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Two-zone chemical vapor deposition (2Z-CVD) 

The 2Z-CVD system consisted of a quartz tube (ϕ 26 mm, 86 cm) as the reactor; a rotary 

pump; which can evacuate the system to less than 7 × 104 Torr; a two-zone electric 

furnace with a temperature controller; an Ar gas flow system with a mass-flow controller; 

and a mantle heater for evaporating the monomer. The quartz tube was cleaned by 

annealing at 1000 °C for 20 min for removing impurities, which deactivates radicals. The 

precursor (40 μg, prepared by casting a 120 μL solution, 0.33 mg·mL1 in CHCl3) in a 

quartz boat and the Au(111)-deposited mica or glass substrate were placed in the quartz 

tube. Second, Ar was fed into the quartz tube at a flow rate of 500 sccm, resulting in a 

vacuum of 1 Torr. GNRs were synthesized in two steps: First, the temperature of the 

quartz tube (zone 2) was set to 250 °C, with the subsequent evaporation of the precursors 

by heating to approximately 245 °C using the mantle heater. The path of the monomers 

through the quartz tube (zone 1) was heated to 350 °C; in the second stage, the 

temperature of zone 2 was increased for converting the polymers into GNRs by interchain 

fusion.  

 

Scanning tunneling microscopy (STM)  

STM measurements were performed in the current-constant mode using a commercial 

instrument (PicoSPM; Keysight Technologies Inc., formerly Molecular Imaging) under 

Ar at room temperature.1 All STM images were recorded at a tip bias of 0.2 V and a 

constant current of 5–20 pA. An electrochemically etched Pt–Ir (80:20) wire was used as 

the tip. 

 

Raman spectroscopy  

Raman spectra were recorded using a laser Raman microscope (LV-RAM500/532; 

Lambda Vision Inc.) with a laser emitting at 532 nm. A 0.75/50× microscope objective 

was used. The diameter of the laser spot is considered in the order of 1 μm. Raman 

spectra were taken from the different spots of the same sample annealed at different 

temperatures. Overall, we recorded a spectrum three times for each sample at 
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different positions. The typical Raman integration time was 10 s. The spectra showed 

a good reproducibility. 

 

Au(111) substrates 

Au(111)-deposited glass and mica substrates were prepared using an e-beam vacuum-

deposition system. Evaporated gold was deposited on the mica or glass substrate, which 

was heated at 350 °C under a vacuum of 2 × 10−8 Torr. Deposition was performed at a 

rate of 0.5 Ås−1, up to a thickness of 30 nm. 

 

Fabrication of field-effect transistor (FET) and measurements 

Preparation of a hydrophobic SiO2/Si substrate 

Heavily doped n++ silicon substrates with a 300 nm thick SiO2 gate insulator (SiO2/Si) 

were converted into a hydrophobic surface as follows: First, SiO2/Si substrates were 

immersed in a mixture of an ammonia solution (1.0 mL, 28 w/w% in water), hydrogen 

peroxide (1.0 mL, 30w/w% in water), and 5 mL deionized water at 80 °C for 20 min, 

rinsed with deionized water, dried at 150 °C for 20 min, and irradiated by deep UV light 

for 15 min. Second, the substrates were immersed in an anhydrous toluene (4.0 mL) 

solution of chlorotrimethylsilane (40 μL) at 60 °C for 2 h in a glove box, rinsed with 

toluene (4 mL × 3), and dried at 150 °C for 10 min. 

 

GNR transfer  

The GNR/Au(111) glass substrate was immersed in water for separating the 

GNR/Au(111) film from the glass. Next, the GNR/Au(111) film was placed on the surface 

of a gold-etchant aqueous solution (10 mL), which contains KI (1.8 g) and I2 (120 mg). 

Most of the gold film disappeared after 2 min, and SiO2/Si was attached to the floating 

GNRs film. Another 4 min was required for completely etching gold, the GNR-

transferred SiO2/Si was withdrawn from the etchant solution, rinsed with deionized water, 

a saturated Na2SO3 aqueous solution (10.0 g Na2SO3 dissolved in 9.0 mL deionized 

water), and deionized water, followed by drying on a hot plate at 120 °C for 20 min. 

Finally, GNRs on the SiO2/Si substrate were annealed in a UHV chamber at 200 °C under 

a pressure of <10−8 Torr for 1 h to strengthen the adhesion of GNRs to the substrate. 

 

FET fabrication 

FETs were fabricated by electron-beam lithography using a JEOL JSM-7001 system 

equipped with BEAM DRAW (Tokyo Technology) at an acceleration voltage of 30 keV. 

A Pd pad electrode pattern (100 nm thickness, 200 μm × 200 μm pad, 50 μm gap) was 

deposited on the transferred GNR film via a mask (VECO 100 mesh Cu grid) by vacuum 

deposition. The GNR film on SiO2/Si was scratched off by an electrochemically 

sharpened Pt–Ir (80:20) needle, affording isolated channels. To avoid the current leakage, 

the insulating mask pattern, except the channels, was prepared by electron-beam 

lithography on a negative resist (4-methyl-1-acetoxycalix[6]arene, a 2 wt% 
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chlorobenzene solution) and development by chlorobenzene. The Pd gap electrode 

pattern was prepared by electron-beam lithography on a spin-coated positive resist 

(ZEP520A), palladium metal deposition (10.0 nm), and lift-off by the immersion in N-

methyl-2-pyrrolidone. 

 

I–V measurements 

FET devices were set in a vacuum chamber (5 × 10−6 Torr) of a three-terminal probe 

station. All electrical measurements were performed using a semiconductor 

characterization system (4200-SCS; Keithley Instruments Inc.) at room temperature. 

Carrier mobilities were calculated according to the equation used for transconductance 

measurements.2 

 
 

Here, L and W denote the length (1 μm) and width (500 nm) of the source and drain 

electrodes, respectively. C denotes the capacitance of 300 nm thick SiO2 dielectrics (11.6 

n Fcm−2).3 VDS (-30 V) denotes the drain–source voltage. IDS denotes the drainsource 

current. VGS denotes the gate–source voltage.  
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Figure S1. Histogram of PPP chains length distribution from two different samples 

including Fig. 2a. 

 

 
 

Figure S2. STM images of GNRs on Au(111) at different position after annealing at 600 

°C which are used for statistical analysis in Figure 3a. 
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Figure S3. STM images of PPP annealed at 500 °C (a and b) and 550 °C (c and d). Cross 

sectional analysis of the line in (b and d) indicating the number of fused PPP chains 

(denoted by nP) 
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Figure S4. Raman spectra of the materials grown by 2Z-CVD on Au(111) supplied with 

40 μg of the DBTP precursor. (a) PPP chains produced at 250 °C. (b) GNRs annealed at 

600 °C on Au(111). The three intense peaks between 1200 and 1600 cm-1 are associated 

with the edge C-H in-plane bending mode (~1220 cm-1), the inter-ring C-C stretching 

mode (~1280 cm-1) and the ring C-C stretching mode (~1600 cm-1). 

 

 

 
 

Figure S5. Histogram of chains in fusion distribution based on Fig. 2d, which indicate 

19.4% PPP chains remain after annealing at 600 °C. 
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Table S1. Calculated width of the reported GNRs fabricated by the bottom-up routes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Chemical Structure Calcd. width 

 

~1.19 nm4 

 

~1.64 nm5 

 

~1.91 nm6 

 

~1.82 nm7 

 

~1.41 nm8 

 

~1.43 nm9 
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9. L. Talirz, H. Söde, T. Dumslaff, S. Wang, J. R. Sanchez-Valencia, J. Liu, P. Shinde, C. 

A. Pignedoli, L. Liang, V. Meunier, N. C. Plumb, M. Shi, X. Feng, A. Narita, K. 

Müllen, R. Fasel and P. Ruffieux, ACS Nano, 2017, 11, 1380. 


