHz): 1H NMR (400 MHz,) δ 11.00 (s, 1H), 10.92 (s, 1H), 7.85 (d, J = 2.4 Hz,

1H), 7.43 (d, J = 8.8 Hz, 1H), 7.36 – 7.14 (m, 10H), 7.06 (dd, J = 8.8, 2.5 Hz, 1H), 3.87 (s, 3H). **HRMS (ESI):** Calcd for $C_{26}H_{19}N_2$ O_2 [M+H]⁺ 391.1441, found: 391.1436.

6-Chloro-4-hydroxy-1,2-diphenyl-9*H*-carbazole-3-carbonitrile (3da)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid

in 28% yield 22.4mg, 0.056 mmol) following the general procedure A. Mp: 263–266 °C. ¹H NMR (DMSO, 400 MHz): δ 11.26 (s, 1H), 11.24 (s, 1H), 8.28 (s, 1H), 7.52 (d, J = 8.7 Hz, 1H), 7.46 – 7.41 (m, 1H), 7.35 – 7.14 (m, 10H). ¹³C NMR (DMSO, 100 MHz): δ 156.06, 142.58, 141.40, 138.35, 138.01, 135.43, 130.61, 130.21, 128.30, 127.53, 127.31, 127.11, 125.42, 124.12, 122.50, 121.26, 118.40, 117.54, 113.15, 110.59, 92.19. HRMS (ESI): Calcd for C₂₅H₁₆ClN₂O [M+H]⁺ 395.0946, found: 395.0943.

4-Hydroxy-7-methyl-1,2-diphenyl-9*H*-carbazole-3-carbonitrile (3ea)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 52% yield (38.9 mg, 0.104 mmol) following the general

procedure A. Mp:232–234 °C. ¹H NMR (DMSO, 400 MHz): δ 10.97 (s, 1H), 10.93 (s, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.31 – 7.21 (m, 7H), 7.19 – 7.14 (m, 4H), 7.08 (d, J = 8.0 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (DMSO, 100 MHz): δ 155.50, 142.15, 140.48, 140.36, 138.43, 135.95, 135.22, 130.84, 130.49, 128.42, 127.65, 127.32, 127.14, 122.08, 121.66, 119.23, 118.44, 117.97, 111.71, 111.60, 92.01, 21.88. HRMS (ESI): Calcd for C₂₆H₁₉N₂O [M+H]⁺ 375.1492, found: 375.1491.

4-Hydroxy-7-methoxy-1,2-diphenyl-9*H*-carbazole-3-carbonitrile (3fa)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid

in 48% yield (37.6 mg, 0. 096 mmol) following the general procedure B. Mp: 257–259 °C. ¹H

NMR (DMSO, 400 MHz): δ 10.96 (s, 1H), 10.85 (s, 1H), 8.18 (d, J = 8.6 Hz, 1H), 7.35 – 7.14 (m, 10H), 7.03 (d, J = 1.9 Hz, 1H), 6.88 (dd, J = 8.6, 2.1 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (DMSO, 100 MHz): δ 158.16, 154.68, 141.97, 141.28, 139.43, 138.20, 135.73, 130.59, 130.32, 128.20, 127.43, 127.09, 126.89, 122.88, 118.13, 114.97, 111.49, 108.89, 95.17, 92.05, 55.06. HRMS (ESI): Calcd for C₂₆H₁₉N₂ O₂ [M+H]⁺ 391.1441, found: 391.1443.

7-Fluoro-4-hydroxy-1,2-diphenyl-9H-carbazole-3-carbonitrile (3ga)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in

45% yield (34.1mg, 0.090 mmol) following the general procedure B. Mp: 270–272 °C. ¹H NMR (DMSO, 400 MHz): δ 11.16 (s, 1H), 11.15 – 10.97 (m, 1H), 8.36 – 8.22 (m, 1H), 7.32 – 7.21 (m, 7H), 7.17 (d, J = 5.5 Hz, 4H), 7.13 – 7.07 (m, 1H). ¹³C NMR (DMSO, 100 MHz): δ 161.90, 159.52, 155.33, 142.54, 140.61, 140.53, 140.48, 138.00, 135.48, 130.55, 130.22, 128.24, 127.46, 127.20, 127.02, 123.50, 123.39, 118.28, 118.02, 117.50, 111.00, 108.06, 107.82, 98.10, 97.83, 92.39. ¹⁹F NMR (DMSO, 376 MHz): δ -115.27. HRMS (ESI): Calcd for C₂₅H₁₆FN₂O [M+H]⁺ 379.1241, found: 379.1238.

7-Chloro-4-hydroxy-1,2-diphenyl-9*H*-carbazole-3-carbonitrile (3ha)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid

in 50% yield (39.5mg, 0.100 mmol) following the general procedure B. Mp: 281–283 °C. ¹H NMR (DMSO, 400 MHz): δ 11.24 (s, 1H), 11.19 (s, 1H), 8.28 (d, J = 8.4 Hz, 1H), 7.51 (s, 1H), 7.34 – 7.14 (m, 11H). ¹³C NMR (DMSO, 100 MHz): δ 155.71, 142.34, 141.18, 140.49, 137.97, 135.42, 130.58, 130.20, 129.88, 128.30, 127.50, 127.28, 127.11, 123.45, 120.19, 118.39, 117.45, 111.20, 110.89, 92.43. HRMS (ESI): Calcd for C₂₅H₁₆ClN₂O [M+H]⁺ 395.0946, found: 395.0942.

Methyl 6-cyano-5-hydroxy-7,8-diphenyl-9*H*-carbazole-2-carboxylate (3ia)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to

1/2) as a yellow solid in 5% yield (8.3mg, 0.020 mmol) following the general procedure B. Mp: >300 °C. ¹H NMR (DMSO, 400 MHz): 1H NMR (400 MHz,) δ 11.41 (s, 1H), 11.36 (s, 1H), 8.40 (d, J = 8.3 Hz, 1H), 8.17 (s, 1H), 7.88 (dd, J = 8.3, 0.8 Hz, 1H), 7.35 – 7.29 (m, 3H), 7.28 – 7.25 (m, 3H), 7.22 – 7.17 (m, 4H), 3.89 (s, 3H). ¹³C NMR (DMSO, 100 MHz): 13C NMR (101 MHz,) δ 166.65, 156.54, 143.28, 141.95, 139.25, 137.95, 135.36, 130.61, 130.17, 128.32, 127.53, 127.35, 127.14, 126.23, 125.12, 122.05, 120.66, 118.42, 112.97, 110.86, 92.20, 52.07. HRMS (ESI): Calcd for C₂₇H₁₉N₂O₃ [M+H]⁺ 419.1390, found: 419.1398.

4-Hydroxy-8-methyl-1,2-diphenyl-9*H*-carbazole-3-carbonitrile (3ja)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 66% yield

(49.3 mg, 0.132 mmol) following the general procedure A. Mp: $279-281^{\circ}$ C. ¹H NMR (DMSO, 400 MHz): δ 10.99 (s, 1H), 10.65 (s, 1H), 8.17 (d, J = 7.1 Hz, 1H), 7.31 – 7.09 (m, 12H), 2.50 (s, 3H). ¹³C NMR (DMSO, 100 MHz): δ 155.39, 141.91, 140.54, 138.68, 138.15, 135.40, 130.67, 129.99, 127.78, 127.16, 126.82, 126.68, 126.34, 121.16, 120.77, 120.01, 119.54, 118.55, 117.44, 111.81, 91.89, 17.32. HRMS (ESI): Calcd for C₂₆H₁₉N₂O [M+H]⁺ 375.1492, found: 375.1492.

$\begin{tabular}{ll} 4-Hydroxy-8-methoxy-1,2-diphenyl-9$$$H$-carbazole-3-carbonitrile \\ (3ka) \end{tabular}$

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 8% yield

(4.7 mg, 0.012 mmol) following the general procedure B. Mp: 275–277 °C. ¹H NMR (DMSO, 400 MHz): δ 11.18 – 10.92 (m, 1H), 10.86 (s, 1H), 7.91 (d, J = 7.7 Hz, 1H), 7.27 (d, J = 13.9 Hz, 1H), 7.32 – 7.08 (m, 11H), 7.02 (d, J = 7.8 Hz, 1H), 3.90 (s, 3H). ¹³C NMR

(DMSO, 100 MHz): δ 155.96, 145.80, 142.23, 140.80, 138.48, 135.74, 131.02, 130.42, 129.75, 128.21, 127.62, 127.30, 127.04, 122.96, 121.04, 119.26, 117.88, 114.87, 112.24, 106.82, 92.21, 55.47. HRMS (ESI): Calcd for C₂₆H₁₉N₂O₂ [M+H]⁺ 391.1441, found: 391.1439.

HO CN N CI

8-Chloro-4-hydroxy-1,2-diphenyl-9*H*-carbazole-3-carbonitrile (3la)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 5% yield

(2.96 mg, 0.0075 mmol) following the general procedure B. Mp: 256–258 °C. ¹H NMR (DMSO, 400 MHz): δ 11.28 (s, 1H), 11.03 (s, 1H), 8.29 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.34 – 7.11 (m, 12H). ¹³C NMR (DMSO, 100 MHz): δ 155.99, 142.57, 142.02, 138.27, 136.82, 135.42, 131.02, 130.27, 128.15, 127.59, 127.37, 127.17, 125.66, 123.88, 121.45, 121.23, 119.38, 117.43, 115.72, 112.15, 93.14. HRMS (ESI): Calcd for C₂₅H₁₆ClN₂O [M+H]⁺ 395.0946, found: 395.0949.

3-Chloro-5,6,9,10-tetraphenyl-4*H*-oxepino[2,3,4,5-*def*] carbazole-7-carbonitrile (4aa)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 70% yield (56.3 mg, 0.105 mmol) following the general procedure B. Mp: > 300 °C. ¹H NMR (CDCl₃, 400 MHz): δ

8.05 (s, 1H), 7.36 – 7.27 (m, 5H), 7.24 – 7.20 (m, 5H), 7.20 – 7.14 (m, 7H), 7.11 – 7.06 (m, 3H), 7.03 – 6.99 (m, 2H), 6.30 – 6.25 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): 18 156.04, 151.93, 142.38, 140.21, 139.18, 138.04, 137.74, 137.17, 135.28, 133.50, 131.96, 130.44, 130.07, 129.74, 128.81, 128.10, 127.82, 127.74, 127.69, 127.60, 127.30, 126.90, 122.43, 122.02, 121.48, 120.72, 115.83, 113.27, 110.98, 93.53. HRMS (ESI): Calcd for C₃₉H₂₈N₃O [M+NH₄]⁺ 554.2227, found: 554.2230.

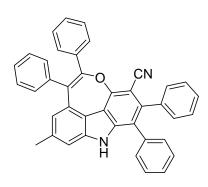
5,6,9,10-Tetrakis(4-fluorophenyl)-4*H*-oxepino[2,3,4, 5-*def*]carbazole-7-carbonitrile (4ad)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 63% yield (57.6 mg, 0.095mmol) following the general procedure B. Mp: > $300 \, ^{\circ}$ C. ¹H NMR (DMSO, 400 MHz): δ 11.38 (s, 1H),

7.36 (dd, J = 8.5, 5.7 Hz, 2H), 7.25 – 7.16 (m, 9H), 7.13 – 7.06 (m, 5H), 7.01 (t, J = 8.8 Hz, 2H), 6.08 (d, J = 7.5 Hz, 1H). ¹³C NMR (DMSO, 100 MHz): δ 163.64, 163.24, 163.13, 161.17, 160.80, 160.70, 155.61, 151.04, 141.40, 139.93, 135.72, 135.38, 134.53, 134.46, 134.38, 133.44, 133.36, 133.29, 133.20, 132.90, 132.77, 132.69, 132.00, 128.37, 122.67, 121.94, 121.72, 120.87, 116.51, 116.44, 116.22, 116.18, 115.97, 115.81, 115.59, 115.52, 115.30, 113.59, 113.31, 92.52. ¹⁹F NMR (DMSO, 376 MHz): δ -112.89, -114.13, -114.55, -114.76. HRMS (ESI): Calcd for C₃₉H₂₄F₄N₃O [M+NH₄]⁺ 626.1850, found: 626.1851.

$$F_3C$$
 CN
 CF_3
 CF_3

5,6,9,10-Tetrakis(4-(trifluoromethyl)phenyl)-4*H*-oxepino[2,3,4,5-*def*]carbazole-7-carbonitrile (4ag)


The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 62% yield (74.8mg, 0.180 mmol) following the general procedure B.

Mp: > 300 °C. ¹H NMR (DMSO, 400 MHz): δ 8.13 – 8.05 (m, 8H), 8.01 – 7.91 (m, 8H), 7.73 (d, J = 8.2 Hz, 1H), 7.61 (s, 1H), 6.61 (d, J = 7.5 Hz, 1H). ¹³C NMR (DMSO, 100 MHz): δ 157.50, 152.44, 144.85, 143.86, 143.57, 142.70, 142.63, 141.35, 141.28, 134.75, 134.10, 133.46, 133.39, 132.67, 131.46, 131.28, 131.13, 130.81, 130.02, 127.58, 127.28, 126.87, 126.62, 125.02, 124.59, 123.84, 122.73, 122.69, 116.79, 115.27, 114.98, 94.75. ¹°F NMR (DMSO, 376 MHz): δ -63.03, -63.09, -63.25. HRMS (ESI): Calcd for C₃₉H₂₄F₁₂N₃O [M+NH₄]⁺ 826.1722, found: 826.1726.

5,6,9,10-Tetra(thiophen-2-yl)-4*H*-oxepino[2,3,4,5-*def*] carbazole-7-carbonitrile (4ah)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 39% yield (32.8 mg, 0.078 mmol) following the general procedure B. Mp: 280–282 °C. ¹H NMR (DMSO, 400 MHz): δ

11.66 (s, 1H), 7.82 (d, J = 5.1 Hz, 1H), 7.68 – 7.54 (m, 4H), 7.30 (d, J = 8.1 Hz, 1H), 7.25 – 7.13 (m, 6H), 7.11 – 7.07 (m, 1H), 7.00 – 6.96 (m, 1H), 6.34 (d, J = 7.6 Hz, 1H). ¹³C NMR (DMSO, 100 MHz): δ 154.98, 145.80, 140.67, 139.31, 139.17, 138.67, 137.24, 134.75, 134.71, 132.42, 131.49, 130.51, 130.27, 129.54, 129.37, 128.71, 128.36, 128.15, 127.90, 127.33, 126.98, 126.15, 121.65, 119.18, 116.10, 115.30, 113.52, 112.91, 92.93. HRMS (ESI): Calcd for $C_{31}H_{20}N_3OS_4$ [M+NH₄]⁺ 578.0484, found: 578.0477.

2-Methyl-5,6,9,10-tetraphenyl-4*H*-oxepino[2,3,4,5-*def*] carbazole-7-carbonitrile (4ea)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 65% yield (53.6 mg, 0.097 mmol) following the general procedure B. Mp: 300–301 °C. ¹H NMR (CDCl₃, 400 MHz):

δ 7.94 (s, 1H), 7.35 – 7.26 (m, 5H), 7.24 – 7.13 (m, 12H), 7.08 (d, J = 6.6 Hz, 3H), 6.81 (s, 1H), 6.10 (s, 1H), 2.21 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.62, 152.04, 141.88, 140.13, 139.15, 138.28, 138.18, 137.66, 137.26, 135.40, 132.99, 131.99, 130.48, 130.09, 129.74, 128.78, 128.05, 127.80, 127.67, 127.62, 127.54, 127.28, 126.87, 123.61, 122.32, 120.65, 119.24, 115.90, 113.31, 110.97, 93.36, 22.22. HRMS (ESI): Calcd for C₄₀H₂₇N₂O [M+H]⁺ 551.2118, found: 551.2125.

2-Methoxy-5,6,9,10-tetraphenyl-4*H*-oxepino[2,3,4,5-*def*] carbazole-7-carbonitrile (5fa)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid

in 57% yield (58.4 mg, 0.085 mmol) following the general procedure B. Mp: 277–278 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.05 (s, 1H), 7.40 – 7.36 (m, 3H), 7.34 (d, J = 5.0 Hz, 2H), 7.27 (s, 4H), 7.26 – 7.19 (m, 7H), 7.15 (d, J = 6.1 Hz, 3H), 6.56 (s, 1H), 6.01 (s, 1H), 3.73 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 160.28, 154.88, 152.65, 141.08, 140.11, 138.95, 138.88, 138.12, 137.25, 135.38, 134.14, 131.91, 130.51, 130.06, 129.70, 128.76, 128.09, 127.79, 127.69, 127.63, 127.52, 127.29, 126.94, 121.63, 120.63, 115.92, 115.07, 113.34, 112.28, 93.97, 55.44. HRMS (ESI): Calcd for C₄₀H₂₇N₂O₂ [M+H]⁺ 567.2067, found: 567.2072.

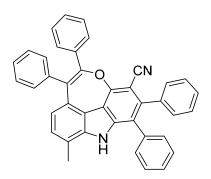
2-Fluoro-5,6,9,10-tetraphenyl-4*H*-oxepino[2,3,4,5-*def*] carbazole-7-carbonitrile (4ga)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 62% yield (51.5mg, 0.093 mmol) following the general procedure B. Mp: > 300 °C. ¹H NMR (CDCl₃, 400 MHz): δ

8.06 (s, 1H), 7.35 – 7.26 (m, 5H), 7.25 – 7.12 (m, 12H), 7.09 (d, J = 4.6 Hz, 3H), 6.73 – 6.66 (m, 1H), 6.04 (d, J = 11.6 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 164.06, 161.66, 155.32, 153.10, 142.19, 140.65, 138.54, 138.07, 137.94, 137.79, 136.98, 135.03, 134.97, 134.87, 131.81, 130.41, 129.99, 129.64, 128.89, 128.31, 127.93, 127.87, 127.82, 127.73, 127.37, 127.20, 121.31, 120.92, 117.75, 115.61, 113.05, 110.80, 110.53, 97.71, 97.43, 93.99. ¹⁹F NMR (CDCl₃, 376 MHz): 19F NMR (376 MHz,) δ -112.58. HRMS (ESI): Calcd for C₃₉H₂₇FN₃O [M+NH₄]⁺ 572.2133, found: 572.2134.

2-Chloro-5,6,9,10-tetraphenyl-4*H*-oxepino[2,3,4,5-*def*] carbazole-7-carbonitrile (4ha)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a white solid in 69% yield (59.2mg, 0.104 mmol) following the general procedure B. Mp: > 300 °C. ¹H NMR (CDCl₃, 400 MHz): δ


8.14 (s, 1H), 7.35 - 7.29 (m, 5H), 7.27 - 7.21 (m, 6H), 7.20 - 7.15 (m, 5H), 7.15 - 7.13 (m, 1H), 7.10 (dd, J = 5.1, 1.9 Hz, 3H), 7.02 (d, J = 1.5 Hz, 1H), 6.26 (d, J = 1.5 Hz, 1H). ¹³C

NMR (CDCl₃, 100 MHz): δ 155.59, 153.05, 142.68, 140.51, 138.37, 138.08, 137.79, 136.94, 134.93, 134.49, 133.08, 131.79, 130.34, 129.99, 129.59, 128.85, 128.34, 127.87, 127.71, 127.34, 127.23, 122.32, 121.37, 120.98, 119.98, 115.60, 112.94, 110.89, 93.91. HRMS (ESI): Calcd for C₃₉H₂₇ClN₃O [M+NH₄]⁺ 588.1837, found: 588.1841.

Methyl 7-cyano-5,6,9,10-tetraphenyl-4*H*-oxepino [2,3,4,5-*def*]carbazole-2-carboxylate (4ia)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a white solid in 68% yield (60.8mg, 0.0102 mmol) following the general procedure B. Mp: > 300 °C. ¹H NMR

(CDCl₃, 400 MHz): δ 8.26 (s, 1H), 7.80 (d, J = 1.0 Hz, 1H), 7.37 – 7.30 (m, 5H), 7.28 (s, 1H), 7.26 – 7.23 (m, 5H), 7.22 – 7.15 (m, 7H), 7.11 (dd, J = 5.2, 1.9 Hz, 3H), 7.01 (d, J = 1.0 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz):δ 166.89, 156.44, 152.48, 143.64, 141.50, 138.55, 137.85, 137.22, 136.90, 134.89, 133.34, 131.79, 130.31, 130.01, 129.69, 129.06, 128.90, 128.34, 127.90, 127.79, 127.35, 127.26, 125.15, 122.76, 122.10, 120.96, 115.49, 113.00, 112.86, 94.03, 52.20. HRMS (ESI): Calcd for C₄₁H₃₀N₃O₃ [M+NH₄]⁺ 612.2282, found: 612.2292.

3-Methyl-5,6,9,10-tetraphenyl-4*H*-oxepino[2,3,4,5-*def*] carbazole-7-carbonitrile (4ja)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a white solid in 78% yield (64.1 mg, 0.116 mmol) following the general procedure B. Mp: > 300 °C. ¹H NMR (CDCl₃, 400 MHz): δ

11.10 (s, 1H), 7.33 - 7.26 (m, 5H), 7.25 - 7.09 (m, 15H), 6.89 (d, J = 7.8 Hz, 1H), 6.04 (d, J = 7.7 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $8 \cdot 154.73$, 149.71, 141.60, 140.50, 138.73, 138.32, 137.88, 137.57, 134.82, 131.44, 130.59, 130.06, 129.64, 129.50, 128.05, 127.78, 127.54, 127.49, 127.34, 127.26, 126.89, 122.93, 122.60, 121.85, 121.53, 119.81, 115.66, 112.99, 91.80, 17.18. HRMS (ESI): Calcd for $C_{40}H_{30}N_{3}O$ [M+NH₄]⁺ 568.2383, found: 568.2392.

3-Methoxy-5,6,9,10-tetraphenyl-4*H*-oxepino[2,3,4,5-*def*] carbazole-7-carbonitrile (4ka)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a white solid in 77% yield (65.7 mg, 0.116 mmol) following the general procedure B. Mp: > 300 °C. ¹H NMR (CDCl₃, 400 MHz): δ

8.15 (s, 1H), 7.36 - 7.27 (m, 5H), 7.24 - 7.14 (m, 12H), 7.09 (d, J = 7.3 Hz, 3H), 6.45 (d, J = 8.3 Hz, 1H), 6.21 (d, J = 8.2 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): 13C NMR (101 MHz,) δ 156.05, 149.88, 145.76, 142.23, 139.82, 139.48, 138.20, 137.23, 135.28, 131.94, 130.47, 130.14, 129.84, 128.77, 128.02, 127.92, 127.80, 127.70, 127.54, 127.46, 127.25, 126.80, 125.84, 123.12, 122.42, 122.05, 120.78, 115.89, 113.31, 106.56, 93.53, 55.44. HRMS (ESI): Calcd for C₄₀H₃₀N₃O₂ [M+NH₄]⁺ 584.2333, found: 584.2342.

3-Chloro-5,6,9,10-tetraphenyl-4H-oxepino[2,3,4,5-def] carbazole-7-carbonitrile (4la)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a white solid in 60% yield (51.4 mg, 0.090 mmol) following the general procedure B. Mp: > 300 °C. ¹H NMR (CDCl₃, 400 MHz): δ

11.39 (s, 1H), 7.37 – 7.07 (m, 20H), 6.92 (dd, J = 9.1, 1.7 Hz, 1H), 5.80 – 5.76 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 162.89, 160.52, 154.12, 152.20, 141.32, 140.89, 139.40, 139.26, 137.88, 137.64, 137.19, 134.62, 133.75, 133.65, 131.33, 130.18, 130.09, 129.36, 128.34, 128.21, 127.87, 127.62, 127.56, 127.40, 127.34, 127.18, 121.59, 121.12, 116.56, 115.38, 112.08, 109.03, 108.75, 98.65, 98.39, 92.03. HRMS (ESI): Calcd for C₃₉H₂₇ClN₃O [M+NH₄]⁺ 588.1837, found: 588.1840.

5,6-Diphenyl-9,10-di-p-tolyl-4H-oxepino[2,3,4,5-def] carbazole-7-carbonitrile (4ak)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a white solid in 94% yield (53.3 mg, 0.094 mmol) following the general procedure C. Mp: > 300 °C. ¹H NMR

(CDCl₃, 400 MHz): δ 8.00 (s, 1H), 7.33 – 7.27 (m, 3H), 7.24 – 7.14 (m, 8H), 7.09 – 6.99 (m, 6H), 6.90 (d, J = 8.1 Hz, 2H), 6.30 (dd, J = 5.7, 2.6 Hz, 1H), 2.31 (s, 3H), 2.22 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ 156.29, 151.70, 142.36, 140.18, 137.75, 137.37, 137.25, 136.44, 136.40, 135.37, 135.30, 133.91, 131.78, 131.42, 130.47, 130.10, 129.73, 129.06, 128.87, 128.80, 127.99, 127.81, 127.71, 127.57, 127.23, 122.35, 122.06, 121.53, 120.58, 115.93, 113.53, 110.68, 93.54, 29.69, 21.23. HRMS (ESI): Calcd for C₄₁H₂₈N₂NaO [M+Na]⁺ 587.2094, found: 587.2098.

9,10-Bis(4-fluorophenyl)-5,6-diphenyl-4H-oxepino[2,3,4 ,5-def]carbazole-7-carbonitrile (4al)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a white solid in 89% yield (51.1 mg, 0.089 mmol) following the general procedure C. Mp: > 300 °C. ¹H

NMR (CDCl₃, 400 MHz): δ 8.07 (s, 1H), 7.33 – 7.28 (m, 5H), 7.24 – 7.21 (m, 3H), 7.19 – 7.10 (m, 6H), 7.07 – 7.02 (m, 2H), 6.94 (t, J = 8.6 Hz, 2H), 6.80 (t, J = 8.7 Hz, H), 6.25 (dd, J = 4.8, 3.5 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 163.04, 162.97, 160.52, 155.75, 151.04, 142.46, 140.25, 137.82, 137.07, 135.17, 135.02, 134.99, 134.12, 133.53, 133.45, 133.17, 131.66, 131.58, 130.40, 130.05, 128.85, 127.87, 127.83, 127.68, 127.37, 121.90, 121.77, 121.35, 120.93, 115.76, 115.44, 115.23, 114.66, 114.45, 113.17, 111.26, 93.61. ¹⁹F NMR (DMSO, 376 MHz): δ -117.33, -119.20. HRMS (ESI): Calcd for C₃₉H₂₂F₂N₂NaO [M+Na]⁺ 595.1592, found: 595.1598.

Ethyl (E)-3-(6-cyano-5-hydroxy-7,8-diphenyl-9H-carbazol-4-yl) acrylate (6aa)

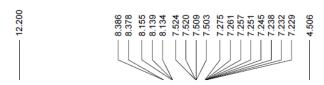
The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in 38% yield

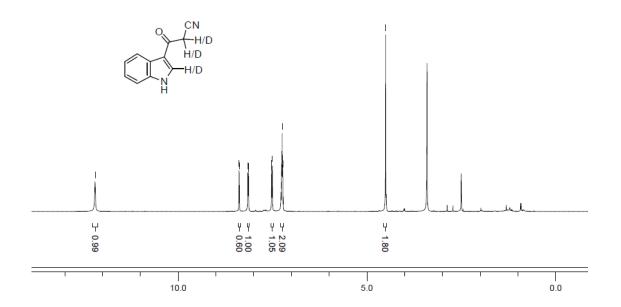
(17.5 mg, 0.038 mmol) following the general procedure C. Mp: 250–252 °C. ¹H NMR (CDCl₃, 400 MHz): δ 11.52 (s), 11.27 (s), 9.60 (d, J = 15.8 Hz), 7.68 (d, J = 7.4 Hz), 7.63 (d, J = 8.0 Hz), 7.45 (t, J = 7.7 Hz), 7.34 – 7.24 (m), 7.19 (d, J = 4.7 Hz), 6.56 (d, J = 15.8 Hz), 4.26 (q, J = 7.1 Hz), 1.33 (t, J = 7.0 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 166.51, 155.03, 147.02, 142.78, 141.36, 140.87, 137.92, 135.47, 130.75, 130.14, 129.08, 128.32, 127.51, 127.30, 127.17, 125.92, 120.61, 119.28, 118.50, 117.84, 113.54, 111.89, 93.25, 59.81, 14.30. HRMS (ESI): Calcd for C₃₀H₂₆N₃O₃ [M+NH₄]⁺ 476.1969, found: 476.1974.

Diethyl 2-(6-cyano-5-hydroxy-7,8-diphenyl-9H-carbazol-4-yl) malonate (8aa)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/5 to 1/2) as a yellow solid in

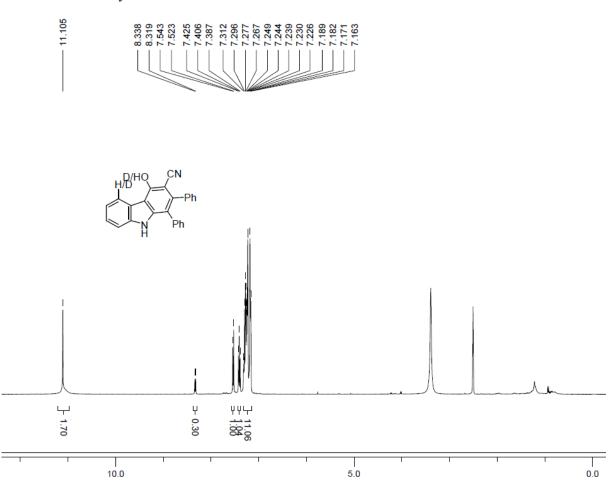
37% yield (19.4 mg, 0.037 mmol) following the general procedure D. Mp: 216–218 °C. ¹H NMR (CDCl₃, 400 MHz): δ 11.56 (s), 11.27 (s), 7.58 (d, J = 8.1 Hz), 7.45 (t, J = 7.8 Hz), 7.36 – 7.25 (m), 7.23 – 7.17 (m), 7.14 (d, J = 7.5 Hz), 6.78 (s), 4.30 – 4.17 (m), 1.25 (t, J = 7.1 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 166.51, 155.03, 147.02, 142.78, 141.36, 140.87, 137.92, 135.47, 130.75, 130.14, 129.08, 128.32, 127.51, 127.30, 127.17, 125.92, 120.61, 119.28, 118.50, 117.84, 113.54, 111.89, 93.25, 59.81, 14.30. HRMS (ESI): Calcd for C₃₂H₂₇N₂O₅ [M+NH₄]⁺ 519.1914, found: 519.1915.


Mechanism Research:

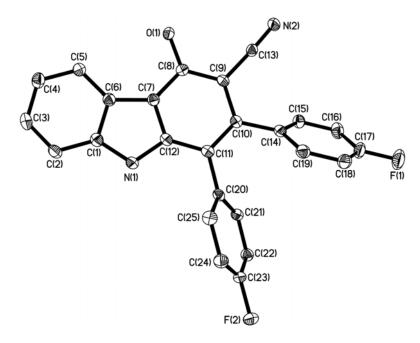

Reaction (eq 3)

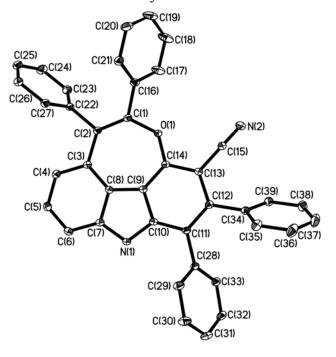
An oven-dried reaction vessel was charged with [Cp*RhCl₂]₂ (6.2 mg, 0.01 mmol), Cu(OAc)₂·H₂O (80 mg, 0.4 mmol), 4-hydroxy-1,2-diphenyl-9*H*-carbazole-3-carbonitrile **3aa** (86.4 mg, 0.24 mmol), alkyne (**2a**) (35.6 mg 0.2 mmol) DMF (0.5 mL) under Ar. The vessel was sealed and heated at 100 °C (oil bath) for 12 h. After removal of solvents, the residue was purified by flash column chromatography on silica gel (eluent: DCM/petroleum ether = 1:2). **4aa** was obtained in 93% yield.

H/D Exchange Reaction (eq 5).


An oven-dried reaction vessel was charged with [Cp*RhCl₂]₂ (6.2 mg, 0.01 mmol), Cu(OAc)₂·H₂O (100 mg, 0.5 mmol), 3-(1*H*-indol-3-yl)-3-oxopropanenitrile **1a** (36.8 mg, 0.2 mmol), DMF (0.5 mL), and CD₃OD (0.15 mL) under Ar. The vessel was sealed and heated at 100 °C (oil bath) for 1 h. After removal of solvents, the residue was purified by flash column chromatography on silica gel (eluent: EtOAc/ petroleum ether = 1:2). **1a** was recovered in 90% yield.

H/D Exchange Reaction (eq 6).

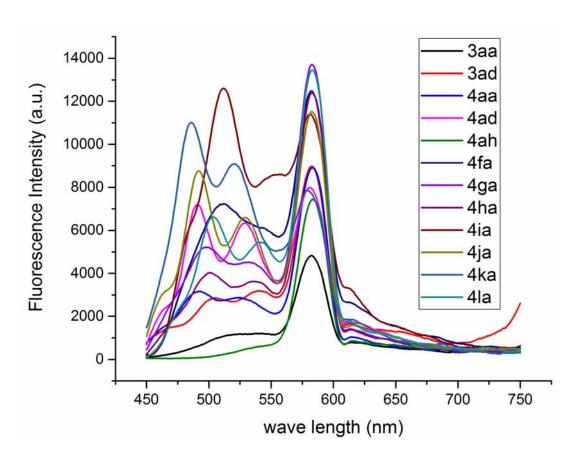
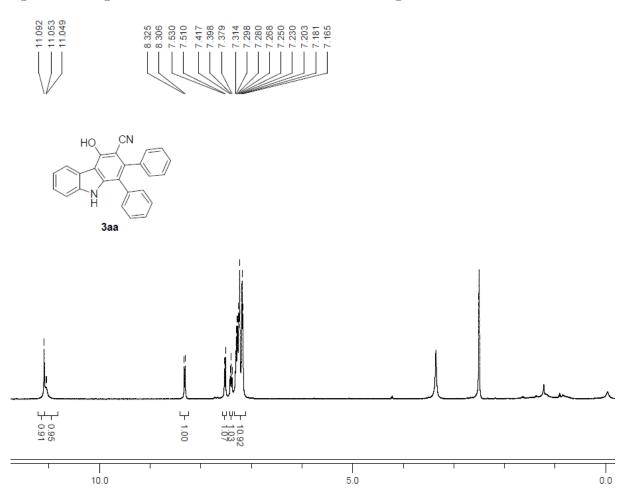
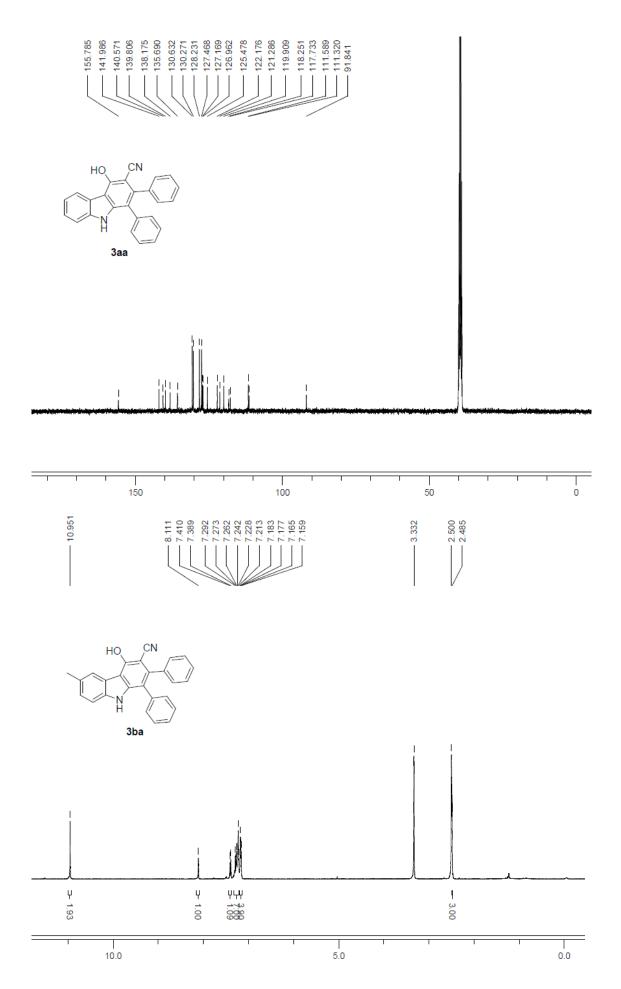
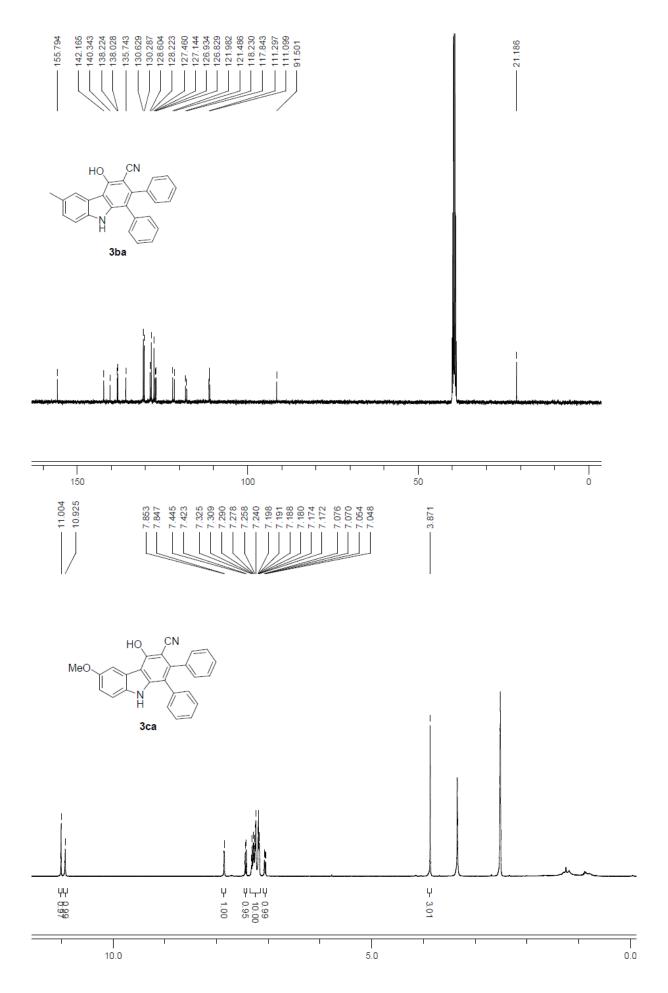

An oven-dried reaction vessel was charged with [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol), Cu(OAc)₂·H₂O (50 mg, 0.25 mmol), 4-hydroxy-1,2-diphenyl-9*H*-carbazole-3-carbonitrile **3aa** (36.6 mg, 0.1 mmol), DMF (0.5 mL), and CD₃OD (0.15 mL) under Ar. The vessel was sealed and heated at 100 °C (oil bath) for 1 h. After removal of solvents, the residue was purified by flash column chromatography on silica gel (eluent: EtOAc/ petroleum ether = 1:2). **1a** was recovered in 90% yield.

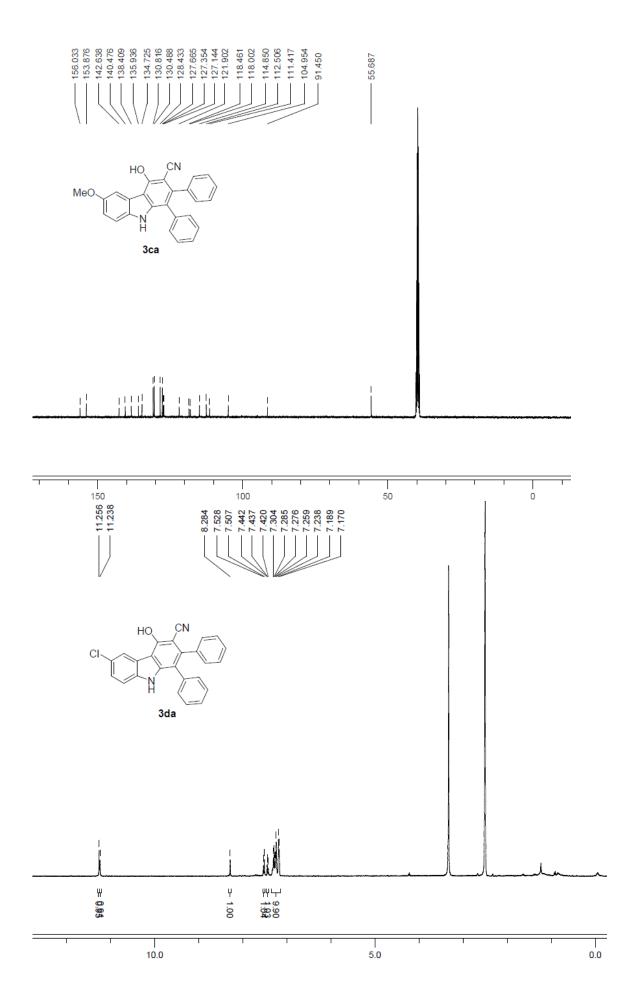

X-ray crystallography:

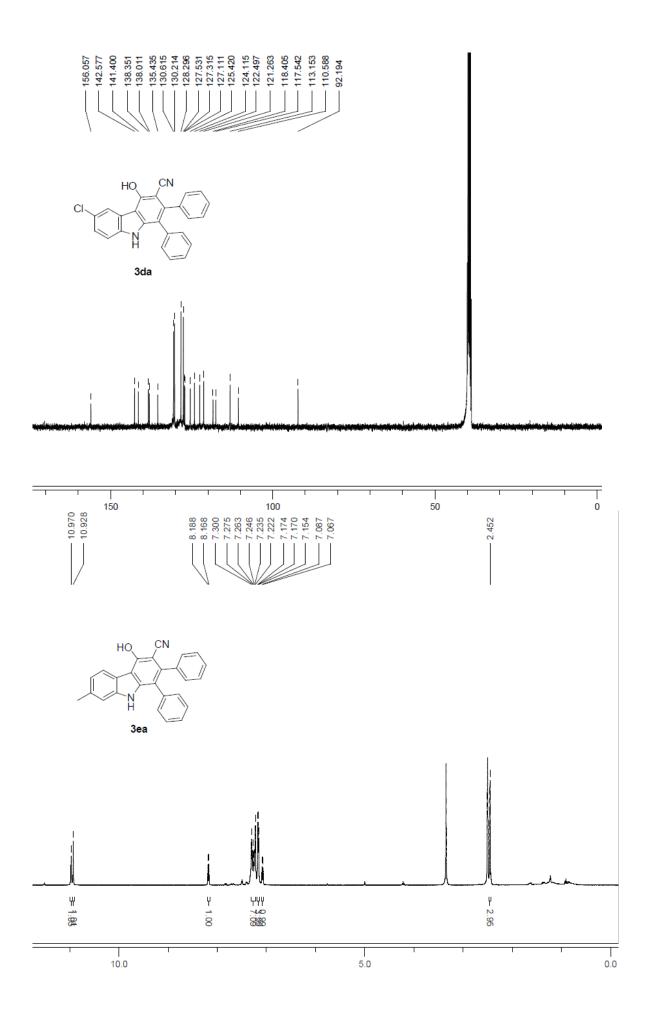
CCDC-1537356 (**3ad**) and 1537357 (**4aa**), contain the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

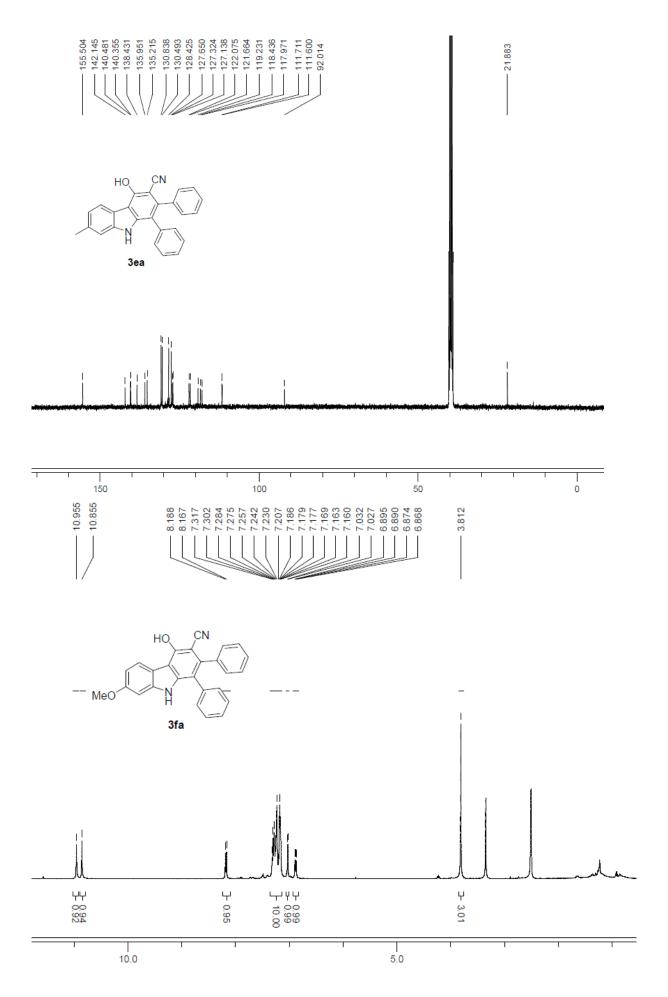
Figure S1. The molecular structure of **3ad**. Thermal ellipsoids are shown at the 30% level. Hydrogen atoms have been omitted for clarity.

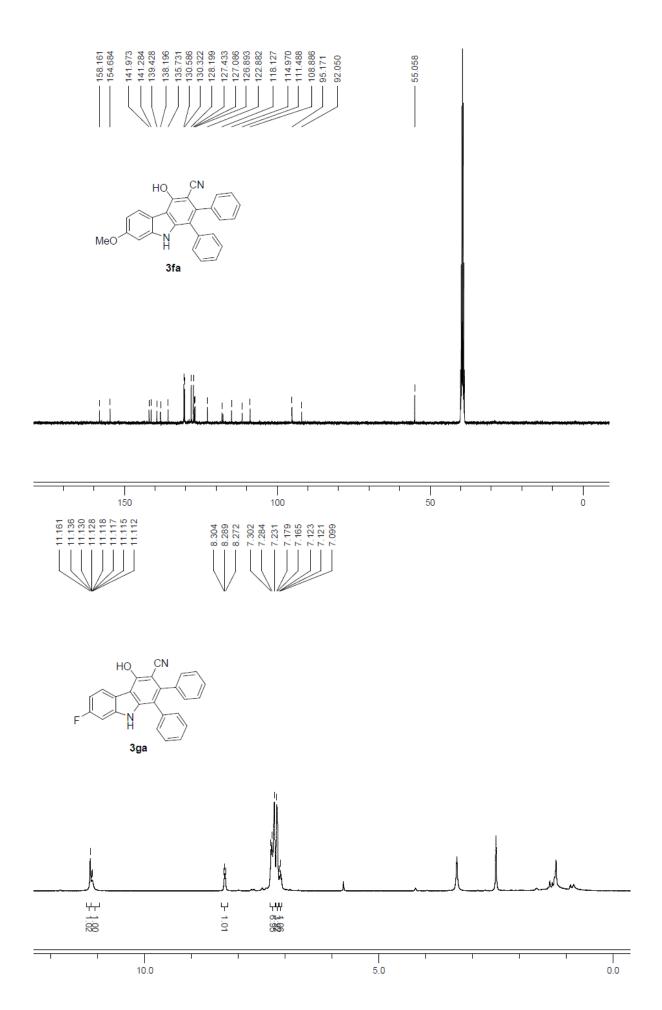
Figure S2. The molecular structure of **4aa**. Thermal ellipsoids are shown at the 30% level. Hydrogen atoms have been omitted for clarity.

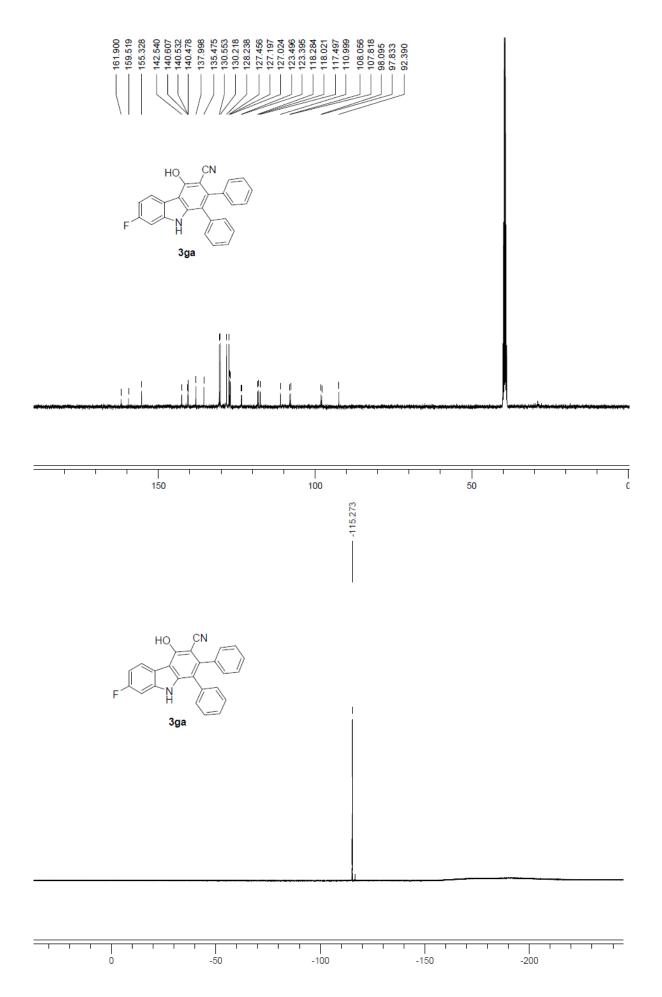





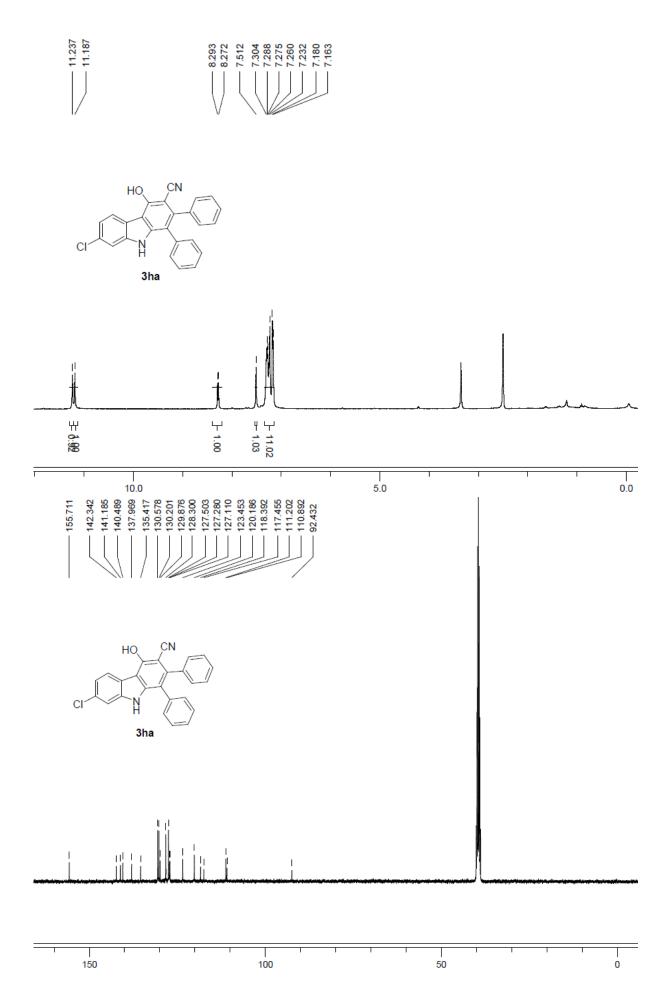

Figure S3. Fluorescence spectra of 3aa,3ad, 4aa, 4ah and 4fa-4la in the solid-state.

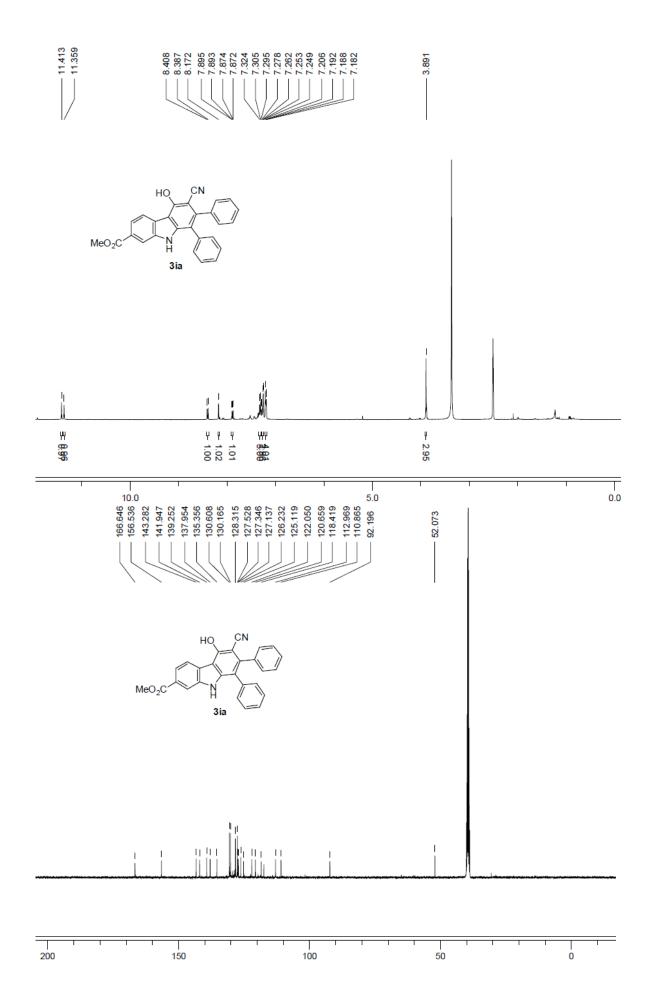

Spectral Copies of ¹H, ¹³C, and ¹⁹F NMR of Compounds Obtained in This Study

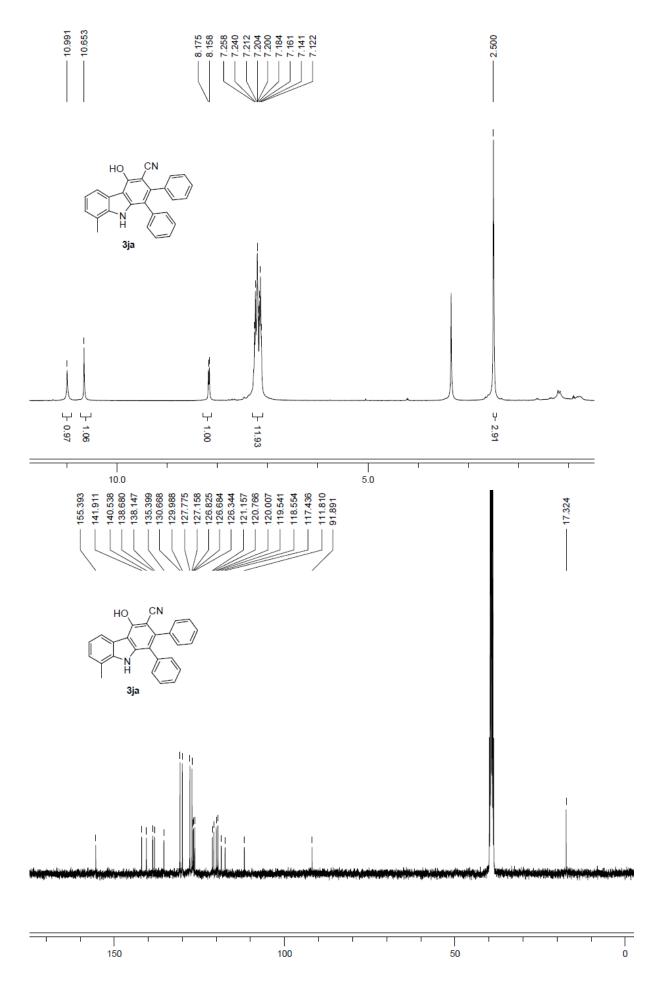


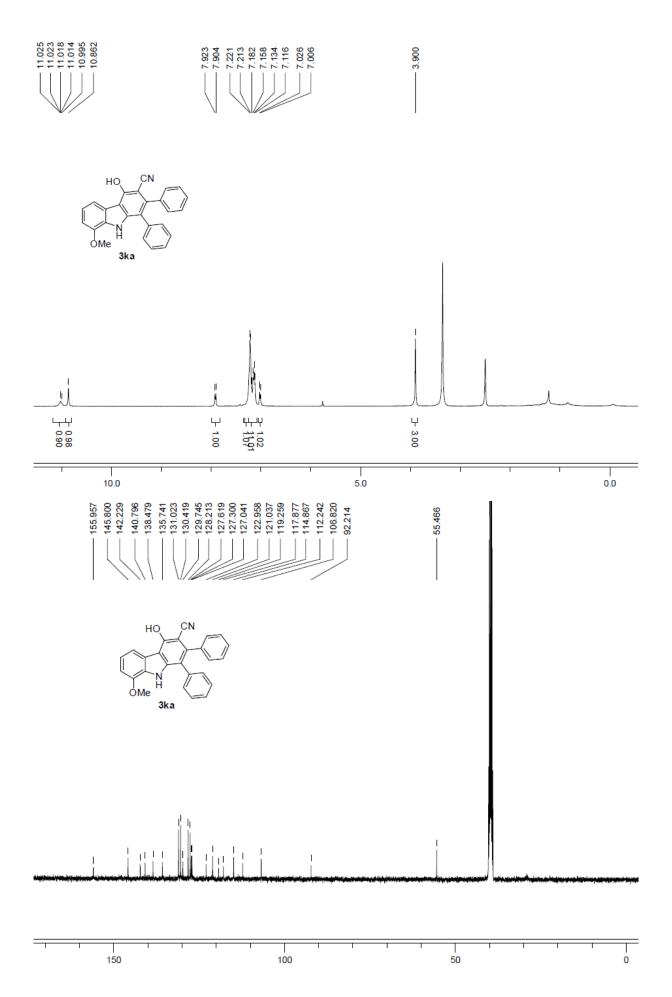


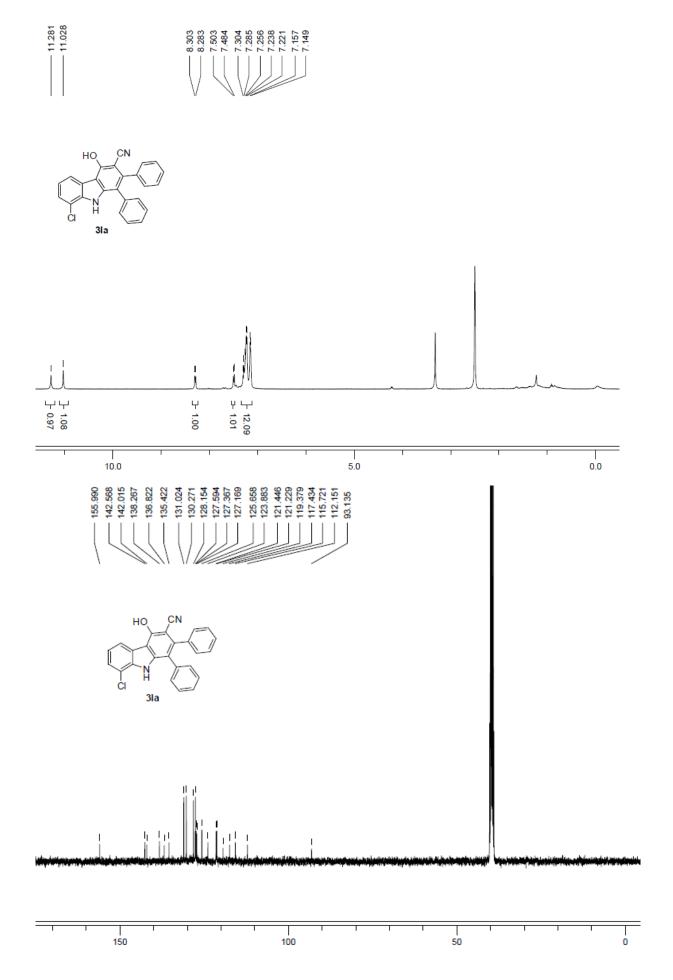


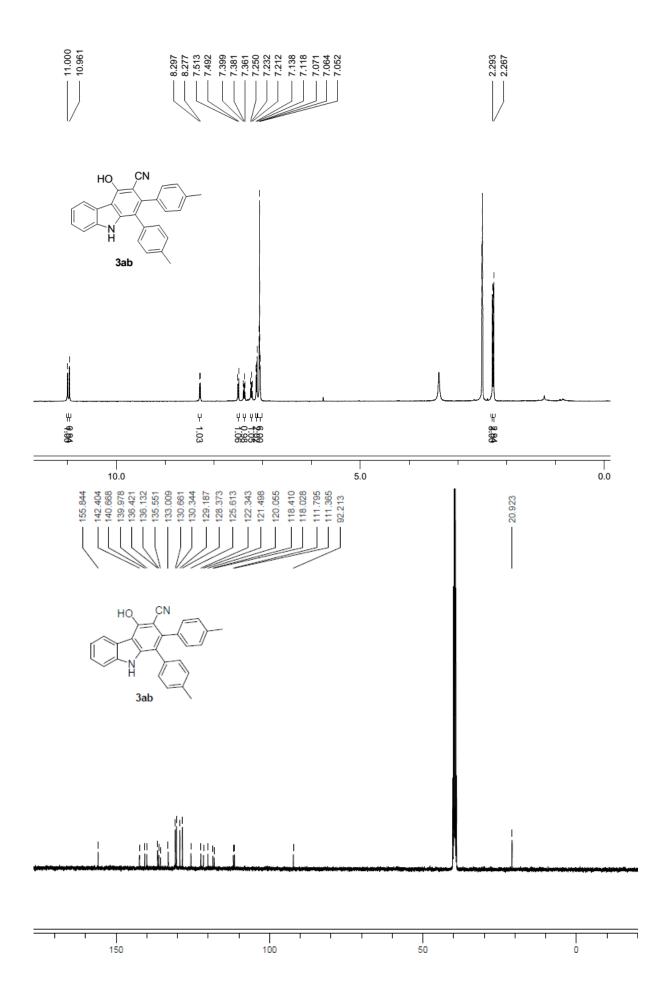


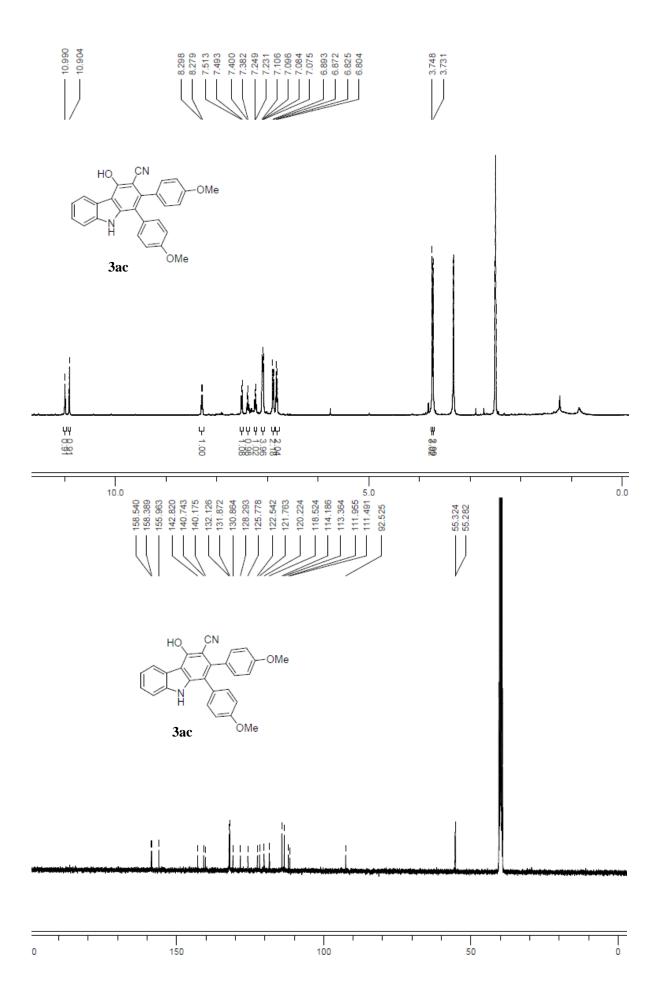


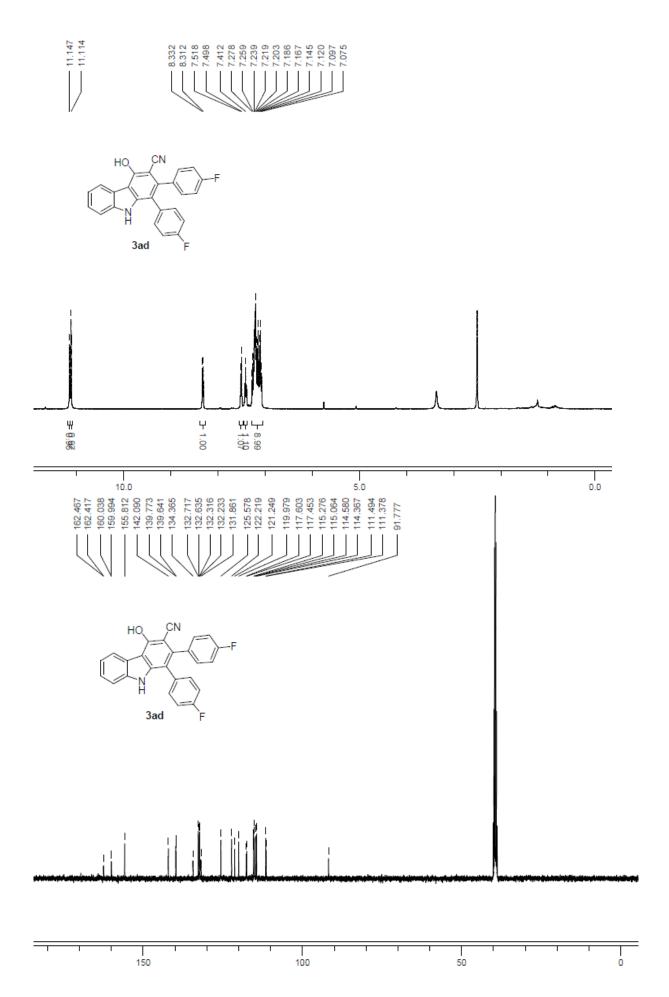


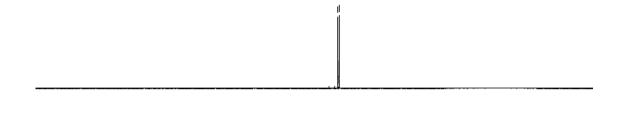


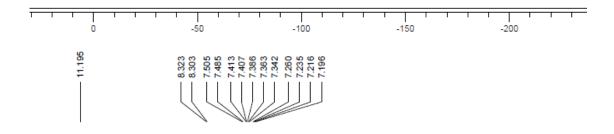


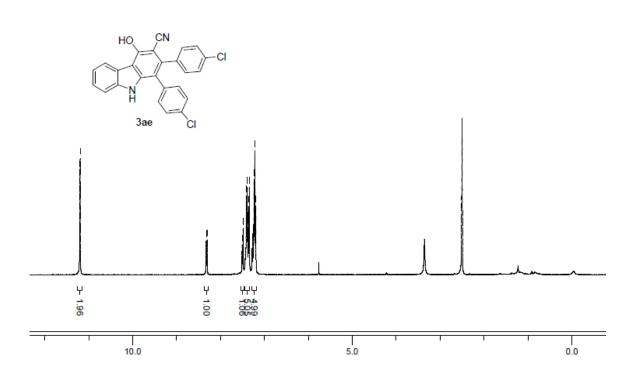


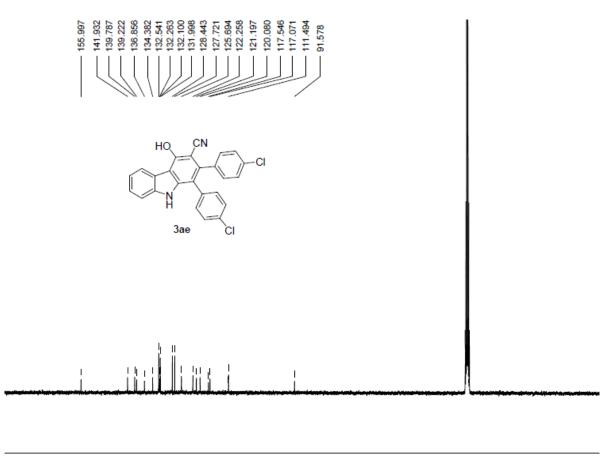


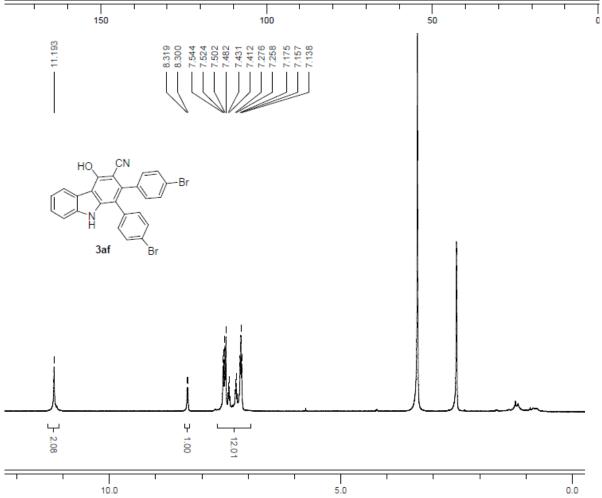


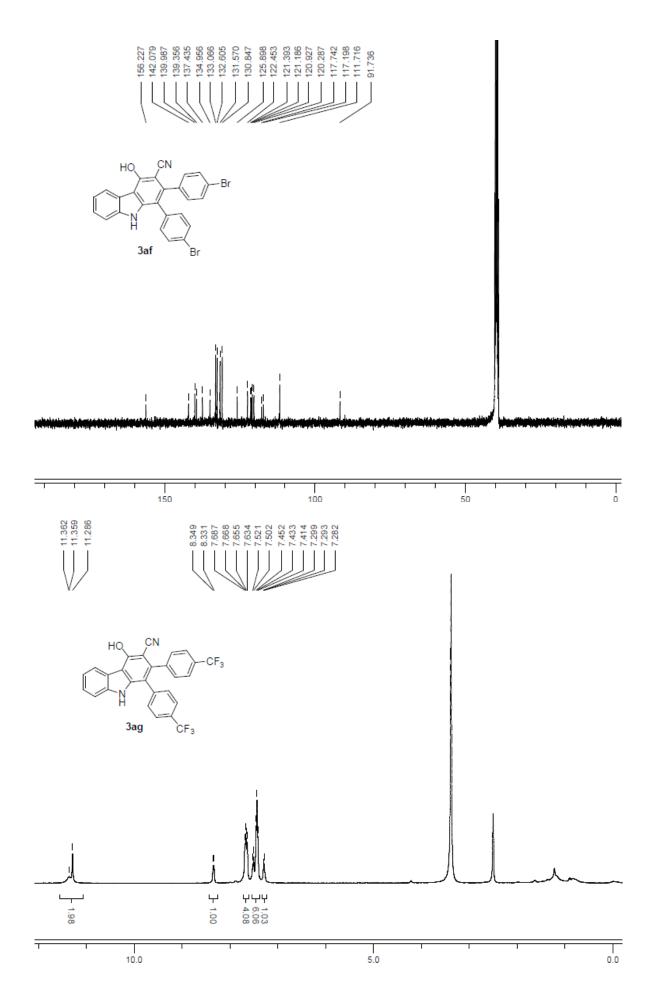


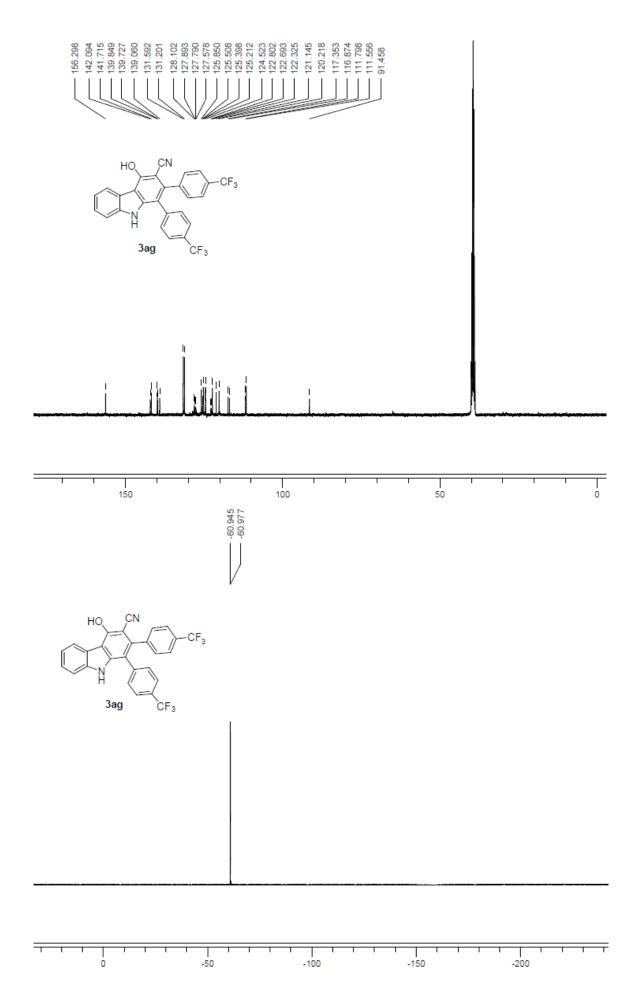




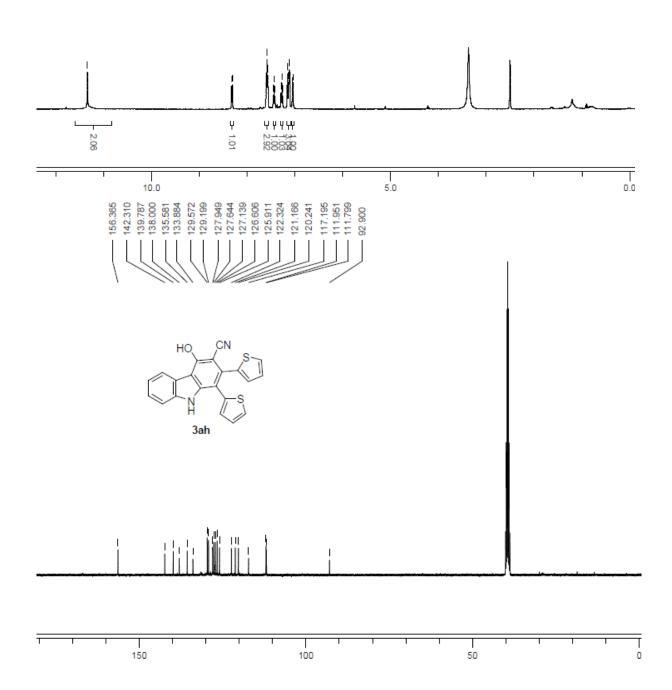


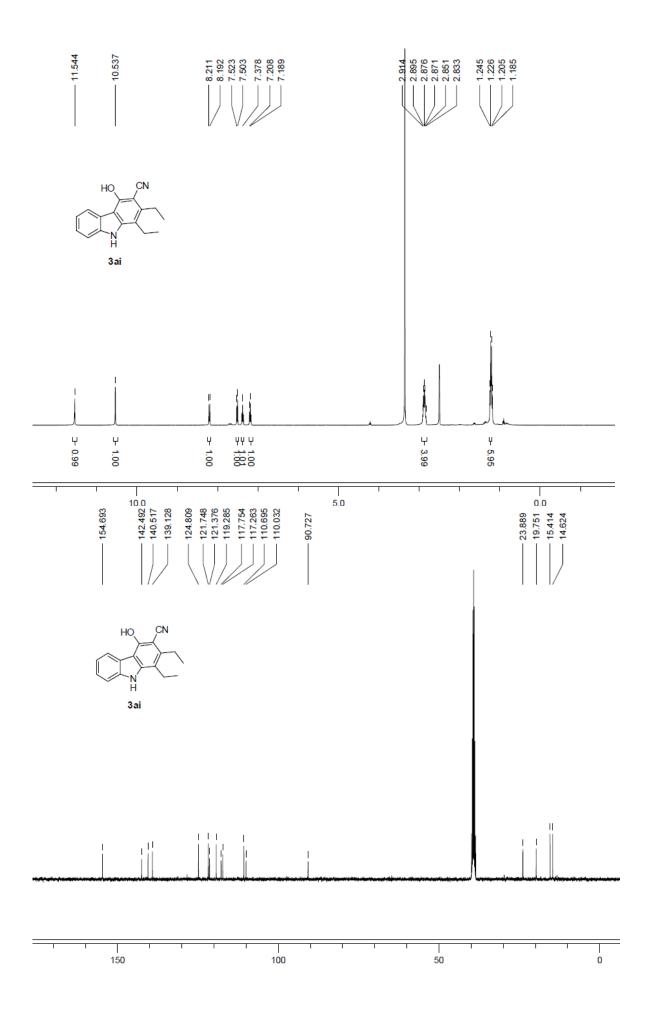


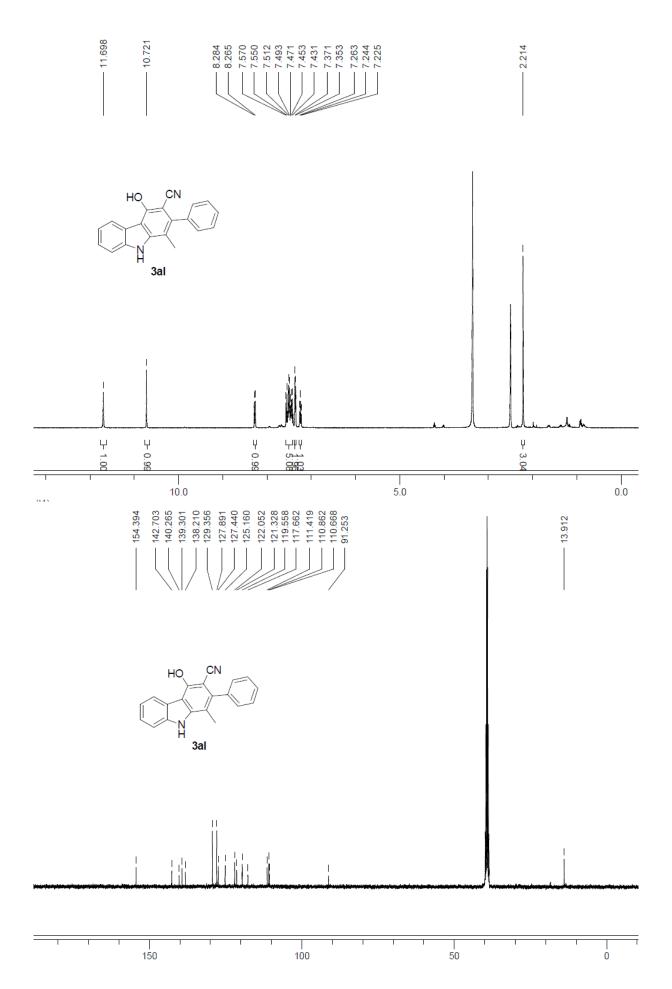


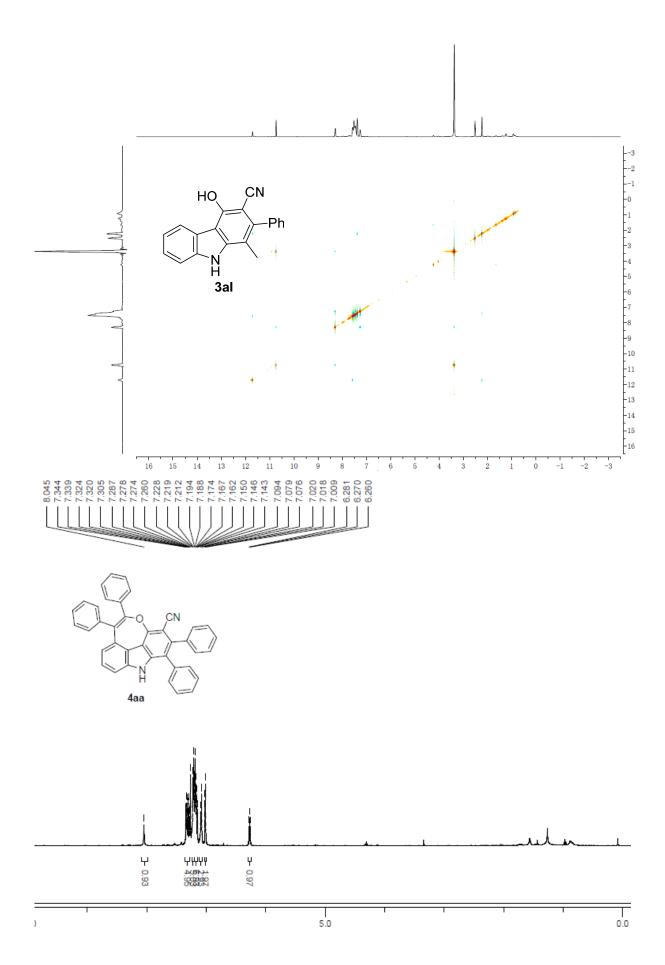


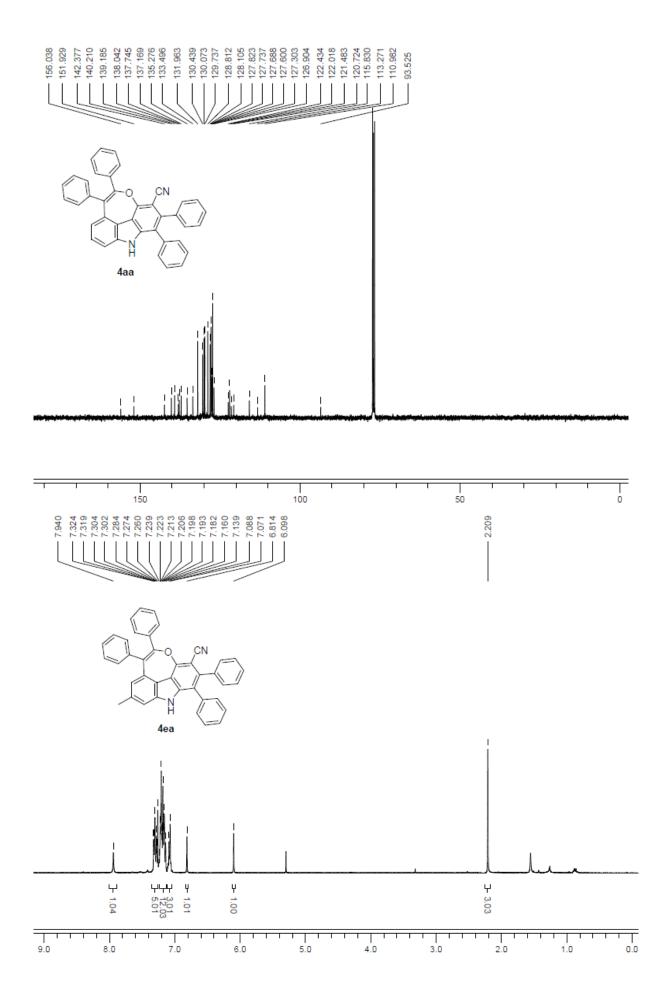


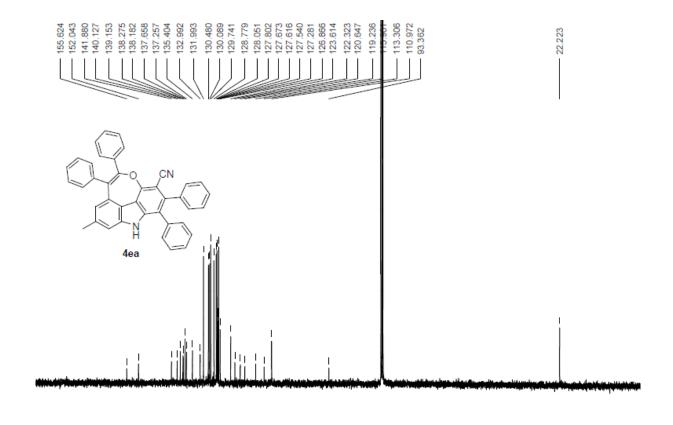


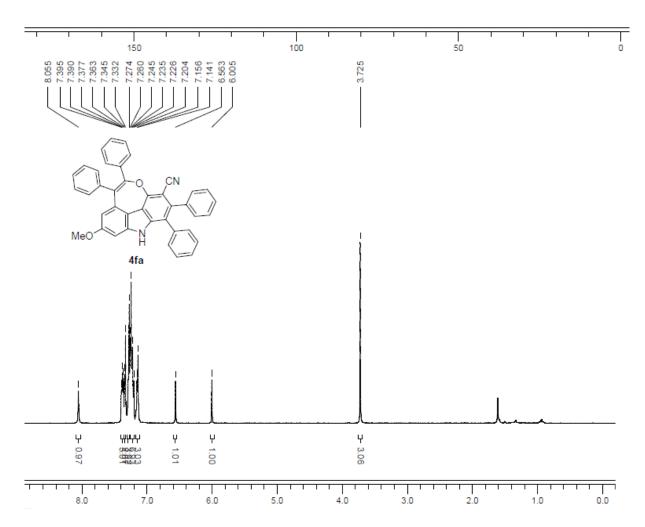


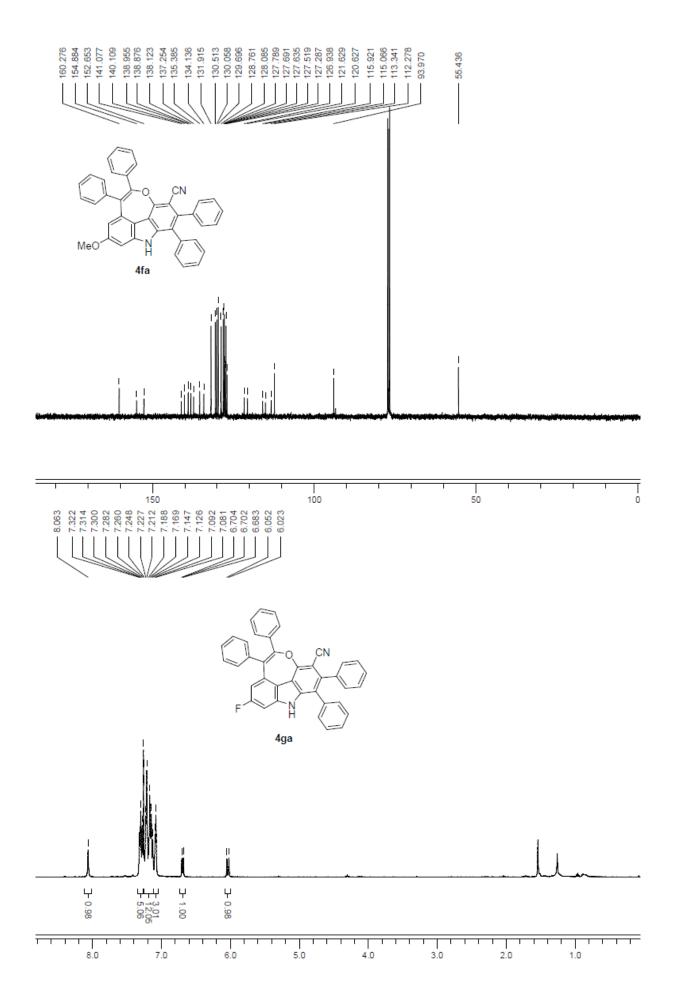


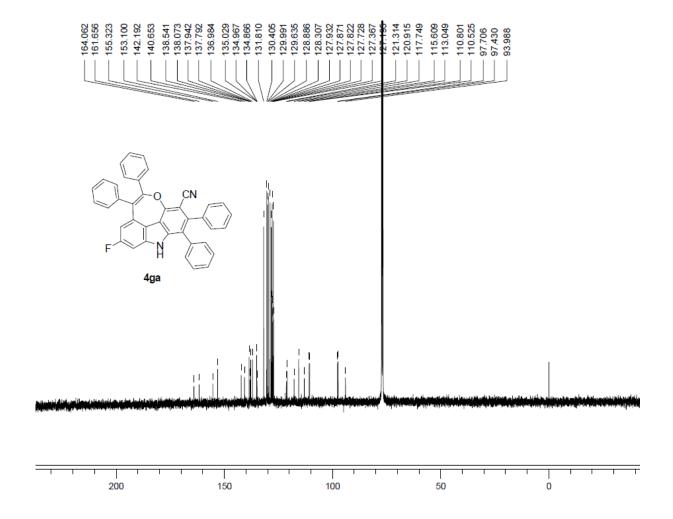


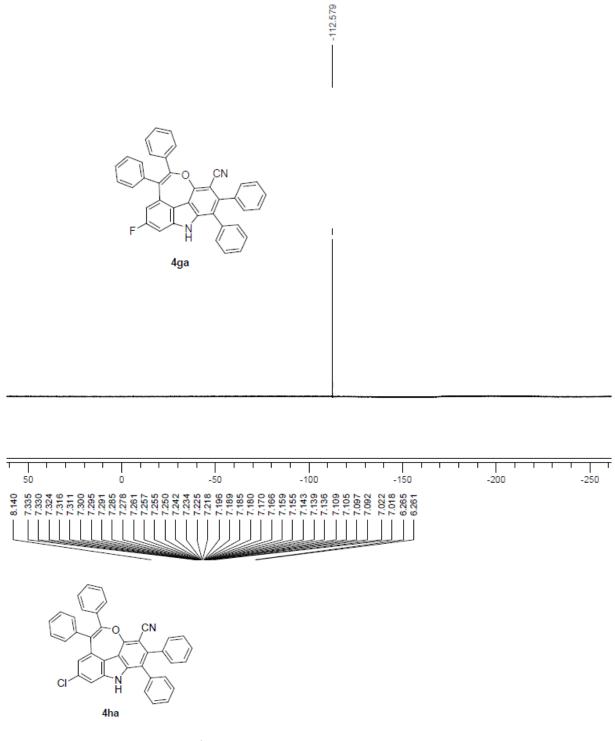


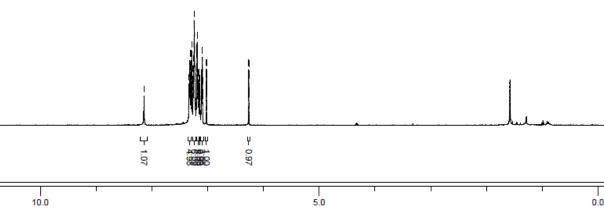


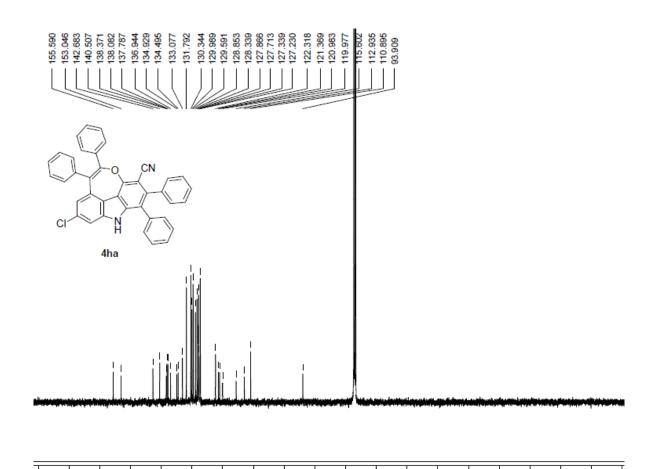


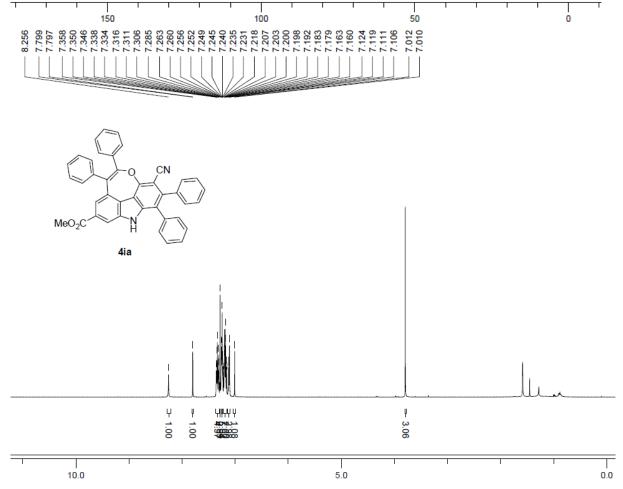


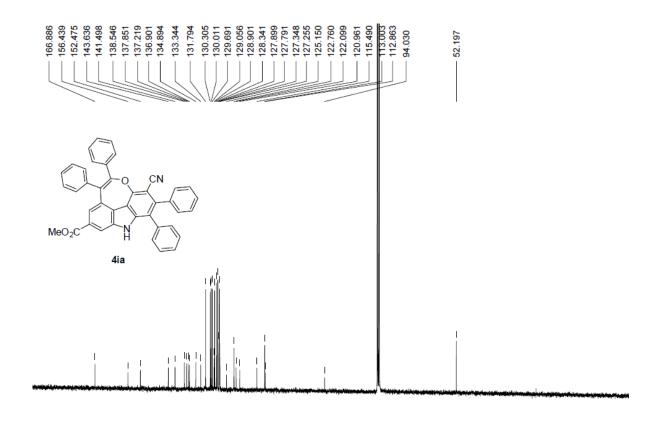


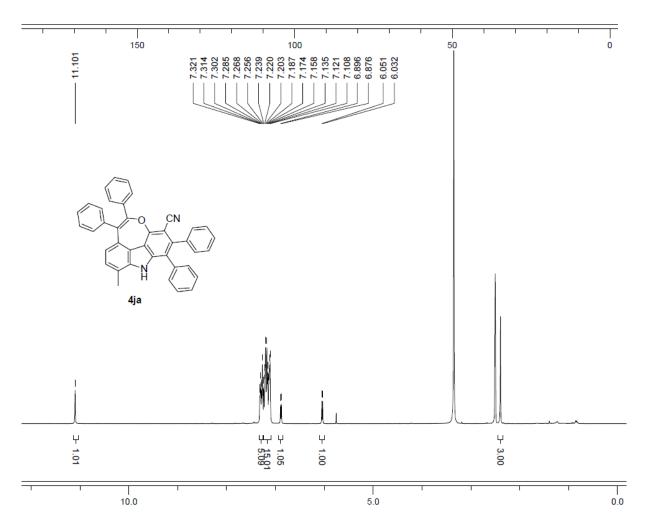


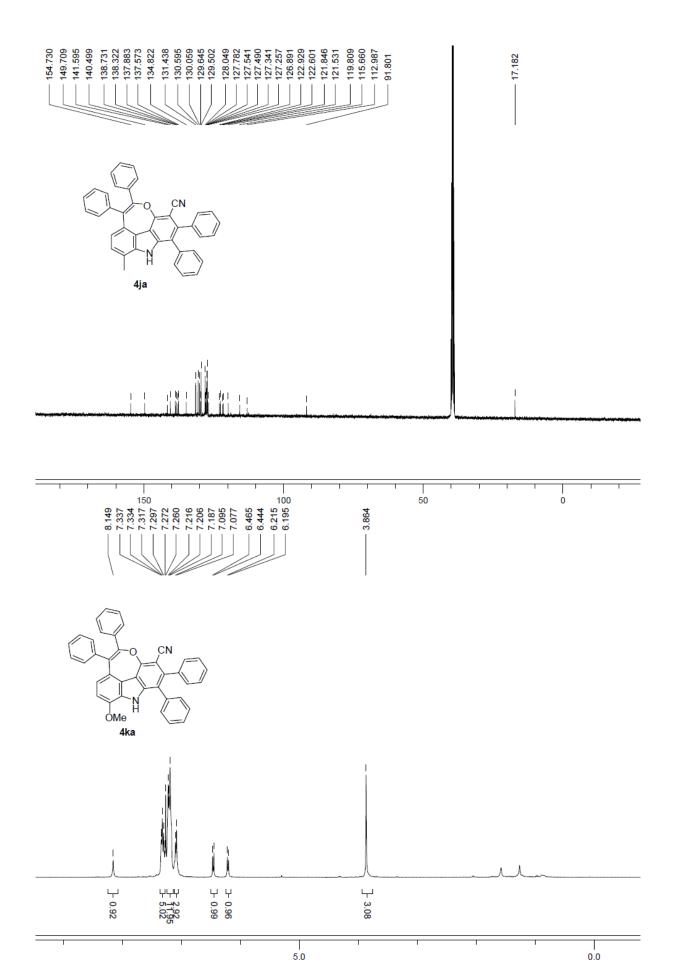


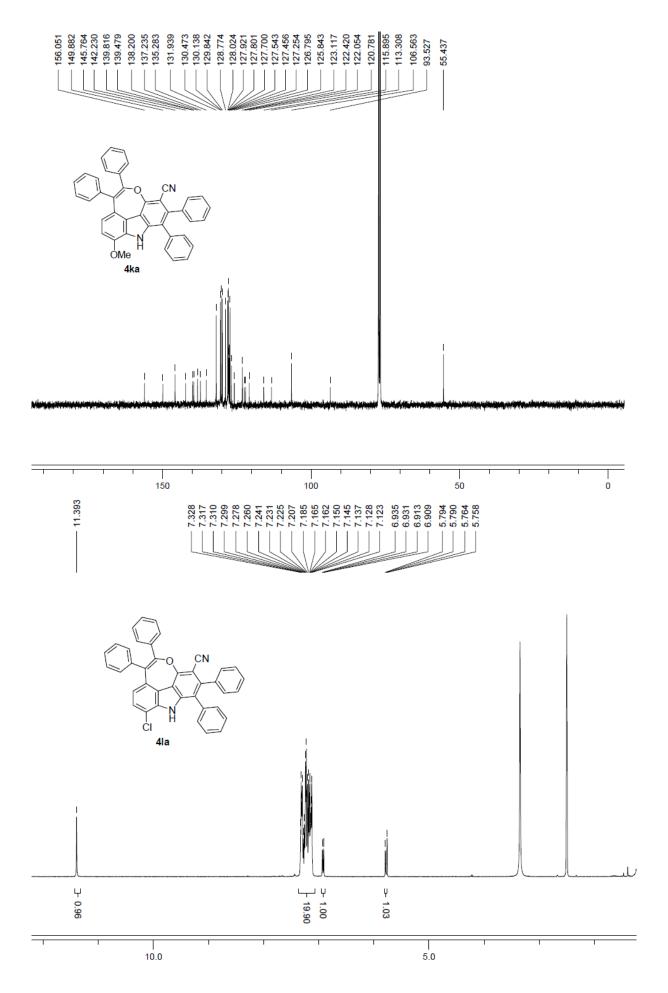


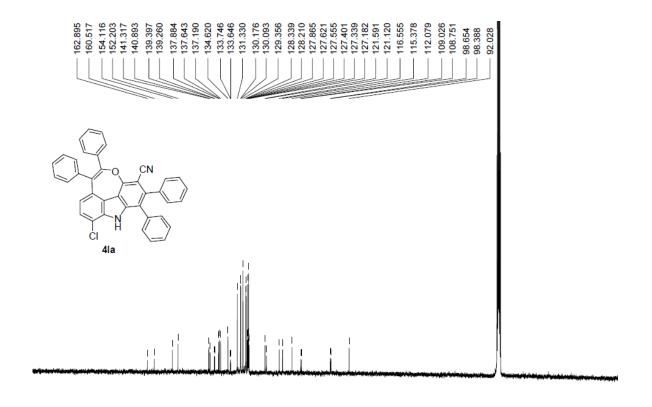


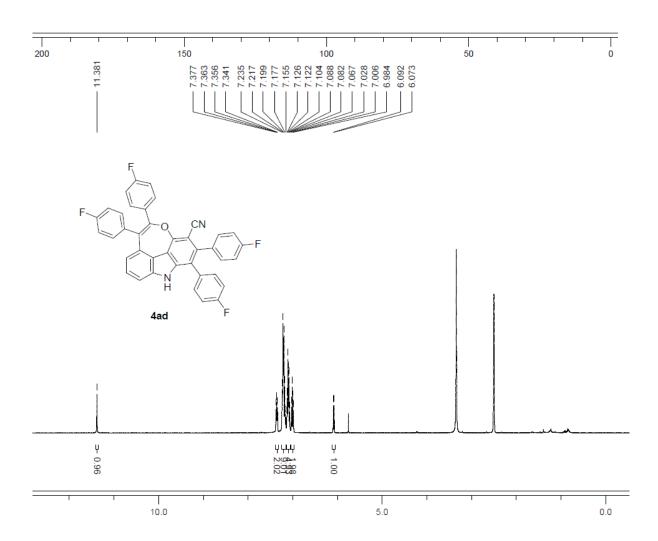


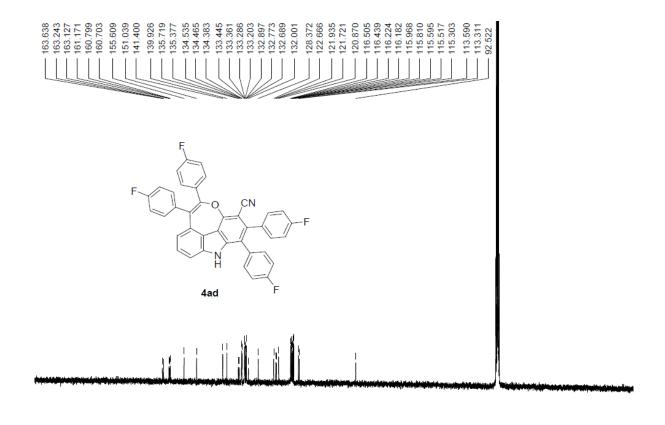


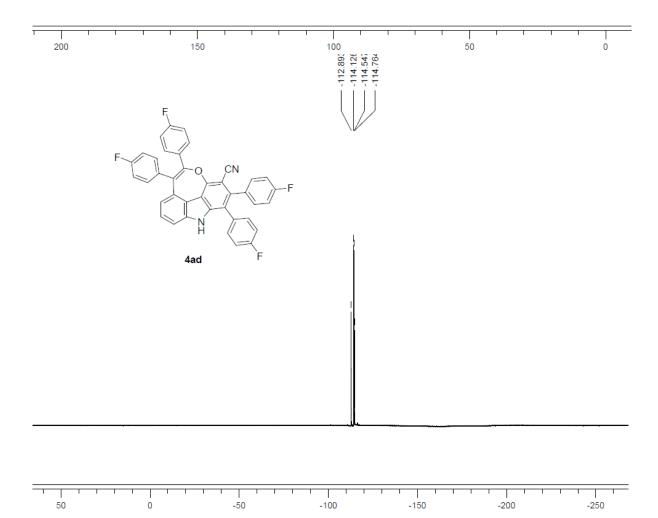


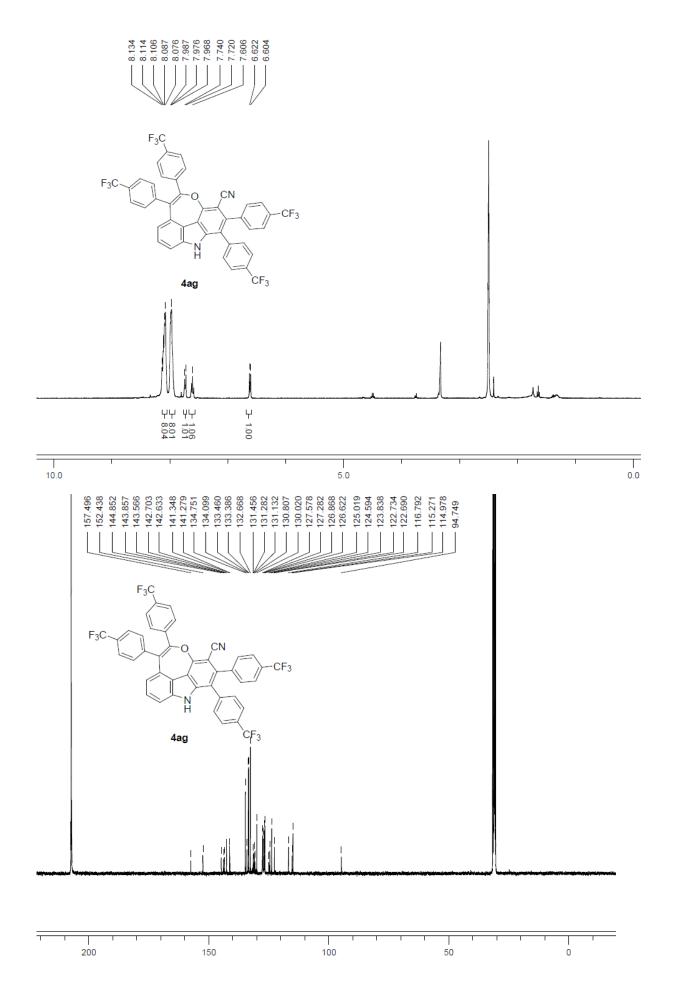


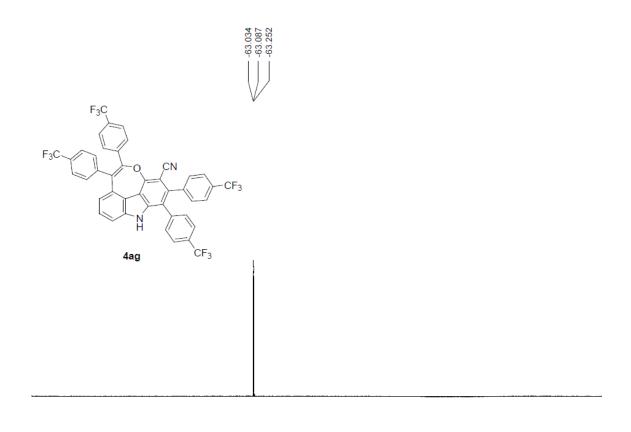


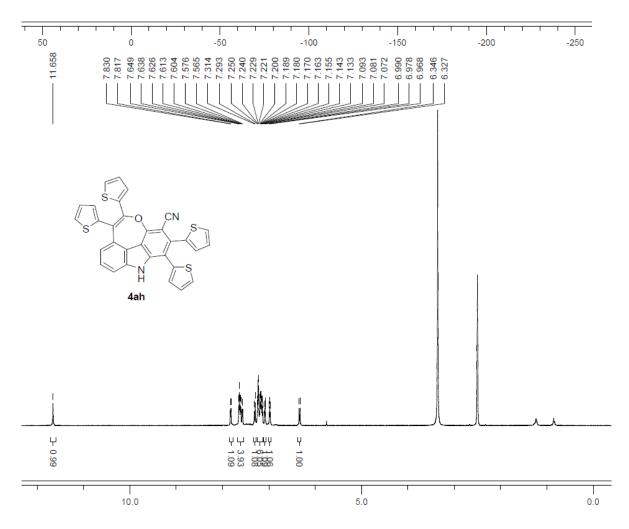


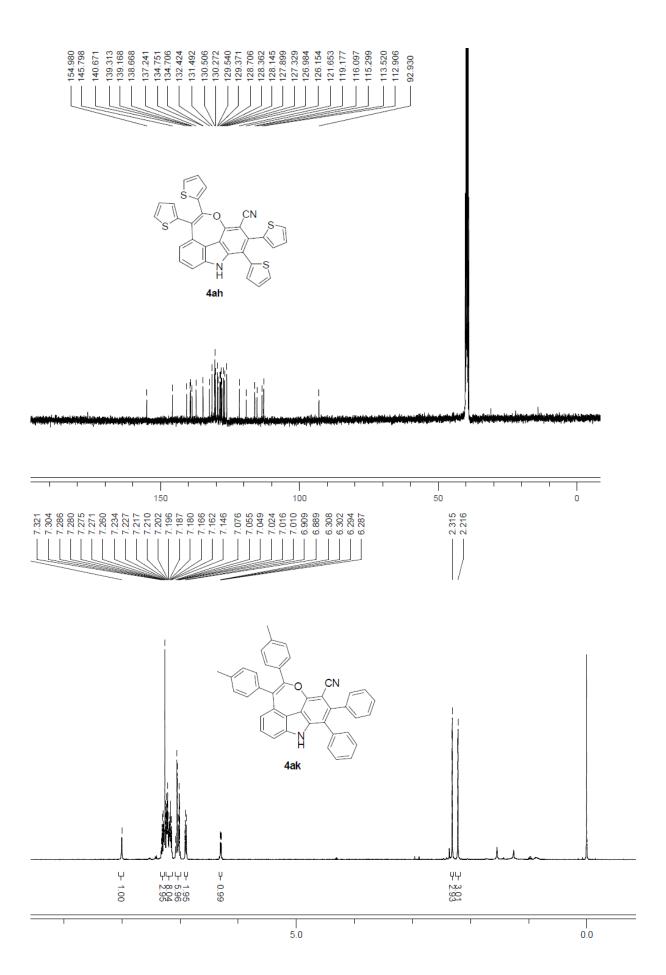


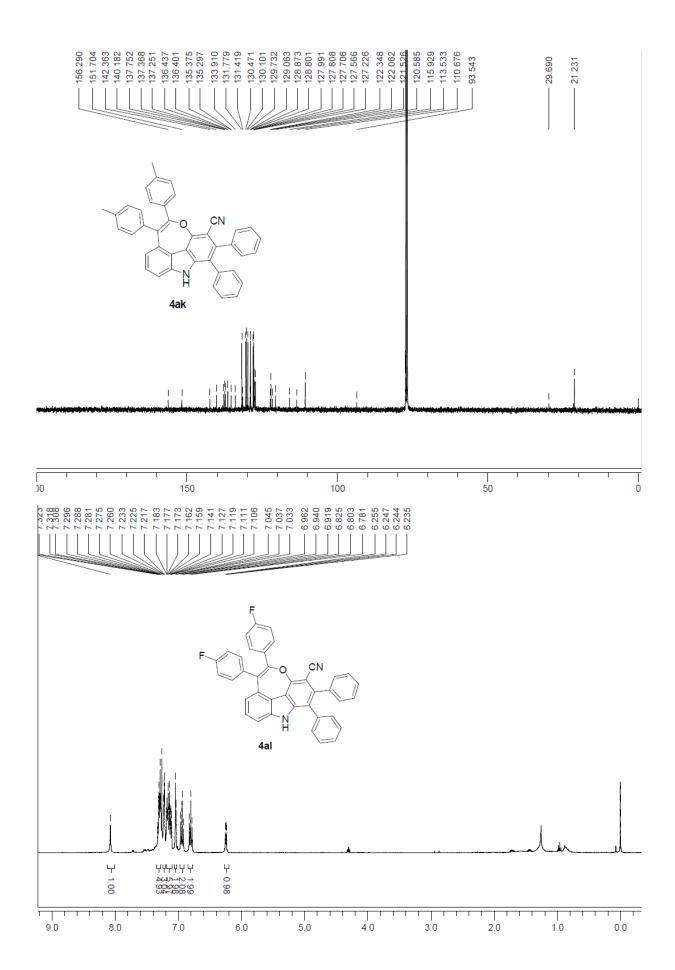


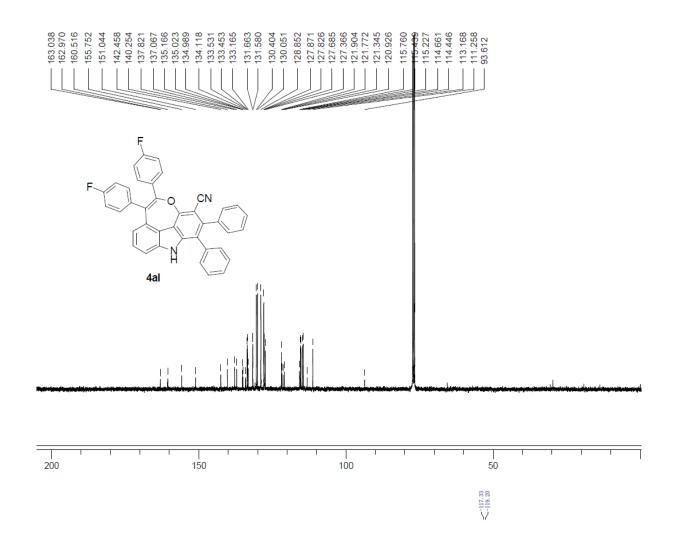


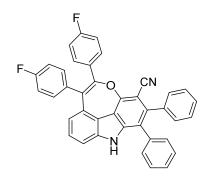


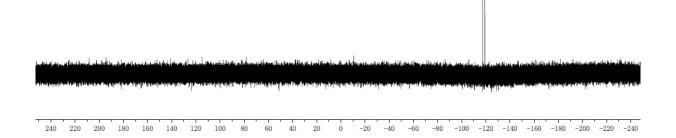


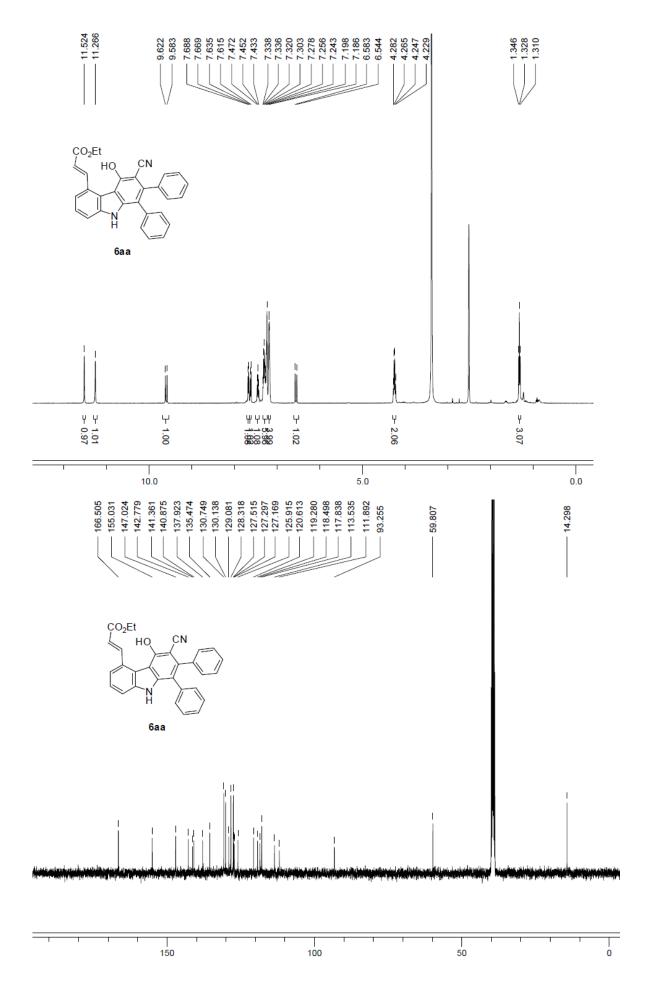


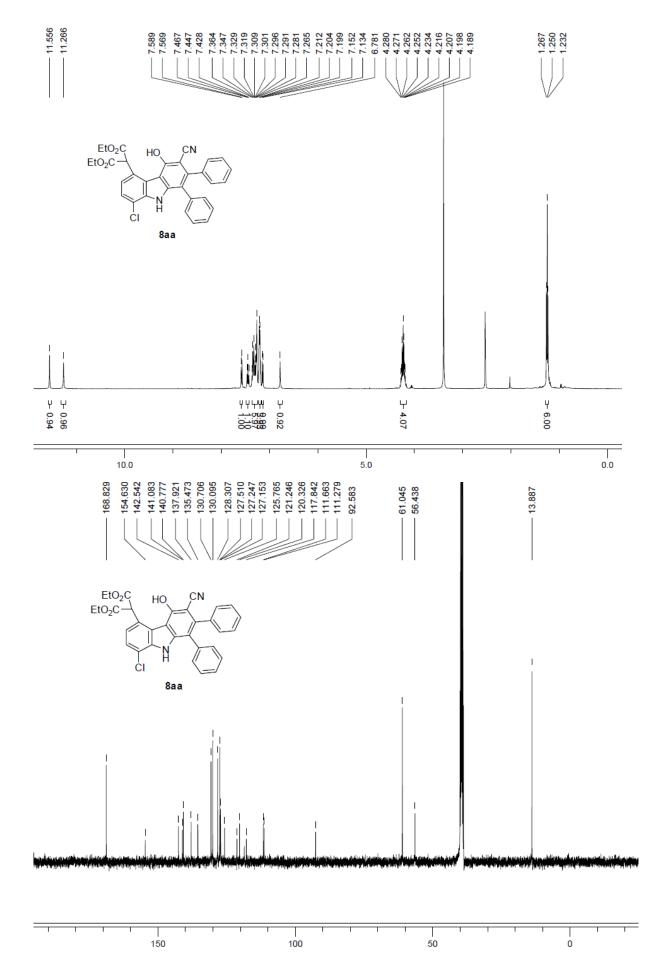












References:

- 1. C. White, A. Yates and P. M. Maitlis, *Inorg. Synth.* 1992, 29, 228.
- 2. J. Slätt, I. Romero and J. Bergman, Synthesis 2004, 16, 2760.