Supporting Information

Fe₂O₃ nanoparticles anchored on 2D kaolinite with enhanced antibacterial activity

Mei Long, ab Yi Zhang, ab Zhan Shu, ab Aidong Tang, C Jing Ouyang ab and Huaming Yang abd,*

^a Centre for Mineral Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China

^b Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha 410083, China

^c School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

^d State Key Lab of Powder Metallurgy, Central South University, Changsha 410083, China

* Corresponding author, Email: hmyang@csu.edu.cn, Fax: 86-731-88830549, Tel.: 86-731-88710804

Table of Contents

Experimental Details	S3-5
FTIR Spectra and N ₂ Adsorption/Desorption Isotherm Data	S5-6
XPS Data	S6-7
SEM Images of Kln and Kln _{KAc} Data	S7
Table S1	S8
Table S2	S8
Fig. S1	S8
Fig. S2	S9
Fig. S3	S9
Fig. S4	S10
Fig. S5	S10
Fig. S6	S10
Fig. S7	S11
Fig. S8	S11
Fig. S9	S12
Fig. S10	S12
Fig. S11	S12

Experimental Details

Materials. Kaolinite was obtained from China Kaolin Clay Co.Ltd (Suzhou, China). The chemical composition of the sample in mass% was as follows: SiO₂, 53.27; Al₂O₃, 42.46; Fe₂O₃, 0.476; MgO, 0.155; CaO, 0.09; K₂O, 0.542; TiO₂, 0.333; P₂O₅, 0.257. Potassium acetate (CH₃COOK) and ferric chloride hexahydrate (FeCl₃·6H₂O) were purchased from Sinopharm Chemical Reagent Co. Ltd (Shanghai, China). All reagents were used as received without further purification.

Synthesis of Kln_{KAc}. A mixture containing 4 g kaolinite and 10 g potassium acetate was manually grinded for 0.5 h and a slurry obtained, followed by adding 10 wt.% deionized water under stirring for 10 min. Subsequently, the slurry was maintained at 30 °C for 72 h. The product was separated, washed three times with ethyl alcohol and dried at 60 °C, labeled as Kln_{KAc}.

Preparation of Fe₂O₃-Kln_{KAc}. 150 mL 0.4 mol L⁻¹ NaOH was added dropwise to 100 mL of 0.4 mol L⁻¹ FeCl₃ solution under vigorously stirring at 70 °C. Then, the mixture was cooled and aged for 24 h at room temperature, labeled as Fe(III) polyhydroxy cations. 1 g Kln_{KAc} was dispersed in the prepared 50 mL Fe(III) polyhydroxycations solution and stirred at 60 °C for 72 h. The pH values were adjusted by 5 M NaOH solution. After separation and dry, the precipitate (FeOOH-Kln_{KAc}) was calcined at 250 °C for 1 h, 350 °C for 1 h and 550 °C for 4 h in air with a heating rate of 5 °C/min, labeled as Fe₂O₃-Kln_{KAc}.

Characterization. The crystal structure of the obtained samples were analyzed by X-ray diffractometer (RIGAKU D/max-2550 VB+) using Cu K α radiation (λ = 0.15406 nm) at a

scanning rate of 0.02°/s. The morphology of samples was observed by field emission scanning electron microscopy (FESEM, TESCAN MIRA3 LMU), transmission electron microscope (TEM) and high-resolution transmission electron microscopy (HRTEM) images (JEOL JEM-2100F microscope). The iron amount was measured by inductively coupled plasma atomic emission spectrometery (ICP-AES) on VISTAAX. Fourier transform infrared (FTIR) spectra of the samples were obtained between 4000 and 400 cm⁻¹ on a FTIR spectrophotometer (Nicolet Nexus 670). X-ray photoelectron spectroscopy (XPS) measurements of samples were conducted on a Thermo SCIENTIFIC ESCALAB 250Xi spectrometer. Nitrogen gas adsorption-desorption isotherms were measured using an ASAP 2020 Surface Area analyzer. Zeta potential of the samples was determined by a particle electrophoresis instrument using a Zeta sizer Delsa440sx. Static water contact angle (CA) measurement was performed using a Spinning Drop Interface tensiometer (TX500H).

Antibacterial activity. Escherichia coli Dh5 α (*E. coli*) was selected to evaluate the antibacterial properties of Fe₂O₃-Kln_{KAc} samples by the colony count method. 150 mg Fe₂O₃-Kln_{KAc} powders were added into 10 mL Luria-Bertani broth (LB), then well mixed with 100 µL bacteria dilutions (about 10^{5~6} CFU/mL). The mixture was incubated under constant shaking at 37 °C, 220 rpm for 3.5 h. 100 µL of each dilution was dispersed onto LB agar plates. Colonies on the plates were counted after incubation at 37 °C for 16 h.

Cell morphology observation with SEM. A mixture of 10 mL of *E. coli* bacteria suspension (about 10^{5-6} CFU/mL) and 1.5g Fe₂O₃-Kln_{KAc} were incubated at 37 °C for 5 h. The bacteria treated with Fe₂O₃-Kln_{KAc} were washed with 0.1 M phosphate buffer, and

then fixed and stained with 2.5% glutaraldehyde. Then the sample was dehydrated and dried. The dried sample was sputter-coated with gold for scanning electron microscopy (SEM) imaging by the HELIOS NanoLab 600i Electronic dual micro electron microscopy.

EPR measurements. 15 mg Fe_2O_3 -Kln_{KAc} sample was added into a 1 mL solution containing 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) (0.02 M). The mixture was incubated for 20 min, filtrated for electron paramagnetic resonance (EPR) spectroscopy measurements using FA200 electron paramagnetic resonance spectrometer.

FTIR Spectra and N₂ Adsorption/Desorption Isotherm Data

As shown in Fig. S4a, Kln_{KAc} exhibits two types of hydroxyls which were assigned to Kln. The band at 3694, and two weak bands at 3667 and 3645 cm⁻¹ were ascribed to the inner surface hydroxyls, and the sharp band at 3618 cm⁻¹ was assigned to the -OH stretching of inner hydroxyl.¹ In the lower frequency region from 1600 to 400 cm⁻¹, the bands corresponded to Si-O stretching vibration (1107, 1038 cm⁻¹), Al-OH bending vibration (912 cm⁻¹) and -OH translational vibration (698 cm⁻¹), and Al-O, Si-O vibrations (540, 471 cm⁻¹), respectively.¹ Two new bands belonging to acetate ion at 1605 cm⁻¹, 1418 cm⁻¹ are detected, which is attributed to the stretching vibration of C=O and O-C-O, respectively. These variations in the stretching region, being consistent with the XRD results, implied KAc has been readily intercalate within the Kln structure. For Fe₂O₃-Kln_{KAc} samples, the bands of -OH stretching at 3694, 3667, 3645, and 3618 cm⁻¹ all disappeared due to the calcination treatment of sample. The bands at 540 and 471 cm⁻¹

corresponding to Al-O, Si-O vibrations became broadened due to the Fe-O of the loaded Fe₂O₃ nanoparticles (Fig. S7c).

Kln_{KAc} and Fe₂O₃-Kln_{KAc} composites exhibited type-IV adsorption isotherms (Fig. S4b). The Kln_{KAc} has a specific surface area of 28.6 m²/g, a total pore volume of 0.07 mL/g, and a average pore diameter 9.4 nm. The specific surface area of Fe₂O₃-Kln_{KAc} composites increased sharply to 44.3, 57.8, and 156.0 m²/g with the total pore volume of 0.19, 0.26, and 0.41 mL/g, and average pore diameter 17.3, 18.1, and 10.4 nm for Fe₂O₃-Kln_{KAc}-3, Fe₂O₃-Kln_{KAc}-5, and Fe₂O₃-Kln_{KAc}-7, respectively. The specific surface area of Fe₂O₃-Kln_{KAc} area of Fe₂O₃-Kln_{KAc}-8, Fe₂O₃-Kln_{KAc}-5, and Fe₂O₃-Kln_{KAc}-7, respectively. The specific surface area of Fe₂O₃-Kln_{KAc}-8, Fe₂O₃-Kln_{KAc}-8, and higher than that of pure Fe₂O₃ sample (19.4 m² g⁻¹) (Fig. S7d&e).

XPS Data

XPS Data

X-ray photoelectron spectra (XPS) measurements were taken to determine the surface elemental composition and chemical status of the Fe_2O_3 -Kln_{KAc} composites. The wide survey scan of XPS spectra were taken, and the peaks of Fe, O for Fe_2O_3 , and O, Si, and Al for Kln are observed from the surface of the Fe_2O_3 -Kln_{KAc} composites (Fig. S5a, ESI†). The carbon peak could be attributed to adventitious carbon on the surface of samples. As shown in the high-resolution spectra of Fe 2p (Fig. 1b), the binding energies of $Fe_2p_{2/3}$, $Fe_2p_{1/2}$ and a satellite peak of pure Fe_2O_3 were 710.8, 724.3 and 719.2 eV, respectively.² After the Fe_2O_3 assembling on the Kln_{KAC} nanosheets, $Fe_2p_{2/3}$ and $Fe_2p_{1/2}$ peaks shifted to 711.5 and 725.2 eV, respectively, higher than the corresponding values

of pure Fe₂O₃. The O component with a peak at 530.1 eV for Fe₂O₃-Kln_{KAc} composite was attributed to the lattice oxygen species of Fe₂O₃ (Fig. S5b, ESI[†]).² In addition, compared to the high-resolution spectra of Al 2p and Si 2p for raw Kln, the binding energy due to octahedral Al^{VI} shifted from 74 eV to 74.6 eV in the Fe₂O₃-Kln_{KAc} composite, while the Si 2p peak showed no obvious shift (Fig. 1b and Fig. S5c, ESI[†]).³ Combined with the abundant Al-OH in the crystal structure of Kln, it could be concluded that Fe₂O₃ nanoparticles might be immobilized on Kln_{KAc} with the Al-O-Fe bond.

SEM Images of Kln and Kln_{KAc} Data

The pristine Kln had a typical pseudo-hexagonal morphology with mean diameter about 400 nm and mainly composed of large and irregular stacking particles (Fig. S5a). After intercalated by potassium acetate (Fig. S5b), The Kln_{KAc} had a layered structure with larger diameter/thickness ratio compared to original Kln, which indicated that the original Kln agglomerates had been delaminated. Meanwhile, the individual sheets still kept a typical pseudo-hexagonal shape with regular edge and smooth surface.

References

- (a) P. Hu and H. Yang, *Appl. Clay Sci.*, 2013, 74, 58-65; (b) H. F. Cheng, S. Zhang, Q. F. Liu, X.
 G. Li and R. L. Frost, *Appl. Clay Sci.*, 2015, 116, 273-280.
- 2 (a) A. A. Tahir, K. G. U. Wijayantha, S. Saremi-Yarahmadi, M. Mazhar and V. McKee, *Chem. Mater.*, 2009, 21, 3763-3772; (b) M. Kaloti and A. Kumar, *J. Phy. Chem. C*, 2016, 120, 17627-17644.
- 3 (a) A. Olaya, G. Blanco, S. Bernal, S. Moreno and R. Molina, *Appl. Catal., B*, 2009, 93, 56-65; (b)
 J.-L. Lin, C. Huang, C.-J. M. Chin and J. R. Pan, *Water Res.*, 2009, 43, 4285-4295.

	Reaction time (days)				Mass ratio of water		
Sample	1	3	5	7	0%	10%	20%
Intercalated rate (%)	87.0	92.0	90.4	95.6	90.3	92.0	86.4

 $\label{eq:stable} \textbf{Table S1} \quad \text{The intercalated ratio of } Kln_{KAc} \text{ composites with different reaction time or mass ratio of water.}$

 Table S2
 The statistical number of antibacterial properties for different samples.

Sample	Control	Kln _{KAc}	Fe ₂ O ₃	Fe ₂ O ₃ -Kln _{KAc} -3	Fe ₂ O ₃ -Kln _{KAc} -5	Fe ₂ O ₃ -Kln _{KAc} -7
CFU/Plate	400±13	390±16	240±37	140±33	204±27	260±32
Cell Viability (%)	100±3	97.5±4	60±9	35±8	51±6	65±8

Fig. S1 Zeta-potential at various pH of Kln_{KAc}.

Fig. S2 XRD patterns of Kln_{KAc} with (a) different reaction time and (b) mass ratio of water.

Fig. S3 XRD patterns of the as-prepared FeOOH-Kln_{KAc}-3 and Fe_2O_3-Kln_{KAc}-3.

Fig. S4 (a) FTIR spectra, (b) Nitrogen adsorption/desorption isotherms and BJH pore size distribution (the insert graph) of Kln_{KAc} and Fe_2O_3 - Kln_{KAc} composites.

Fig. S5 (a) XPS survey spectra of Fe_2O_3 , Kln and Fe_2O_3 -Kln_{KAc} composites, and corresponding (b) O 1s and (c) Si 2p high-resolution XPS spectra.

Fig. S6 SEM images of (a) Kln, (b) Kln_{KAc} and (c) Fe_2O_3 -Kln_{KAc}-3.

Fig. S7 (a) SEM image, (b) XRD patterns, (c) FTIR spectroscopy, (d) Nitrogen adsorption/desorption isotherms and (e) pore size distribution, (f) Zeta-potential at various pH of Fe_2O_3 nanoparticles obtained in the same conditions as the Fe_2O_3 -Kln_{KAc}-3.

Fig. S8 Photographs showing E. coli colonies grown on agar plates with Kln_{KAc}, Fe₂O₃ and Fe₂O₃-Kln_{KAc} composites.

Fig. S9 (a) SEM images, (b) XRD patterns, (c) photographs showing *E. coli* colonies grown on agar plates, and (d) cell viability measurements of Fe_2O_3 -Kln_{KAc} composites prepared in different Fe^{3+} concentration at pH5.

Fig. S10 Wetting behavior of water droplets on Kln, Fe₂O₃-Kln_{KAc}-3, and Fe₂O₃ nanoparticles.

Fig. S11 EPR spectrum of Fe₂O₃-Kln_{KAc}-3 sample.