Supporting information

Enantioselective [3+2] Cycloaddition of Azomethine Ylides and Aldehydes via Ni/Bis(oxazoline)-Catalyzed Ring Opening of *N*-Tosylaziridines through Chirality Transfer Approach

Xingxing Wu, Wei Zhou, Hai-Hong Wu, * and Junliang Zhang* e-mail : jlzhang@chem.ecnu.edu.cn

Contents

General information	S2
Figure 1	S2
Table S1	S3
Table S2	S4
Table S3	S4
Synthesis of aziridines 1f-10	S5
Typical procedure for preparation of racemic 1,3-oxazolidines	S8
Typical procedure for Ni(ClO ₄) ₂ ·6H ₂ O/Bn-Box catalyzed cycloaddition of	
aziridine 1 with aldehyde 2	S8
Copies of HPLC spectra of racemic / chiral products	S 31
Copies of NMR spectra of products	S55

General information.

Infrared (IR) spectra were obtained using a Bruker tensor 27 infrared spectrometer. ¹H NMR spectra, ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer in chloroform-d₃. All signals are reported in ppm with the internal TMS signal at 0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, hep = heptet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration). Enantiomer ratios were determined using chiral HPLC analysis by comparison with authentic racemic materials. All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirrer bar. CICH₂CH₂Cl (DCE), CH₂Cl₂ (DCM) were freshly distilled from CaH₂; THF and toluene were freshly distilled from sodium metal prior to use. Solid aldehydes were used directly. All other liquid aldehydes were freshly distilled prior to use. Aziridine were prepared according to the literature (X. Wu, L. Li and J. Zhang, *Adv. Synth. Catal.*, 2012, **354**, 3485.).

Figure 1. ORTEP representation of 3lc (CCDC 895347).

		СНО								
$\begin{array}{c} Ts \\ N \\ CO_2Me \\ Ph \\ \hline CO_2Me \\ MeO \\ \hline OMe \\ \hline OMe \\ \hline OMe \\ \hline Solvent, 4Å MS \\ \hline OMe \\ \hline Solvent, 4Å MS \\ \hline OMe \\ \hline$										
	1a	Оме 2а	011		С ₆ H ₂ -(МеС 3аа	0)-3,4,5				
Entry	Lewis acid	\mathbf{L}^*	Solvent	Time (h)	Yield $(\%)^b$	Ee $(\%)^{c}$				
1	Ni(ClO ₄) ₂ ·6H ₂ O	L6	Toluene	3	83	11				
2	Ni(ClO ₄) ₂ ·6H ₂ O	L7	Toluene	3	71	3				
3	Ni(ClO ₄) ₂ ·6H ₂ O	L8	Toluene	3	81	racemic				
4	Ni(ClO ₄) ₂ ·6H ₂ O	L9	Toluene	3	83	42				
5	Ni(ClO ₄) ₂ ·6H ₂ O	L1	Toluene	3	81	88				
6	Ni(ClO ₄) ₂ ·6H ₂ O	L4	Toluene	3	79	70				

Table S1. Screening conditions of reaction between 1a and 2a using Pybox or Box as the chiral ligand.^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (1.5 equiv), Ni(ClO₄)₂/L (1/1.2, 5 mol%), and 100 mg of activated 4 Å MS in 2 ml of toluene at room temperature. ^{*b*} NMR yield of the crude product (using CH₂Br₂ as internal standard). ^{*c*} Determined by chiral-phase HPLC analysis.

$\begin{array}{c} Ts \\ Ph \\ CO_2Me \\ 1a \end{array} + \begin{array}{c} CHO \\ Lewis acid/L1 \\ Toluene, 4Å MS \end{array} \xrightarrow{Ph \\ CO_2Me \\ CO_2Me \\ CO_2Me \\ C_6H_4-Me-p \\ 3ac \end{array}$								
Entry	Lewis acid	Temp/Additive	Solvent	Time (h)	Yield (%)	Ee (%) ^c		
		(equiv)						
1	Ni(ClO ₄) ₂ ·6H ₂ O	rt/-	DCM	3	68	49		
2	Ni(ClO ₄) ₂ ·6H ₂ O	rt/-	DCE	3	67	57		
3	Ni(ClO ₄) ₂ ·6H ₂ O	rt/-	DME	24	trace	n.d.		
4	Ni(ClO ₄) ₂ ·6H ₂ O	-15 °C/-	toluene	12	73	53		
5	NiI ₂	rt/-	toluene	24	n.r.	n.d.		
6	Ni(OTf) ₂	rt/-	toluene	24	trace	n.d.		
7	Ni(BF ₄) ₂	rt/-	toluene	4	71	36		
8	Ni(ClO ₄) ₂ ·6H ₂ O	rt/LiI (0.05)	toluene	4	Trace	42		
9	Ni(ClO ₄) ₂ ·6H ₂ O	rt/P(O)Ph3 (0.20)	toluene	3	55	68		
10	Ni(ClO ₄) ₂ ·6H ₂ O	rt/Ca(ClO)2 (0.05)	toluene	3	68	55		
11	Ni(ClO ₄) ₂ ·6H ₂ O	rt/PhCOOH (0.20)	toluene	3	71	67		

Table S2. Screening reaction conditions using L1 as the chiral ligand.^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2c** (1.5 equiv), Lewis acid/**L1** (1/1.2, 5 mol%), and 100 mg of activated 4 Å MS in 2 ml of toluene at room temperature. ^{*b*} Yield of isolated product. ^{*c*} Determined by chiral-phase HPLC analysis. n.d. = not determined.

Table S3.	Screening	reaction	conditions	using	Pybox	as the	chiral	ligand. ^a
Idole De.	Servening	reaction	contaitions				U 1111 U 1	

Ph CO_2Me + CHO $Lewis acid/L$ Ph N CO_2Me $Toluene, 4Å MS$ O_2Me									
	1a	N 2	/le с		C ₆ H₄-Me- <i>p</i> 3ac				
Entry	Lewis acid	L*	Solvent	Time (h)	Yield $(\%)^b$	Ee (%) ^c			
1	Ni(ClO ₄) ₂ ·6H ₂ O	L6	Toluene	48	12	39			
2	Ni(ClO ₄) ₂ ·6H ₂ O	L7	Toluene	48	trace	n.d.			
3	Ni(ClO ₄) ₂ ·6H ₂ O	L8	Toluene	48	trace	n.d.			
4	Ni(ClO ₄) ₂ ·6H ₂ O	L9	Toluene	48	19	23			

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2c** (1.5 equiv), Ni(ClO₄)₂/**L** (1/1.2, 5 mol%), and 100 mg of activated 4 Å MS in 2 ml of toluene at room temperature. ^{*b*} NMR yield of the crude product (using CH₂Br₂ as internal standard). ^{*c*} Determined by chiral-phase HPLC analysis. n.d. = not determined.

Synthesis of aziridines 1f-1o.

Aziridines were prepared according to the literature (X. Wu, L. Li and J. Zhang, *Adv. Synth. Catal.*, 2012, **354**, 3485).

1. Dineopentyl 3-phenyl-1-tosylaziridine-2,2-dicarboxylate (1f).

White solid, mp = 96 – 98 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, *J* = 8.4 Hz, 2 H); 7.34 (d, *J* = 8.4 Hz, 2 H); 7.18 – 7.26 (m, 5 H); 4.92 (s, 1 H); 4.05 (d, *J* = 10.4 Hz, 1 H); 4.00 (d, *J* = 10.4 Hz, 1 H); 3.64 (d, *J* = 10.4 Hz, 1 H); 3.44 (d, *J* = 10.4 Hz, 1 H); 2.45 (s, 3 H); 0.99 (s, 9 H); 0.66 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.2, 162.6, 144.6, 136.7, 131.2, 129.7, 128.9, 128.5, 127.7, 126.9, 76.5, 75.3, 57.8, 49.7, 31.4, 30.9, 26.4, 25.9, 21.6 ppm. IR (neat) *v*/cm⁻¹ 2959, 2917, 2869, 1739, 1724, 1598, 1476, 1462, 1402, 1375, 1343, 1311, 1298, 1279, 1266, 1166, 1126, 1092, 1045, 981, 968, 935. HRMS (ESI): C₂₇H₃₅NNaO₆S [M+Na]⁺ calcd: 524.2077, found: 524.2139.

2. Dineopentyl 3-(4-isopropylphenyl)-1-tosylaziridine-2,2-dicarboxylate (1g).

White solid, mp = 80 – 83 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, *J* = 8.4 Hz, 2 H); 7.34 (d, *J* = 8.4 Hz, 2 H); 7.15 (d, *J* = 8.0 Hz, 2 H); 7.10 (d, *J* = 8.0 Hz, 2 H); 4.90 (s, 1 H); 4.05 (d, *J* = 10.4 Hz, 1 H); 3.99 (d, *J* = 10.4 Hz, 1 H); 3.70 (d, *J* = 10.4 Hz, 1 H); 3.43 (d, *J* = 10.4 Hz, 1 H); 2.83 (hep, *J* = 6.8 Hz, 1 H); 2.44 (s, 3 H); 1.17 (d, *J* = 6.8 Hz, 6 H); 0.99 (s, 9 H); 0.62 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.3, 162.8, 149.7, 144.5, 136.8, 129.6, 128.6, 127.7, 126.8, 126.6, 76.4, 75.3, 57.8, 49.9, 33.9, 31.4, 30.9, 26.3, 25.9, 23.8, 21.7 ppm. IR (neat) v/cm⁻¹ 2599, 2905, 2871, 1756, 1703, 1608, 1594, 1479, 1466, 1429, 1401, 1369, 1341, 1293, 1272, 1247, 1224, 1194, 1183, 1164, 1116, 1091, 1030, 1018, 998, 936, 918. HRMS (ESI): C₃₀H₄₁NNaO₆S [M+Na]⁺ calcd: 566.2547, found: 566.2573.

3. Dineopentyl 3-(*p*-tolyl)-1-tosylaziridine-2,2-dicarboxylate (1h).

White solid, mp = 89 – 92 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, *J* = 8.4 Hz, 2 H), 7.33 (d, *J* = 8.4 Hz, 2 H), 7.12 (d, *J* = 8.0 Hz, 2 H), 7.05 (d, *J* = 8.0 Hz, 2 H), 4.87 (s, 1 H), 4.03 (d, *J* = 10.4 Hz, 1 H), 3.99 (d, *J* = 10.4 Hz, 1 H), 3.65 (d, *J* = 10.4 Hz, 1 H), 3.46 (d, *J* = 10.4 Hz, 1 H), 2.44 (s, 3 H), 2.27 (s, 3 H), 0.99 (s, 9 H), 0.68 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.3, 162.7, 144.5, 138.7, 136.8, 129.6, 129.1, 128.2, 127.7, 126.8, 76.5, 75.3, 57.8, 49.7, 31.4, 31.0, 26.4, 25.9, 21.6, 21.1 ppm. IR (neat) v/cm⁻¹ 2977, 2954, 2868, 1738, 1724, 1686, 1597, 1519, 1478, 1402, 1377, 1365, 1342, 1311, 1297, 1279, 1266, 1168, 1121, 1092, 1043, 1022, 981, 967, 931. HRMS (ESI): C₂₈H₃₇NNaO₆S [M+Na]⁺ calcd: 538.2234, found: 538.2262.

4. Dineopentyl 3-(*m*-tolyl)-1-tosylaziridine-2,2-dicarboxylate (1i).

White solid, mp = 101 – 102 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.97 (d, *J* = 8.4Hz, 2H); 7.34 (d, *J* = 8.0 Hz, 2 H); 6.96 – 7.18 (m, 4 H); 4.87 (s, 1H); 4.04 (d, *J* = 10.4 Hz, 1 H); 3.99 (d, *J* = 10.8 Hz, 1 H); 3.65 (d, *J* = 10.4 Hz, 1 H); 3.45 (d, *J* = 10.4 Hz, 1 H); 2.45 (s, 3 H), 2.26 (s, 3 H); 0.99 (s, 9 H); 0.67 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ = 163.3, 162.7, 144.6, 138.2, 136.6, 131.1, 129.6, 128.4, 127.8, 127.6, 123.8, 76.5, 75.3, 57.7, 49.6, 31.4, 31.0, 26.4, 25.9, 21.7, 21.2 ppm. IR(neat) v/cm⁻¹ 2955, 2349, 1759, 1742, 1560, 1520, 1367, 1342, 1312, 1293, 1255, 1234, 1190, 1162, 1125, 1068, 1010, 974, 931, 920. HRMS (ESI): C₂₈H₃₇NNaO₆S [M+Na]⁺ calcd: 538.2234, found: 538.2262.

5. Dineopentyl 3-(4-nitrophenyl)-1-tosylaziridine-2,2-dicarboxylate (1j).

White solid, mp = 109 – 111 °C, ¹H NMR (400 MHz,CDCl₃): δ = 8.14 (d, *J* = 8.4 Hz, 2 H); 7.96 (d, *J* = 8.4 Hz, 2 H); 7.44 (d, *J* = 8.4 Hz, 2 H); 7.37 (d, *J* = 8.4 Hz, 2 H); 4.94 (s, 1 H); 4.06 (d, *J* = 10.4 Hz,1 H); 4.01 (d, *J* = 10.4 Hz, 1 H); 3.64 (d, *J* = 10.4 Hz, 1 H); 3.48 (d, *J* = 10.4 Hz,1 H); 2.47 (s, 3 H); 1.00 (s, 9 H); 0.69 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ = 162.6, 162.1, 148.3, 145.2, 138.4, 136.0, 129.9, 128.1, 127.8, 123.7, 76.9, 75.7, 57.9, 48.3, 31.4, 31.0, 26.3, 25.9, 21.7 ppm. IR (neat) v/cm⁻¹ 2960, 2886, 2871, 2823, 2361, 2341, 1745, 1608, 1535, 1477, 1451, 1402, 1369, 1357, 1313, 1271, 1252, 1234, 1192, 1171, 1119, 1073, 1034, 1013, 991, 962, 941, 930. HRMS (ESI): C₂₇H₃₄N₂NaO₈S [M+Na]⁺ calcd: 569.1907, found: 569.1928.

6. Dineopentyl 3-(4-chlorophenyl)-1-tosylaziridine-2,2-dicarboxylate (1k).

White solid, mp = 121 - 124 °C, ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95$ (d, J = 8.4 Hz, 2 H); 7.35 (d, J = 8.4 Hz, 2 H); 7.24 (d, J = 8.4 Hz, 2 H); 7.18 (d, J = 8.4 Hz, 2 H); 4.86 (s, 1 H); 4.04 (d, J = 10.4 Hz, 1 H); 3.99 (d, J = 10.4 Hz, 1 H); 3.66 (d, J = 10.4 Hz, 1 H); 3.47 (d, J = 10.4 Hz, 1 H); 2.45 (s, 3 H); 0.99 (s, 9 H); 0.69 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.0$, 162.4, 144.9, 136.3, 134.9, 129.7, 128.7, 128.3, 127.7, 76.6, 75.5, 57.7, 48.8, 31.4, 31.0, 26.3, 25.9, 21.7 ppm. IR (neat) v/cm⁻¹ 2954, 2908, 2870, 1740, 1726, 1658, 1597, 1494, 1478, 1402, 1377, 1365, 1323, 1307, 1288, 1168, 1120, 1091, 1042, 1017, 981, 966, 951. HRMS (ESI): C₂₇H₃₄CINNaO₆S [M+Na]⁺ calcd: 558.1688, found: 558.1725.

7. Dineopentyl 3-(4-bromophenyl)-1-tosylaziridine-2,2-dicarboxylate (11).

White solid, mp = 120 - 123 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, *J* = 8.4 Hz, 2 H); 7.39 (d, *J* = 8.4 Hz, 2 H); 7.35 (d, *J* = 8.0 Hz, 2 H); 7.12 (d, *J* = 8.0 Hz, 2 H);

4.84 (s, 1 H); 4.04 (d, J = 10.4 Hz, 1 H); 3.99 (d, J = 10.4 Hz, 1 H); 3.67 (d, J = 10.4 Hz, 1 H); 3.47 (d, J = 10.4 Hz, 1 H); 2.45 (s, 3 H); 0.99 (s, 9 H); 0.69 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.0$, 162.4, 144.9, 136.4, 131.7, 130.3, 129.7, 128.6, 127.7, 123.1, 76.6, 75.5, 57.7, 48.9, 31.4, 31.0, 26.3, 25.9, 21.7 ppm. IR (neat) v/cm⁻¹ 2955, 2869, 1740, 1725, 1591, 1574, 1489, 1479, 1467, 1377, 1366, 1341, 1323, 1306, 1288, 1264, 1167, 1121, 1091, 1071, 1043, 1013, 980, 931. HRMS (ESI): C₂₇H₃₄BrNNaO₆S [M+Na]⁺ calcd: 602.1182, found: 602.1184.

8. Dineopentyl 3-(3-bromophenyl)-1-tosylaziridine-2,2-dicarboxylate (1m)

White solid, mp = 85 – 88 °C, ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, *J* = 8.0 Hz, 2 H); 7.32 – 7.44 (m, 4 H); 7.08 – 7.22 (m, 2 H); 4.84 (s, 1 H); 4.05 (d, *J* = 10.4 Hz, 1 H); 3.99 (d, *J* = 10.4 Hz, 1 H); 3.68 (d, *J* = 10.4 Hz, 1 H); 3.47 (d, *J* = 10.4 Hz, 1 H); 2.46 (s, 3 H); 0.99 (s, 9 H); 0.70(s, 9 H); ¹³C NMR (100 MHz, CDCl₃): δ = 162.9, 162.4, 144.9, 136.3, 133.6, 132.1, 130.1, 129.9, 129.8, 127.8, 125.7, 122.6, 75.5, 57.8, 48.5, 31.4, 31.0, 26.4, 26.0, 21.7 ppm. IR(neat) v/cm⁻¹ 2961, 2872, 2363, 2332, 1744, 1598, 1570, 1477, 1370, 1345, 1323, 1275, 1253, 1228, 1194, 1166, 1123, 1091, 1040, 994, 927. HRMS (ESI): C₂₇H₃₄BrNNaO₆S [M+Na]⁺ calcd: 602.1182, found: 602.1184.

9. Dineopentyl 3-(naphthalen-2-yl)-1-tosylaziridine-2,2-dicarboxylate (1n).

White solid, mp = 135 - 137 °C, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (d, J = 8.4 Hz, 2 H); 7.68 – 7.84 (m, 4 H); 7.42 – 7.54 (m, 2 H); 7.29 – 7.42 (m, 3 H); 5.06 (s, 1 H); 4.07 (d, J = 10.4 Hz, 1 H); 4.02 (d, J = 10.4 Hz, 1 H); 3.57 (d, J = 10.4 Hz, 1 H); 3.41 (d, J = 10.4 Hz, 1 H); 2.45 (s, 3 H); 1.01 (s, 9 H); 0.60 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 163.2$, 162.7, 144.7, 136.6, 133.4, 132.9, 129.7, 128.7, 128.4, 128.0, 127.8, 127.7, 126.53, 126.49, 126.4, 124.0, 76.6, 75.4, 57.9, 49.8, 31.4, 30.9, 26.4, 25.9, 21.7 ppm. IR(neat) v/cm⁻¹ 2973, 2887, 1756, 1733, 1697, 1597, 1478, 1405, 1369, 1332, 1314, 1292, 1276, 1227, 1168, 1119, 1089, 1051, 1035, 989, 937, 928, 907. HRMS (ESI): C₃₁H₃₇NNaO₆S [M+Na]⁺ calcd: 574.2213, found: 574.2234.

10. dineopentyl 1-((4-nitrophenyl)sulfonyl)-3-phenylaziridine-2,2-dicarboxylate (10).

White solid, mp = 93 – 94 °C, ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (d, *J* = 8.8 Hz, 2 H); 8.30 (d, *J* = 8.4 Hz, 2 H); 7.18 – 7.34 (m, 5 H); 5.02 (s, 1 H); 4.05 (s, 2 H); 3.65 (d, *J* = 10.4 Hz, 1 H); 3.49 (d, *J* = 10.4 Hz, 1 H); 1.00 (s, 9 H); 0.64 (s, 9 H); ¹³C NMR(100 MHz, CDCl₃): δ = 163.0, 162.2, 150.6, 145.5, 130.5, 129.3, 128.9, 128.7, 126.7, 124.4, 76.9, 75.7, 58.3, 50.7, 31.4, 30.9, 26.3, 25.9 ppm. IR(neat) v/cm⁻¹2961,

2887, 2871, 2361, 2341, 1745, 1608, 1535, 1477, 1451, 1402, 1369, 1357, 1313, 1271, 1252, 1234, 1192, 1171, 1119, 1089, 1034, 1013, 991, 962, 930. HRMS (ESI): C₂₆H₃₂N₂NaO₈S [M+Na]⁺ calcd: 555.1778, found: 555.1772.

Typical procedure for preparation of racemic 1, 3-oxazolidines.

In an inert atmosphere, a flame-dried vial was charged with a maganetic stirrer bar, 100 mg of activated 4Å molecular sieves (M.S.), Ni(ClO₄)₂·6H₂O (2.74 mg, 5 mol %), aldehyde (0.225 mmol, 1.5 equiv), and 2 mL of toluene. The mixture was allowed to be stirred at room temperature for 15 minutes, then aziridine (0.15 mmol, 1.0 equiv) was added. The reaction mixture was continued to be stirred until the reaction was completed (monitored by TLC). The mixture was then passed over a small plug of silica gel eluted with CH₂Cl₂. After evaporation under reduced pressure, the residue was purified by flash chromatography to afford the desired product.

Typical procedure for Ni(ClO₄)₂·6H₂O/Bn-Box catalyzed cycloaddition of aziridine 1 with aldehyde 2.

In an inert atmosphere, a flame-dried vial was charged with a maganetic stirrer bar, 150 mg of activated 4Å molecular sieves (M.S.), Ni(ClO₄)₂·6H₂O (5.48 mg, 5 mol%), Bn-Box (6.52 mg, 6 mol%) and 3 mL of toluene. The mixture was allowed to be stirred for 3 h at room temperature. Then, aldehyde **2** (0.45 mmol, 1.5 equiv) was added, followed by aziridine **1** (0.25 mmol, 1.0 equiv). The mixture was continued to be stirred at room temperature until the complete consumption of the aziridine

(determined by TLC analysis). The reaction mixture was then passed over a small plug of silica gel eluted with CH₂Cl₂. After evaporation under reduced pressure, the residue was purified by flash chromatography (eluent, PE : EA = 10:1) to afford the product **3** and enantiomeric excess was determined by chiral HPLC. (Note: For some cases, it was not possible to separate the desired products and the starting aromatic aldehydes using flash chromatography, as they appeared as single spots when isolated by thin layer chromatography. Thus, the aldehydes can be transformed into the corresponding oximes by mixing the crude products with NH₂OH HCl (2 equiv, respected to the excess amount of the aldehyde), NaOAc (2 equiv), EtOH (2 mL), which was stirred at room temperature for 1-2 h before flash chromatography.)

1. (2*S*,5*R*)-dineopentyl 2-phenyl-5-(*p*-tolyl)-3-tosyloxazolidine-4,4-dicarboxylate (3fc).

The reaction of **1f** (150.5 mg, 0.3 mmol), **2c** (54.1 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford **3fc** (174.0 mg) in 90% yield, white solid. m.p. 133 – 136 °C; $[\alpha]_{20}^{D} = -57.4$ (c = 1.0, CHCl₃); ee = 93% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/^{*i*}PrOH = 85/15, 0.8 mL/min, t_{minor} = 7.47 min, t_{major} = 9.95 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49$ (d, J = 7.2 Hz, 2 H); 7.18 – 7.32 (m, 3 H); 7.06 – 7.18 (m, 6 H); 6.89 (d, J = 8.4 Hz, 2 H); 6.17 (s, 1 H); 5.76 (s, 1 H); 4.21 (d, J= 10.4 Hz, 1 H); 4.08 (d, J = 10.4 Hz, 1 H); 3.91 (d, J = 10.4 Hz, 1 H); 2.91 (d, J =10.4 Hz, 1 H); 2.31 (s, 3 H); 2.29 (s, 3 H); 1.16 (s, 9 H); 0.73 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.9$, 166.6, 142.7, 138.9, 137.6, 133.7, 131.3, 129.9, 129.0, 128.3, 128.2, 127.9, 126.5, 92.7, 87.3, 77.4, 76.2, 75.8, 31.6, 30.9, 26.8, 26.2, 21.4, 21.2 ppm. IR (neat) ν/cm^{-1} 2988, 2955, 1763, 1731, 1600, 1527, 1476, 1462, 1398, 1368, 1346, 1289, 1249, 1232, 1181, 1157, 1078, 1036, 1008, 964, 925. HRMS (ESI): C₃₅H₄₃NNaO₇S [M+Na]⁺ calcd: 644.2652, found: 644.2647.

Procedure for synthesis of 3fa in a gram level scale.

In a flame-dried nitrogen-flushed flask, a solution of Ni(ClO₄)₂·6H₂O (58.5 mg, 2 mol%), Bn-Box ligand (63.8 mg, 2.2 mol%), and 1g 4Å M.S. in dry toluene (60 mL) was stirred for 4 h, then **2c** (1.44 g, 12 mmol) was added to this mixture, followed by aziridine **1f** (4.01g, 8 mmol). The mixture was continued to be stirred for 18 h at room temperature. After filtration to remove the 4Å M.S., the solution was concentrated under reduced pressure. Then, the residue was purified by flash chromatography (PE:EA = 10:1) to afford **3fc** (4.3 g) in 85% yield, white solid, ee = 93% (chiral HPLC analysis), and the ¹H NMR and ¹³C NMR spectra were in accordance with the previous data.

2. (2*S*,5*R*)-dineopentyl 2-(4-isopropylphenyl)-5-(*p*-tolyl)-3-tosyloxazolidine -4,4-dicarboxylate (3gc).

The reaction of **1g** (163.1 mg, 0.3 mmol), **2c** (54.1 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was

carried out at r.t. for 12 hours to afford **3gc** (176.5 mg) in 89% yield, white solid. m.p. 147 – 151 °C; $[\alpha]_{20}^{D} = -36.8$ (c = 1.0, CHCl₃); ee = 89% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/^{*i*}PrOH = 85/15, 0.8 mL/min, t_{minor} = 7.55 min, t_{major} = 11.05 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.38$ (d, J = 8.0 Hz, 2 H); 7.22 (d, J = 8.0 Hz, 2 H); 7.16 (d, J = 8.4 Hz, 2 H); 7.11 (d, J = 8.0 Hz, 2 H); 6.96 (d, J = 8.0 Hz, 2 H); 6.87 (d, J = 8.4 Hz, 2 H); 6.15 (s, 1 H); 5.74 (s, 1 H); 4.21 (d, J = 10.4 Hz, 1 H); 4.08 (d, J = 10.4 Hz, 1 H); 3.92 (d, J = 10.4 Hz, 1 H); 2.92 (d, J = 10.4 Hz, 1 H); 2.78 – 2.90 (m, 1 H); 2.31 (s, 3 H); 2.28 (s, 3 H); 1.23 (s, 3 H); 1.21 (s, 3 H); 1.16 (s, 9 H); 0.73 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.0$, 166.7, 150.8, 142.3, 138.8, 137.8, 131.5, 131.0, 129.8, 129.0, 128.3, 128.2, 126.5, 125.9, 92.5, 87.2, 77.5, 76.2, 75.8, 34.0, 31.6, 30.9, 26.8, 26.2, 24.1, 23.9, 21.4, 21.2 ppm. IR (neat) ν /cm⁻¹ 2960, 2870, 1758, 1739, 1614, 1598, 1516, 1497, 1467, 1434, 1393, 1368, 1341, 1298, 1236, 1217, 1203, 1154, 1089, 1078, 1059, 1041, 1020, 1007, 975, 938, 927. HRMS (ESI): C₃₈H₄₉NNaO₇S [M+Na]⁺ calcd: 686.3122, found: 686.3127.

3. (2S,5R)-dineopentyl 2,5-di-(p-tolyl)-3-tosyloxazolidine-4,4-dicarboxylate (3hc).

The reaction of **1h** (154.6 mg, 0.3 mmol), **2c** (54.1 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 18 hours to afford **3hc** (179.0 mg) in 94% yield, white solid. m.p. 146 – 149 °C; $[\alpha]_{20}^{D} = -46.4$ (c = 1.0, CHCl₃); ee = 92% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/^{*i*}PrOH = 85/15, 0.8 mL/min, t_{minor} = 8.34 min, t_{major} = 11.69 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.35$ (d, J = 8.0 Hz, 2 H); 7.22 (d, J = 8.0 Hz, 2 H); 7.16 (d, J = 8.4 Hz, 2 H); 7.11 (d, J = 8.0 Hz, 2 H); 6.90 (t, J = 7.8 Hz, 4 H); 6.12 (s, 1 H); 5.73 (s, 1 H); 4.20 (d, J = 10.4 Hz, 1 H); 4.08 (d, J = 10.4 Hz, 1 H); 3.90 (d, J = 10.4 Hz, 1 H); 2.93 (d, J = 10.4 Hz, 1 H); 2.31 (s, 6 H); 1.16 (s, 9 H); 0.73 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.0$, 166.6, 142.5, 139.9, 138.8, 137.8, 131.4, 130.8, 129.7, 128.9, 128.4, 128.3, 128.1, 126.5, 92.5, 87.2, 77.4, 76.2, 75.8, 31.5, 30.9, 26.7, 26.2, 21.4, 21.2, 21.1 ppm. IR (neat) ν /cm⁻¹ 2956, 2869, 1761, 1736, 1617, 1598, 1516, 1476, 1464, 1368, 1345, 1309, 1289, 1247, 1227, 1212, 1154, 1089, 1036, 1006, 970, 940, 926. HRMS (ESI): C₃₆H₄₅NNaO₇S [M+Na]⁺ calcd: 658.2809, found: 658.2810.

4. (2*S*,5*R*)-dineopentyl 2-(*m*-tolyl)-5-(*p*-tolyl)-3-tosyloxazolidine-4,4-dicarboxylate (3ic).

The reaction of **1i** (154.6 mg, 0.3 mmol), **2c** (54.1 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford **3ic** (169.3 mg) in 89% yield, white solid. m.p. $158 - 161 \, {}^{\circ}\text{C}$; $[\alpha]_{20}^{D} = -63.1$ (c = 1.0, CHCl₃); ee = 92% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/ⁱPrOH = 85/15, 0.8 mL/min, t_{minor} = 8.25 min, t_{major} = 13.34 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.18 - 7.30$ (m, 4 H); 7.17 (d, J = 8.0 Hz, 2 H); 7.12 (d, J = 7.6 Hz, 2 H); 7.05 (d, J = 4.4 Hz, 2 H); 6.90 (d, J = 8.0 Hz, 2 H); 6.11 (s, 1 H); 5.72 (s, 1 H); 4.21 (d, J = 10.4 Hz, 1 H); 4.09 (d, J = 10.4 Hz, 1 H); 3.91 (d, J =10.4 Hz, 1 H); 2.95 (d, J = 10.4 Hz, 1 H); 2.31 (s, 3 H); 2.30 (s, 3 H); 2.14 (s, 3 H); 1.16 (s, 9 H); 0.73 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.1$, 166.6, 142.5, 138.9, 137.7, 137.6, 133.3, 131.4, 130.7, 130.3, 129.0, 128.3, 128.1, 127.7, 127.2, 126.6, 92.7, 87.2, 77.5, 76.2, 75.8, 31.6, 30.9, 26.8, 26.2, 21.3, 21.2, 21.0 ppm. IR (neat) ν /cm⁻¹ 2958, 2904, 2870, 1764, 1735, 1599, 1518, 1475, 1399, 1367, 1347, 1310, 1288, 1251, 1231, 1213, 1173, 1154, 1092, 1075, 1039, 1011, 971, 939, 908. HRMS (ESI): C₃₆H₄₅NNaO₇S [M+Na]⁺ calcd: 658.2809, found: 658.2807.

5. (2*S*,5*R*)-dineopentyl 2-(4-nitrophenyl)-5-(*p*-tolyl)-3-tosyloxazolidine-4,4-dicarboxylate (3jc).

The reaction of **1j** (163.9 mg, 0.3 mmol), **2c** (54.1 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 72 hours to afford **3jc** (154.5 mg) in 77% yield, white solid. m.p. $182 - 185 \, {}^{\circ}$ C; $[\alpha]_{20}{}^{D} = -33.1(c = 1.0, CHCl_3)$; ee = 96% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/ⁱPrOH = 85/15, 0.8 mL/min, t_{minor} = 7.80 min, t_{major} = 11.43 min); ¹H NMR (400 MHz, CDCl_3): δ = 7.95 (d, *J* = 8.8 Hz, 2 H); 7.70 (d, *J* = 8.4 Hz, 2 H); 7.11 - 7.24 (m, 6 H); 6.92 (d, *J* = 8.0 Hz, 2 H); 6.23 (s, 1 H); 5.80 (s, 1 H); 4.23 (d, *J* = 10.4 Hz, 1 H); 4.08 (d, *J* = 10.4 Hz, 1 H); 3.91 (d, *J* = 10.0 Hz, 1 H); 2.92 (d, *J* = 10.0 Hz, 1 H); 2.33 (s, 3 H); 2.30 (s, 3 H); 1.16 (s, 9 H); 0.72 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.6, 166.3, 148.8, 143.8, 140.8, 139.3, 137.3, 130.9, 130.7, 129.2, 128.5, 128.2, 126.4, 122.8, 91.1, 87.9, 77.4, 76.4, 76.1, 31.6, 30.9, 26.8, 26.1, 21.3, 21.2 ppm. IR (neat) v/cm⁻¹ 2957, 2869, 1763, 1739, 1525, 1477, 1370, 1346, 1288, 1228, 1202, 1156, 1089, 1034, 1007, 920. HRMS (ESI): C₃₅H₄₂N₂NaO₉S [M+Na]⁺ calcd: 689.2503, found: 689.2506. 6. (2*S*,5*R*)-dineopentyl 2-(4-chlorophenyl)-5-(*p*-tolyl)-3-tosyloxazolidine-4,4-dicarboxylate (3kc).

The reaction of 1k (160.8 mg, 0.3 mmol), 2c (54.1 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford 3kc (194.3 mg) in 99% yield, white solid. m.p. $168 - 171 \text{ °C}; \ [\alpha]_{20}^{D} = -27.1(c = 0.5, \text{ CHCl}_3); \text{ ee} = 94\% \text{ (chiral HPLC analysis:}$ Chiralcel OZ3, *n*-hexane/^{*i*}PrOH = 95/5, 0.8 mL/min, $t_{minor} = 5.77$ min, $t_{major} = 11.67$ min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41$ (d, J = 8.4 Hz, 2 H); 7.16 – 7.24 (m, 4 H); 7.13 (d, J = 8.0 Hz, 2 H); 7.07 (d, J = 8.4 Hz, 2 H); 6.96 (d, J = 8.4 Hz, 2 H); 6.12 (s, 1 H); 5.74 (s, 1 H); 4.21 (d, J = 10.4 Hz, 1 H); 4.07 (d, J = 10.4 Hz, 1 H); 3.91 (d, J =10.4 Hz, 1 H); 2.91 (d, J = 10.4 Hz, 1 H); 2.34 (s, 3 H); 2.32 (s, 3 H); 1.16 (s, 9 H); 0.72 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.69$, 166.65, 143.1, 139.1, 137.5, 136.1, 132.4, 131.14, 131.06, 129.1, 128.4, 128.2, 128.0, 126.5, 91.7, 87.4, 77.4, 76.3, 75.9, 31.6, 30.9, 26.8, 26.2, 21.4, 21.2 ppm. IR (neat) v/cm⁻¹ 2965, 2864, 1904, 1760, 1736, 1599, 1547, 1520, 1493, 1478, 1424, 1367, 1349, 1262, 1234, 1214, 1158, 1090, 1034, 1018, 963, 943. HRMS (ESI): C₃₅H₄₂ClNNaO₇S [M+Na]⁺ calcd: 678.2263, found: 678.2248.

7. (2*S*,5*R*)-dineopentyl 2-(4-bromophenyl)-5-(*p*-tolyl)-3-tosyloxazolidine-4,4-dica-rboxylate (3lc).

The reaction of **11** (174.2 mg, 0.3 mmol), **2c** (54.1 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford **3lc** (178.0 mg) in 85% yield, white solid. m.p. $167 - 170 \ ^{\circ}$ C; $[\alpha]_{20}^{D} = -24.7$ (c = 0.5, CHCl₃); ee = 95% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/ⁱPrOH = 85/15, 0.8 mL/min, t_{minor} = 6.28 min, t_{major} = 7.61 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.34$ (d, J = 8.4 Hz, 2 H); 7.16 – 7.28 (m, 6 H); 7.12 (d, J = 8.0 Hz, 2 H); 6.96 (d, J = 8.0 Hz, 2 H); 6.10 (s, 1 H); 5.74 (s, 1 H); 4.21 (d, J = 10.4 Hz, 1 H); 4.07 (d, J = 10.4 Hz, 1 H); 3.91 (d, J = 10.4 Hz, 1 H); 2.92 (d, J = 10.4 Hz, 1 H); 2.35 (s, 3 H); 2.32 (s, 3 H); 1.16 (s, 9 H); 0.72 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.7$, 166.6, 143.2, 139.1, 137.5, 132.8, 131.4, 131.04, 130.96, 129.1, 128.4, 128.2, 126.4, 124.4, 91.8, 87.4, 77.4, 76.3, 75.9, 31.6, 30.9, 26.8, 26.1, 21.4, 21.1 ppm. IR (neat) ν/cm^{-1} 2979, 2949, 2870, 1760, 1736, 1597, 1518, 1478, 1422, 1368, 1343, 1235, 1208, 1158, 1088, 1045, 1037, 1010, 972, 939, 928. HRMS (ESI): C₃₅H₄₂BrNNaO₇S [M+Na]⁺ calcd: 722.1758, found: 722.1703.

8. (2*S*,5*R*)-dineopentyl 2-(3-bromophenyl)-5-(*p*-tolyl)-3-tosyloxazolidine-4,4-dicarboxylate (3mc).

The reaction of 1m (174.2 mg, 0.3 mmol), 2c (54.1 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 38 hours to afford **3mc** (176.7 mg) in 84% yield, white solid. m.p. $167 - 171 \text{ °C}; [\alpha]_{20}^{D} = -64.2$ (c = 1.0, CHCl₃); ee = 92% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/^{*i*}PrOH = 85/15, 0.8 mL/min, t_{minor} = 6.91 min, t_{major} = 9.13 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.53$ (s, 1 H); 7.43 (d, J = 7.6 Hz, 1 H); 7.36 (d, J = 8.0 Hz, 1 H); 7.18 – 7.30 (m, 4 H); 7.13 (d, J = 8.0 Hz, 2 H); 7.05 (t, J = 8.0Hz, 1 H); 6.96 (d, J = 8.0 Hz, 2 H); 6.08 (s, 1 H); 5.73 (s, 1 H); 4.21 (d, J = 10.4 Hz, 1 H); 4.08 (d, *J* = 10.4 Hz, 1 H); 3.92 (d, *J* = 10.4 Hz, 1 H); 2.95 (d, *J* = 10.4 Hz, 1 H); 2.34 (s, 3 H); 2.32 (s, 3 H); 1.16 (s, 9 H); 0.73 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.8, 166.5, 143.3, 139.1, 137.3, 135.8, 133.0, 132.8, 131.1, 129.3, 129.1, 128.6,$ 128.5, 128.1, 126.5, 122.2, 91.7, 87.4, 77.2, 76.3, 75.9, 31.6, 30.9, 26.8, 26.2, 21.5, 21.2 ppm. IR (neat) v/cm⁻¹ 2959, 2884, 2869, 1756, 1735, 1598, 1578, 1518, 1476, 1437, 1367, 1346, 1292, 1263, 1230, 1213, 1157, 1081, 1037, 968, 939, 921, 906. HRMS (ESI): C₃₅H₄₂BrNNaO₇S [M+Na]⁺ calcd: 722.1758, found: 722.1766.

9. (2*S*,5*R*)-dineopentyl 2-(naphthalen-2-yl)-5-(*p*-tolyl)-3-tosyloxazolidine-4,4-dicarboxylate (3nc).

The reaction of **1n** (165.5 mg, 0.3 mmol), **2c** (54.1 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018

mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford **3nc** (188.0 mg) in 93% yield, white solid. m.p. 202 – 205 °C; $[\alpha]_{20}^{D} = -9.4$ (c = 0.5, CHCl₃); ee = 89% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/[/]PrOH = 90/10, 0.8 mL/min, t_{minor} = 9.82 min, t_{major} = 18.09 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.96$ (s, 1 H); 7.75 (t, J = 7.0 Hz, 2 H); 7.44 – 7.53 (m, 4 H); 7.27 (d, J = 8.0 Hz, 2 H); 7.14 (d, J = 8.0 Hz, 2 H); 7.07 (d, J = 8.0 Hz, 2 H); 6.53 (d, J = 8.4 Hz, 2 H); 6.31 (s, 1 H); 5.80 (s, 1 H); 4.24 (d, J = 10.4 Hz, 1 H); 2.33 (s, 3 H); 2.07 (s, 3 H); 1.19 (s, 9 H); 0.75 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.0$, 166.8, 142.6, 139.0, 137.4, 134.3, 132.4, 131.4, 130.9, 130.2, 129.1, 128.4, 128.2, 128.0, 127.7, 127.4, 126.8, 126.6, 126.0, 125.9, 92.7, 87.4, 77.5, 76.2, 75.9, 31.6, 30.9, 26.8, 26.2, 21.18, 21.15 ppm. IR (neat) ν /cm⁻¹ 2987, 2971, 2901, 1752, 1738, 1601, 1477, 1452, 1406, 1379, 1347, 1246, 1179, 1158, 1075, 1067, 1047, 1006, 977, 963. HRMS (ESI): C₃₉H₄₅NNaO₇S [M+Na]⁺ calcd: 694.2809, found: 694.2786.

10. (2*S*,5*R*)-dineopentyl 3-((4-nitrophenyl)sulfonyl)-2-phenyl-5-(*p*-tolyl)oxazolidine-4,4-dicarboxylate (3oc).

The reaction of **1o** (159.8 mg, 0.3 mmol), **2c** (54.1 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 60 hours to afford **3oc** (153.5 mg) in 78% yield, white solid. m.p. $188 - 190 \, ^{\circ}$ C; [α]₂₀^D = -83.5 (*c* = 1.0, CHCl₃); ee = 92% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/^{*i*}PrOH = 85/15, 0.8 mL/min, t_{minor} = 12.06 min, t_{major} = 15.12 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.91$ (d, J = 8.4 Hz, 2 H); 7.47 (d, J = 7.6 Hz, 2 H); 7.40 (d, J = 8.8 Hz, 2 H); 7.31 (t, J = 7.4 Hz, 1 H); 7.04 – 7.25 (m, 6 H); 6.20 (s, 1 H); 5.77 (s, 1 H); 4.22 (d, J = 10.4 Hz, 1 H); 4.10 (d, J = 10.4 Hz, 1 H); 3.93 (d, J = 10.0 Hz, 1 H); 2.89 (d, J = 10.0 Hz, 1 H); 2.33 (s, 3 H); 1.18 (s, 9 H); 0.72 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.6$, 166.4, 149.2, 145.9, 139.3, 133.2, 130.9, 130.5, 130.1, 129.5, 129.2, 128.1, 126.5, 122.7, 92.7, 87.5, 77.7, 76.6, 76.2, 31.6, 30.9, 26.8, 26.1, 21.2 ppm. IR (neat) ν /cm⁻¹ 2957, 2901, 2867, 1757, 1735, 1607, 1526, 1478, 1464, 1399, 1359, 1314, 1270, 1236, 1217, 1161, 1089, 1075, 1051, 1013, 1001, 963, 927. HRMS (ESI): C₃₄H₄₀N₂NaO₉S [M+Na]⁺ calcd: 675.2347, found: 675.2336.

11. (2*S*,5*R*)-dineopentyl 2-phenyl-3-tosyl-5-(3,4,5-trimethoxyphenyl)oxazolidine-4,4-dicarboxylate (3fa).

The reaction of **1f** (150.5 mg, 0.3 mmol), **2a** (88.3 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford **3fa** (190.2 mg) in 91% yield, white solid. m.p. 135 – 138 °C; $[\alpha]_{20}^{D} = -35.6$ (c = 1.0, CHCl₃); ee = 92% (chiral HPLC analysis: Chiralcel ADH, *n*-hexane/^{*i*}PrOH = 80/20, 0.8 mL/min, t_{minor} = 6.55 min, t_{major} = 5.80 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.50$ (d, J = 7.2 Hz, 2 H); 7.28 – 7.37 (m, 1 H); 7.02 – 7.23 (m, 4 H); 6.90 (d, J = 8.4 Hz, 2 H); 6.56 (s, 2 H); 6.20 (s, 1 H); 5.75 (s, 1 H); 4.25 (d, J = 10.4 Hz, 1 H); 4.07 (d, J = 10.4 Hz, 1 H); 3.97 (d, J = 10.4 Hz, 1 H); 3.81 (s, 3 H); 3.80 (s, 6 H); 2.98 (d, J = 10.0 Hz, 1 H); 2.29 (s, 3 H); 1.17 (s, 9 H); 0.76 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.8$, 166.5, 153.2, 142.8, 138.3, 137.5, 133.8, 129.9, 129.8, 128.3, 128.1, 127.9, 103.4, 92.8, 87.1, 77.2, 76.3, 76.0, 60.7, 56.0, 31.6, 31.0, 26.7, 26.2, 21.4 ppm. IR (neat) *v*/cm⁻¹ 2958, 2869, 2841, 1760, 1736, 1587, 1499, 1462, 1421, 1398, 1367, 1347, 1325, 1236, 1158, 1104, 1093, 1046, 998, 985, 957, 939, 909. HRMS (ESI): C₃₇H₄₇NNaO₁₀S [M+Na]⁺ calcd: 720.2813, found: 720.2836.

12. (2*S*,5*R*)-dineopentyl 5-(4-methoxyphenyl)-2-phenyl-3-tosyloxazolidine- 4,4-dicarboxylate (3fb).

The reaction of 1f (150.5 mg, 0.3 mmol), 2b (61.3 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford **3fb** (168.4 mg) in 88% yield, white solid. m.p. 136 - 139 °C; $[\alpha]_{20}^{D} = -61.5$ (c = 0.5, CHCl₃); ee = 90% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/^{*i*}PrOH = 85/15, 0.8 mL/min, $t_{minor} = 8.33$ min, $t_{maior} = 11.32$ min); ¹H NMR (400 MHz, CDCl₃): δ = 7.48 (d, J = 7.6 Hz, 2 H); 7.24 – 7.30 (m, 3 H); 7.08 - 7.20 (m, 4 H); 6.89 (d, J = 8.4 Hz, 2 H); 6.84 (d, J = 8.8 Hz, 2 H); 6.17 (s, 1 H); 5.73 (s, 1 H); 4.21 (d, J = 10.4 Hz, 1 H); 4.08 (d, J = 10.4 Hz, 1 H); 3.93 (d, J = 10.4Hz, 1 H); 3.78 (s, 3 H); 2.96 (d, J = 10.4 Hz, 1 H); 2.29 (s, 3 H); 1.16 (s, 9 H); 0.75 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.9$, 166.6, 160.2, 142.7, 137.6, 133.7, 129.9, 129.8, 128.3, 128.1, 128.0, 127.9, 126.3, 113.8, 92.6, 87.2, 77.4, 76.2, 75.9, 55.3, 31.6, 31.0, 26.8, 26.2, 21.4 ppm. IR (neat) v/cm⁻¹ 2958, 2902, 2885, 1763, 1733, 1614, 1599, 1516, 1461, 1397, 1368, 1342, 1306, 1291, 1248, 1224, 1210, 1173, 1157, 1116, 1090, 1077, 1053, 1033, 1009, 972, 926. HRMS (ESI): C35H43NNaO8S $[M+Na]^+$ calcd: 660.2602, found: 660.2634.

13. (2S,5R)-dineopentyl 2,5-diphenyl-3-tosyloxazolidine-4,4-dicarboxylate (3fd).

The reaction of **1f** (150.5 mg, 0.3 mmol), **2d** (95.4 mg, 0.9 mmol) in the presence of 10 mol % Ni(ClO₄)₂·6H₂O (10.97 mg, 0.03 mmol), Bn-Box ligand (13.05 mg, 0.036 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford **3fd** (162.2 mg) in 89% yield, white solid. m.p. 138 – 141 °C; $[\alpha]_{20}^{D} = -52.2$ (c = 1.0, CHCl₃); ee = 90% (chiral HPLC analysis: Chiralcel OZ3, *n*-hexane/^{*i*}PrOH = 85/15, 0.8 mL/min, t_{minor} = 5.04 min, t_{major} = 8.63 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49$ (d, J = 7.2 Hz, 2 H); 7.22 – 7.40 (m, 6 H); 7.05 – 7.20 (m, 4 H); 6.89 (d, J = 8.0 Hz, 2 H); 6.19 (s, 1 H); 5.79 (s, 1 H); 4.22 (d, J = 10.4 Hz, 1 H); 2.29 (s, 3 H); 1.17 (s, 9 H); 0.73 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.9$, 166.5, 142.7, 137.6, 134.4, 133.7, 129.9, 129.8, 129.1, 128.4, 128.3, 128.2, 127.9, 126.6, 92.8, 87.2, 77.4, 76.3, 75.8, 31.6, 31.0, 26.8, 26.2, 21.4 ppm. IR (neat) ν/cm^{-1} 2973, 2902, 1741, 1598, 1496, 1463, 1400, 1370, 1349, 1333, 1293, 1241, 1214, 1159, 1094, 1081, 1067, 1051, 1039, 1007, 976, 961, 940, 926. HRMS (ESI): C₃₄H₄₁NNaO₇S [M+Na]⁺ calcd: 630.2496, found: 630.2495.

14. (2S,5R)-dineopentyl5-(3-methoxyphenyl)-2-phenyl-3-tosyloxazolidine-4,4-
dicarboxylate (3fe).

The reaction of 1f (150.5 mg, 0.3 mmol), 2e (61.3 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 24 hours to afford **3fe** (130.2 mg) in 68% yield, white solid. m.p. 118 - 121 °C; $[\alpha]_{20}^{D} = -39.2$ (c = 0.5, CHCl₃); ee = 92% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/^{*i*}PrOH = 85/15, 0.8 mL/min, t_{minor} = 8.43 min, t_{major} = 9.83min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49$ (d, J = 7.2 Hz, 2 H); 7.20 - 7.38 (m, 2 H); 7.07 - 7.20 (m, 4 H); 6.73 - 7.07 (m, 5 H); 6.18 (s, 1 H); 5.77 (s, 1 H); 4.22 (d, J =10.4 Hz, 1 H); 4.08 (d, J = 10.4 Hz, 1 H); 3.94 (d, J = 10.4 Hz, 1 H); 3.75 (s, 3 H); 2.92 (d, J = 10.4 Hz, 1 H); 2.29 (s, 3 H); 1.16 (s, 9 H); 0.74 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.8$, 166.5, 159.6, 142.7, 137.6, 135.9, 133.7, 129.9, 129.4, 128.3, 128.2, 127.9, 118.8, 114.6, 112.2, 92.8, 87.0, 77.4, 76.3, 75.9, 55.2, 31.6, 31.0, 26.8, 26.2, 21.4 ppm. IR (neat) v/cm⁻¹ 2956, 2938, 1759, 1739, 1599, 1494, 1467, 1370, 1357, 1281, 1260, 1238, 1214, 1163, 1155, 1096, 1086, 1072, 1035, 1003, 976, 963, 931, 921, 911. HRMS (ESI): C₃₅H₄₃NNaO₈S [M+Na]⁺ calcd: 660.2602, found: 660.2634.

15. (2S,5R)-dineopentyl5-(4-isopropylphenyl)-2-phenyl-3-tosyloxazolidine-4,4-
dicarboxylate (3ff).

The reaction of **1f** (150.5 mg, 0.3 mmol), **2f** (66.7 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford **3ff** (169.8 mg) in 87% yield, white solid. m.p. 102 - 105 °C; $[\alpha]_{20}^{D} = -48.0$ (c = 1.0, CHCl₃); ee = 94% (chiral HPLC analysis: Chiralcel ADH, *n*-hexane/^{*i*}PrOH = 85/15, 0.8 mL/min, t_{minor} = 4.59 min, t_{major} = 7.57 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.58$ (d, J = 6.8 Hz, 2 H); 7.30 - 7.42 (m, 3 H); 7.12 - 7.31 (m, 6 H); 6.97 (d, J = 8.0 Hz, 2 H); 6.28 (s, 1 H); 5.85 (s, 1 H); 4.32 (d, J= 10.4 Hz, 1 H); 4.17 (d, J = 10.4 Hz, 1 H); 4.00 (d, J = 10.4 Hz, 1 H); 2.92 - 3.08 (m, 1 H); 2.90 (d, J = 10.4 Hz, 1 H); 2.37 (s, 3 H); 1.30 (d, J = 6.8 Hz, 6 H); 1.26 (s, 9 H); 0.80 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.9, 166.6, 149.8, 142.6, 137.6, 133.8, 131.8, 129.9, 129.8, 128.21, 128.16, 127.8, 126.7, 126.4, 92.7, 87.3, 77.4, 76.2, 75.8, 33.9, 31.6, 30.9, 26.8, 26.2, 23.9, 23.8, 21.4 ppm. IR (neat) v/cm⁻¹ 2960, 2886, 2870, 1749, 1732, 1598, 1515, 1462, 1396, 1368, 1349, 1279, 1259, 1236, 1212, 1156, 1079, 1053, 1032, 965, 940, 923, 876, 832. HRMS (ESI): C₃₇H₄₇NNaO₇S [M+Na]⁺ calcd: 672.2965, found: 672.2973.

16. (2S,5R)-dineopentyl5-(4-bromophenyl)-2-phenyl-3-tosyloxazolidine-4,4-di-
carboxylate (3fg).

The reaction of **1f** (150.5 mg, 0.3 mmol), **2g** (166.5 mg, 0.9 mmol) in the presence of 10 mol % Ni(ClO₄)₂6H₂O (10.97 mg, 0.03 mmol), Bn-Box ligand (13.05 mg, 0.036 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 24 hours to afford **3fg** (139.2 mg) in 68% yield, white solid. m.p. 152 – 155 °C; $[\alpha]_{20}^{D}$ = -42.9 (*c* = 0.5, CHCl₃); ee = 90% (chiral HPLC analysis: Chiralcel OZ3, *n*-hexane/ⁱPrOH = 85/15, 0.4 mL/min, t_{minor} = 9.89 min, t_{major} = 15.37 min); ¹H NMR (400 MHz, CDCl₃): δ = 7.41 – 7.50 (m, 4 H); 7.19 – 7.37 (m, 3 H); 7.04 – 7.18 (m, 4 H); 6.90 (d, *J* = 8.0 Hz, 2 H); 6.15 (s, 1 H); 5.73 (s, 1 H); 4.20 (d, *J* = 10.4 Hz, 1 H); 4.10 (d, *J* = 10.4 Hz, 1 H); 3.92 (d, *J* = 10.4 Hz, 1 H); 3.00 (d, *J* = 10.4 Hz, 1 H); 2.29 (s, 3 H); 1.15 (s, 9 H); 0.76 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.9, 166.4, 142.9, 137.5, 133.51, 133.47, 131.5, 130.0, 129.8, 128.4, 128.3, 128.2, 128.0, 123.2, 92.8, 86.5, 77.3, 76.5, 76.0, 31.6, 31.0, 26.8, 26.2, 21.4 ppm. IR (neat) ν/cm^{-1} 2960, 2883, 2871, 1742, 1599, 1578, 1491, 1463, 1396, 1370, 1348, 1331, 1291, 1255, 1217, 1156, 1095, 1072, 1048, 1005, 979, 963, 927. HRMS (ESI): C₃₄H₄₀BrNNaO₇S [M+Na]⁺ calcd: 708.1601, found: 708.1625.

17. (2*S*,5*R*)-dineopentyl 5-(4-iodophenyl)-2-phenyl-3-tosyloxazolidine-4,4-dicarboxylate (3fh).

S23

The reaction of **1f** (150.5 mg, 0.3 mmol), **2h** (208.8 mg, 0.9 mmol) in the presence of 10 mol % Ni(ClO₄)₂·6H₂O (10.97 mg, 0.03 mmol), Bn-Box ligand (13.05 mg, 0.036 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford **3fh** (171.9 mg) in 78% yield, white solid. m.p. 129 – 131 °C; $[\alpha]_{20}^{D}$ = -61.3 (*c* = 1.0, CHCl₃); ee = 92% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/ⁱPrOH = 90/10, 0.8 mL/min, t_{minor} = 7.94 min, t_{major} = 10.01 min); ¹H NMR (400 MHz, CDCl₃): δ = 7.66 (d, *J* = 8.4 Hz, 2 H); 7.45 (d, *J* = 7.2 Hz, 2 H); 7.26 – 7.34 (m, 1 H); 7.08 – 7.22 (m, 6 H); 6.90 (d, *J* = 8.0 Hz, 2 H); 6.15 (s, 1 H); 5.71 (s, 1 H); 4.20 (d, *J* = 10.4 Hz, 1 H); 4.09 (d, *J* = 10.4 Hz, 1 H); 3.92 (d, *J* = 10.4 Hz, 1 H); 3.00 (d, *J* = 10.4 Hz, 1 H); 2.30 (s, 3 H); 1.15 (s, 9 H); 0.76 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.9, 166.4, 142.8, 137.5, 134.2, 133.5, 130.0, 129.8, 129.0, 128.40, 128.35, 128.2, 127.9, 125.3, 95.0, 92.8, 86.5, 76.5, 76.1, 31.6, 31.0, 26.8, 26.2, 21.4 ppm. IR (neat) ν /cm⁻¹ 2961, 2907, 2889, 1743, 1599, 1486, 1461, 1394, 1369, 1348, 1294, 1256, 1240, 1217, 1155, 1100, 1059, 1039, 1004, 979, 958, 941, 927. HRMS (ESI): C₃4H₄₀INNaO₇S [M+Na]⁺ calcd: 756.1462, found: 756.1438.

18. (2S,5S)-dineopentyl5-(furan-2-yl)-2-phenyl-3-tosyloxazolidine-4,4-dicar-
boxylate (3fi).

The reaction of **1f** (150.5 mg, 0.3 mmol), **2i** (45.2 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford **3fi** (167.7 mg) in 94% yield, white solid. m.p. 108 - 111 °C; $[\alpha]_{20}^{D} = -42.7$ (c = 1.0, CHCl₃); ee = 88% (chiral HPLC analysis: Chiralcel OZ3, *n*-hexane/ⁱPrOH = 85/15, 0.8 mL/min, $t_{minor} = 6.88$ min, $t_{major} = 8.34$ min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36 - 7.62$ (m, 3 H); 7.22 - 7.36 (m, 1 H); 7.19 (d, J = 8.0 Hz, 2 H); 7.13 (t, J = 7.6 Hz, 2 H); 6.91 (d, J = 8.0 Hz, 2 H); 6.38 - 6.48 (m, 1 H); 6.27 - 6.38 (m, 1 H); 6.15 (s, 1 H); 5.83 (s, 1 H); 4.19 (d, J = 10.4 Hz, 1 H); 4.14 (d, J = 10.4 Hz, 1 H); 4.08 (d, J = 10.4 Hz, 1 H); 3.25 (d, J = 10.4 Hz, 1 H); 2.29 (s, 3 H); 1.13 (s, 9 H); 0.87 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.7$, 166.2, 147.7, 143.4, 142.8, 137.5, 133.8, 129.9, 129.8, 128.3, 127.9, 110.6, 109.9, 92.9, 81.3, 77.2, 76.3, 76.2, 31.6, 31.3, 26.7, 26.3, 21.4 ppm. IR (neat) ν/cm^{-1} 2885, 1742, 1703, 1598, 1505, 1478, 1414, 1401, 1368, 1353, 1332, 1238, 1215, 1160, 1095, 1083, 1052, 1037, 1012, 984, 962, 954, 917. HRMS (ESI): C₃₂H₃₉NNaO₈S [M+Na]⁺ calcd: 620.2289, found: 620.2298.

19. (2S,5R)-dineopentyl5-(naphthalen-1-yl)-2-phenyl-3-tosyloxazolidine-4,4-di-
carboxylate (3fj).

The reaction of **1f** (150.5 mg, 0.3 mmol), **2j** (140.6 mg, 0.9 mmol) in the presence of 10 mol % Ni(ClO₄)₂ 6H₂O (10.97 mg, 0.03 mmol), Bn-Box ligand (13.05 mg, 0.036 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 18 hours to afford **3fj** (150.2 mg) in 76% yield, white solid. m.p. 168 – 171 °C; $[\alpha]_{20}^{D}$ = -80.4 (*c* = 1.0, CHCl₃); ee = 86% (chiral HPLC analysis: Chiralcel ADH, *n*-hexane/^{*i*}PrOH = 90/10, 0.5 mL/min, t_{minor} = 10.10 min, t_{major} = 8.85 min); ¹H NMR (400 MHz, CDCl₃): δ = 7.76 – 7.90 (m, 3 H); 7.65 (d, *J* = 7.2 Hz, 1 H); 7.36 – 7.62 (m, 5 H); 7.30 (t, *J* = 7.4 Hz, 1 H); 7.08 – 7.22 (m, 4 H); 6.89 (d, *J* = 8.4 Hz, 2 H); 6.64 (s, 1 H); 6.33 (s, 1 H); 4.34 (d, *J* = 10.4 Hz, 1 H); 4.11 (d, *J* = 10.4 Hz, 1 H); 3.85 (d, *J* = 10.4 Hz, 1 H); 2.29 (s, 3 H); 2.24 (d, *J* = 10.4 Hz, 1 H); 1.25 (s, 9 H); 0.35 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.9$, 166.6, 142.8, 137.5, 133.9, 133.7, 131.10, 131.05, 130.0, 129.9, 129.5, 128.9, 128.3, 128.2, 128.0, 126.7, 125.8, 125.1, 124.4, 122.4, 92.8, 84.1, 77.6, 76.8, 75.6, 31.5, 30.5, 26.9, 25.7, 21.4 ppm. IR (neat) ν/cm^{-1} 2958, 2926, 2869, 1963, 1733, 1598, 1513, 1477, 1462, 1400, 1366, 1346, 1324, 1293, 1262, 1227, 1156, 1090, 1080, 1051, 1037, 1008, 962, 921. HRMS (ESI): C₃₈H₄₃NNaO₇S [M+Na]⁺ calcd: 680.2652, found: 680.2639.

20. (2*S*,5*R*)-dineopentyl 2-phenyl-5-((*E*)-styryl)-3-tosyloxazolidine-4,4-dicarboxylate (3fk).

The reaction of 1f (150.5 mg, 0.3 mmol), 2k (59.5 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford 3fk (176.8 mg) in 93% yield, white solid. m.p. 114 - 116 °C; $[\alpha]_{20}^{D} = -34.9$ (c = 1.0, CHCl₃); ee = 85% (chiral HPLC analysis: Chiralcel OZ3, *n*-hexane/ⁱPrOH = 85/15, 0.8 mL/min, t_{minor} = 6.60 min, t_{maior} = 14.35 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.22 - 7.48$ (m, 10 H); 7.13 (t, J = 7.6 Hz, 2 H); 6.94 (d, J = 8.0 Hz, 2 H); 6.71 (d, J = 16.0 Hz, 2 H); 6.30 (dd, $J_1 = 16.0$ Hz, $J_2 =$ 7.2 Hz, 1 H); 6.04 (s, 1 H); 5.29 (d, J = 7.6 Hz, 1 H); 4.11 (s, 2 H); 4.07 (d, J = 10.4Hz, 1 H); 3.82 (d, J = 10.4 Hz, 1 H); 2.31 (s, 3 H); 1.10 (s, 9 H); 0.90 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): δ = 167.0, 166.7, 142.9, 137.5, 135.6, 134.9, 133.9, 129.8, 129.6, 128.5, 128.42, 128.39, 128.3, 127.9, 126.9, 122.0, 92.9, 86.6, 76.8, 76.3, 76.2, 31.5, 31.4, 26.6, 26.4, 21.4 ppm. IR (neat) v/cm⁻¹ 3065, 3030, 2957, 2887, 2869, 1748, 1728, 1684, 1600, 1478, 1460, 1398, 1369, 1342, 1274, 1249, 1233, 1156, 1093, 1065, 1034, 1004, 962, 939, 911. HRMS (ESI): C₃₆H₄₃NNaO₇S [M+Na]⁺ calcd: 656.2652, found: 656.2655.

21. (2S,5R)-dineopentyl 2-phenyl-5-((E)-1-phenylprop-1-en-2-yl)-3- tosyloxazo-

lidine-4,4-dicarboxylate (3fl).

The reaction of 1f (150.5 mg, 0.3 mmol), 2l (65.8 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 18 hours to afford **3fl** (158.4 mg) in 82% yield, white solid. m.p. 137 - 140 °C; $[\alpha]_{20}^{D} = -70.2$ (c = 0.5, CHCl₃); ee = 92% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/^{*i*}PrOH = 95/5, 0.8 mL/min, $t_{minor} = 10.41$ min, $t_{maior} = 11.49$ min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.43$ (d, J = 7.2 Hz, 2 H); 7.28 - 7.36 (m, 3 H); 7.18 - 7.26 (m, 3 H); 7.12 - 7.18 (m, 4 H); 6.92 (d, J = 8.0 Hz, 2 H); 6.65 (s, 1 H); 6.08 (s, 1 H); 5.30 (s, 1 H); 4.28 (d, J = 10.4 Hz, 1 H); 4.15 (d, J = 10.4 Hz, 1 H); 4.03(d, J = 10.4 Hz, 1 H); 3.55 (d, J = 10.4 Hz, 1 H); 2.30 (s, 3 H); 1.92 (s, 3 H); 1.13 (s, 9 H); 0.93 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.2$, 166.8, 142.8, 137.4, 136.5, 134.0, 130.9, 129.9, 129.8, 129.0, 128.3, 128.2, 128.1, 127.9, 127.8, 126.9, 92.6, 89.4, 76.4, 76.1, 31.5, 31.4, 26.7, 26.5, 21.4, 15.8 ppm. IR (neat) v/cm⁻¹ 2959, 2916, 2884, 1758, 1740, 1600, 1495, 1473, 1447, 1411, 1398, 1376, 1366, 1344, 1326, 1306, 1292, 1230, 1156, 1087, 1058, 1037, 1026, 1010, 986, 971, 921, 902. HRMS (ESI): C₃₇H₄₅NNaO₇S [M+Na]⁺ calcd: 670.2809, found: 670.2820.

22. (2*S*,5*R*)-dineopentyl 2-phenyl-5-((*E*)-prop-1-en-1-yl)-3-tosyloxazolidine-4,4dicarboxylate (3fm).

The reaction of **1f** (150.5 mg, 0.3 mmol), **2m** (31.5 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 12 hours to afford **3fm** (168.8 mg) in 99% yield, white solid. m.p. $80 - 83 \, {}^{\circ}$ C; $[\alpha]_{20}^{D} = -26.6$ (c = 0.5, CHCl₃); ee = 69% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/^{*i*}PrOH = 85/15, 0.8 mL/min, t_{minor} = 12.63 min, t_{major} = 11.35 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.30$ (d, J = 7.2 Hz, 2 H); 7.15 – 7.26 (m, 3 H); 7.08 (t, J = 7.6 Hz, 2 H); 6.90 (d, J = 8.0 Hz, 2 H); 5.99 (s, 1 H); 5.82 – 5.96 (m, 1 H); 5.54 – 5.76 (m, 1 H); 5.08 (d, J = 8.0 Hz, 1 H); 4.00 – 4.13 (m, 3 H); 3.92 (d, J = 10.4 Hz, 1 H); 2.28 (s, 3 H); 1.68 – 1.88 (m, 3 H); 1.08 (s, 9 H); 1.02 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.9$, 166.8, 142.7, 137.6, 134.0, 132.9, 129.7, 129.5, 128.3, 128.2, 127.8, 124.4, 92.7, 86.9, 76.6, 76.2, 31.5, 31.4, 26.6, 26.5, 21.4, 17.9 ppm. IR (neat) ν /cm⁻¹ 2960, 2870, 1743, 1677, 1598, 1477, 1463, 1403, 1369, 1345, 1306, 1261, 1237, 1217, 1156, 1093, 1051, 1032, 1015, 994, 968, 929, 902. HRMS (ESI): C₃₁H₄₁NNaO₇S [M+Na]⁺ calcd: 594.2496, found: 594.2528.

23. (2*S*,5*R*)-dineopentyl 5-((*E*)-but-2-en-2-yl)-2-phenyl-3-tosyloxazolidine-4,4-dicarboxylate (3fn).

The reaction of **1f** (150.5 mg, 0.3 mmol), **2n** (37.9 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018

mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 20 hours to afford **3fn** (160.2 mg) in 91% yield, white solid. m.p. $108 - 111 \, {}^{\circ}$ C; $[\alpha]_{20}{}^{D} = -30.6$ (c = 1.0, CHCl₃); ee = 87% (chiral HPLC analysis: Chiralcel IC, *n*-hexane/^{*i*}PrOH = 95/5, 0.8 mL/min, t_{minor} = 12.01 min, t_{major} = 12.88 min); ¹H NMR (400 MHz, CDCl₃): $\delta = 7.38$ (d, J = 7.6 Hz, 2 H); 7.23 – 7.40 (m, 1 H); 7.02 – 7.20 (m, 4 H); 6.88 (d, J = 8.4 Hz, 2 H); 6.04 (s, 1 H); 5.69 (q, J = 6.4 Hz, 1 H); 5.13 (s, 1 H); 4.22 (d, J = 10.4 Hz, 1 H); 4.13 (d, J = 10.4 Hz, 1 H); 3.98 (d, J = 10.4 Hz, 1 H); 3.61 (d, J = 10.4 Hz, 1 H); 2.28 (s, 3 H); 1.64 (s, 3 H); 1.61 (d, J = 7.2 Hz, 3 H); 1.11 (s, 9 H); 1.02 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.1$, 142.7, 137.6, 134.1, 129.79, 129.76, 129.1, 128.3, 128.2, 127.8, 123.7, 92.4, 89.6, 76.5, 76.3, 76.2, 31.4, 26.7, 26.5, 21.4, 13.5, 13.2 ppm. IR (neat) ν/cm^{-1} 2961, 2869, 1752, 1738, 1599, 1477, 1461, 1403, 1368, 1344, 1262, 1237, 1210, 1156, 1094, 1052, 1028, 1008, 984, 959, 940. HRMS (ESI): C₃₂H₄₃NNaO₇S [M+Na]⁺ calcd: 608.2652, found: 608.2672.

24. (2*S*,5*R*)-dineopentyl 5-cyclohexenyl-2-phenyl-3-tosyloxazolidine-4,4-dicarboxylate (3fo).

The reaction of **1f** (150.5 mg, 0.3 mmol), **2o** (49.6 mg, 0.45 mmol) in the presence of 5 mol % Ni(ClO₄)₂·6H₂O (5.48 mg, 0.015 mmol), Bn-Box ligand (6.52 mg, 0.018 mmol), 120 mg of activated 4Å M.S. and using toluene (3 mL) as the solvent was carried out at r.t. for 18 hours to afford **3fo** (145.0 mg) in 79% yield, white solid. m.p. $130 - 133 \, {}^{\circ}$ C; [α]₂₀^D = -41.2 (c = 0.5, CHCl₃); ee = 85% (chiral HPLC analysis: Chiralcel OZ3, *n*-hexane/^{*i*}PrOH = 95/5, 0.8 mL/min, t_{minor} = 6.82 min, t_{major} = 11.89 min); ¹H NMR (400 MHz, CDCl₃): δ = 7.39 (d, J = 7.2 Hz, 2 H); 7.25 – 7.33 (m, 1 H); 7.04 – 7.20 (m, 4 H); 6.90 (d, J = 8.4 Hz, 2 H); 6.01 (s, 1 H); 5.83 – 5.90 (m, 1 H); 5.06 (s, 1 H); 4.40 (d, J = 10.4 Hz, 1 H); 4.11 (d, J =10.4 Hz, 1 H); 4.00 (d, J = 10.4 Hz, 1 H); 3.57 (d, J = 10.4 Hz, 1 H); 2.29 (s, 3 H); 1.84 – 2.16 (m, 4 H); 1.50 – 1.70 (m, 4 H); 1.11 (s, 9 H); 1.04 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.2$, 166.7, 142.7, 137.5, 134.0, 131.4, 129.8, 128.3, 128.1, 127.8, 125.9, 92.3, 88.4, 76.4, 76.1, 75.6, 31.8, 31.4, 26.7, 26.5, 25.6, 24.8, 22.2, 22.0, 21.4 ppm. IR (neat) ν/cm^{-1} 2948, 2900, 1757, 1737, 1598, 1462, 1401, 1369, 1351, 1327, 1308, 1291, 1235, 1214, 1156, 1095, 1040, 1004, 980, 959, 916. HRMS (ESI): C₃₄H₄₅NNaO₇S [M+Na]⁺ calcd: 634.2809, found: 634.2882.

HPLC results

3fc HPLC using an IC (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3fc**

I	序号	保留时间	Li,	肇名称	峰高	峰面积	相对峰面积	样品量	类型
		min			mAU	mAU*min	%		
ſ	1	7.47	n.a.		81.519	22.987	49.74	n.a.	BMB
	2	10.07	n.a.		53.559	23.223	50.26	n.a.	BMB
	总和:				135.078	46.210	100.00	0.000	

Enantioenriched 3fc

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	7.47	n.a.	24.529	6.871	3.56	n.a.	BMB
2	9.95	n.a.	416.867	185.866	96.44	n.a.	BMB
总和:			441.397	192.737	100.00	0.000	

3gc HPLC using an IC (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3gc**

序号	保留时间		峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min			mAU	mAU*min	%		
1	7.35	n.a.		8.500	1.447	1.11	n.a.	Ru
2	7.73	n.a.		201.191	63.976	48.97	n.a.	BMB
3	11.34	n.a.		123.264	65.211	49.92	n.a.	BMB*
总和:				332.955	130.635	100.00	0.000	

Enantioenriched 3gc

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	7.55	n.a.	46.936	10.205	5.49	n.a.	BMB
2	11.05	n.a.	221.574	175.690	94.51	n.a.	BMB
总和:			268.510	185.895	100.00	0.000	

3hc HPLC using an IC (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3hc**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	8.11	n.a.	656.421	79.440	49.30	n.a.	BMB
2	11.83	n.a.	142.592	81.684	50.70	n.a.	BMB
总和:			799.013	161.124	100.00	0.000	

Enantioenriched 3hc

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	8.34	n.a.	19.649	6.478	4.17	n.a.	BMB
2	11.69	n.a.	300.696	149.058	95.83	n.a.	BMB
总和:			320.345	155.536	100.00	0.000	

3ic HPLC using an IC (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3ic**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	8.09	n.a.	280.973	51.860	49.53	n.a.	BMB
2	13.46	n.a.	82.024	52.849	50.47	n.a.	BMB*
总和:			362.998	104.709	100.00	0.000	

Enantioenriched 3ic

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	8.25	n.a.	21.815	6.602	4.15	n.a.	BMB
2	13.34	n.a.	247.066	152.448	95.85	n.a.	BMB
总和:			268.881	159.049	100.00	0.000	

3jc HPLC using an IC (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3jc**

3kc HPLC using an OZ3 (*n*-Hexane/*i*PrOH=95/05, flow rate 0.8 ml/min) Racemic **3kc**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	5.77	n.a.	102.977	53.923	49.91	n.a.	BMB
2	12.17	n.a.	34.213	54.110	50.09	n.a.	BMB
总和:			137.190	108.033	100.00	0.000	

Enantioenriched 3kc

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	5.77	n.a.	42.707	21.732	3.14	n.a.	BMB
2	11.67	n.a.	408.331	670.202	96.86	n.a.	BMB*
总和:			451.037	691.934	100.00	0.000	
3lc HPLC using an IC (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3lc**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	6.27	n.a.	94.458	23.275	49.83	n.a.	BMB
2	7.62	n.a.	81.725	23.435	50.17	n.a.	BMB*
总和:			176.183	46.710	100.00	0.000	

Enantioenriched 3lc

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	6.28	n.a.	15.647	3.766	2.68	n.a.	BMB
2	7.61	n.a.	454.907	136.778	97.32	n.a.	BMB
总和:			470.554	140.544	100.00	0.000	

55.0_WUX #386 [由dell修改] mAU UV VIS 1 WVL:254 nm 7-72-2IC85150830 1 - 6.873 40.0-30.0-2 - 9.240 20.0 10.0--5.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.9

3mc HPLC using an IC (<i>n</i> -Hexane/ <i>i</i> PrOH=85/15, flow rate 0.8 ml/min)
Racemic 3mc

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	6.87	n.a.	48.081	11.612	50.77	n.a.	BMB*
2	9.24	n.a.	22.375	11.260	49.23	n.a.	BMB*
总和:			70.456	22.873	100.00	0.000	

Enantioenriched 3mc

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	6.91	n.a.	32.321	8.709	4.07	n.a.	BMB
2	9.13	n.a.	478.816	205.228	95.93	n.a.	BMB
总和:			511.137	213.937	100.00	0.000	

3nc HPLC using an IC (*n*-Hexane/*i*PrOH=90/10, flow rate 0.8 ml/min) Racemic **3nc**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	9.85	n.a.	85.946	54.658	49.97	n.a.	BMB
2	18.31	n.a.	58.317	54.717	50.03	n.a.	BMB
总和:			144.263	109.375	100.00	0.000	

Enantioenriched 3nc

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	9.82	n.a.	42.732	17.184	5.55	n.a.	BMB*
2	18.09	n.a.	388.248	292.681	94.45	n.a.	BMB
总和:			430.981	309.865	100.00	0.000	

3oc HPLC using an IC (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3oc**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	12.03	n.a.	337.149	157.316	50.30	n.a.	BMB*
2	15.19	n.a.	232.032	155.428	49.70	n.a.	BMB
总和:			569.181	312.744	100.00	0.000	

Enantioenriched 3oc

3fa HPLC using an ADH (*n*-Hexane/*i*PrOH=80/20, flow rate 0.8 ml/min) Racemic **3fa**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	5.79	n.a.	36.746	9.879	50.06	n.a.	BMb*
2	6.54	n.a.	32.667	9.854	49.94	n.a.	bMB*
总和:			69.412	19.733	100.00	0.000	

Enantioenriched 3fa

序号	保留时间	峰名和	r 峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	5.80	n.a.	1057.830	214.525	95.90	n.a.	BM *
2	6.55	n.a.	28.348	9.166	4.10	n.a.	MB*
总和:			1086.178	223.691	100.00	0.000	

3fb HPLC using an IC (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3fb**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	8.32	n.a.	72.186	23.156	49.65	n.a.	BMB
2	11.41	n.a.	56.092	23.478	50.35	n.a.	BMB
总和:			128.277	46.634	100.00	0.000	

Enantioenriched 3fb

	序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
		min		mAU	mAU*min	%		
I	1	8.33	n.a.	14.930	4.780	5.12	n.a.	BMB*
	2	11.32	n.a.	212.385	88.634	94.88	n.a.	BMB
	总和:			227.315	93.413	100.00	0.000	

3fd HPLC using an OZ3 (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3fd**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	5.04	n.a.	112.708	34.352	50.17	n.a.	BMB
2	8.73	n.a.	25.214	34.121	49.83	n.a.	BMB
总和:			137.922	68.473	100.00	0.000	

Enantioenriched 3fd

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	5.04	n.a.	24.650	7.295	5.12	n.a.	BMB
2	8.63	n.a.	96.911	135.255	94.88	n.a.	BMB
总和:			121.561	142.549	100.00	0.000	

3fe HPLC using an IC (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3fe**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	8.43	n.a.	53.799	16.475	4.10	n.a.	BMB
2	9.83	n.a.	886.489	385.665	95.90	n.a.	BMB*
总和:			940.288	402.140	100.00	0.000	

3ff HPLC using an ADH (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3ff**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	4.57	n.a.	454.835	121.881	49.57	n.a.	BMB*
2	7.69	n.a.	104.599	124.005	50.43	n.a.	BMB
总和:			559.435	245.886	100.00	0.000	

Enantioenriched 3ff

Racemic **3fg**

戶亏	保留时间	嘽名栁	峰向	嘽囬枳	相对噻囬松	杆茚重	矢空	
	min		mAU	mAU*min	%			
1	9.89	n.a.	36.121	19.964	45.18	n.a.	BMB	
2	14.17	n.a.	11.816	4.474	10.13	n.a.	BM	
3	15.47	n.a.	10.488	19.747	44.69	n.a.	MB	
总和:			58.425	44.186	100.00	0.000		

Enantioenriched 3fg

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	9.89	n.a.	19.027	10.459	5.14	n.a.	BMB
2	15.37	n.a.	101.182	193.140	94.86	n.a.	BMB
总和:			120.208	203.599	100.00	0.000	

3fh HPLC using an IC (*n*-Hexane/*i*PrOH=90/10, flow rate 0.8 ml/min) Racemic **3fh**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	7.95	n.a.	419.300	130.090	50.64	n.a.	BMB*
2	10.11	n.a.	335.580	126.823	49.36	n.a.	BMB*
总和:			754.880	256.913	100.00	0.000	

Enantioenriched 3fh

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	7.94	n.a.	11.910	3.887	3.97	n.a.	BMB
2	10.01	n.a.	254.307	93.926	96.03	n.a.	BMB*
总和:			266.217	97.813	100.00	0.000	

3fi HPLC using an OZ3 (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3fi**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	6.83	n.a.	345.397	182.877	49.96	n.a.	BM
2	8.57	n.a.	188.268	183.184	50.04	n.a.	MB
总和:			533.665	366.061	100.00	0.000	

Enantioenriched 3fi

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	6.88	n.a.	68.424	33.384	5.80	n.a.	Ru
2	8.34	n.a.	552.554	542.298	94.20	n.a.	BMB
总和:			620.978	575.682	100.00	0.000	

3fj HPLC using an ADH (*n*-Hexane/*i*PrOH=90/10, flow rate 0.5 ml/min) Racemic **3fj**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	8.74	n.a.	260.552	122.251	48.14	n.a.	BM
2	9.84	n.a.	267.552	118.524	46.68	n.a.	M
3	10.71	n.a.	14.155	6.932	2.73	n.a.	M
4	11.52	n.a.	11.922	6.226	2.45	n.a.	MB
总和:			554.181	253.933	100.00	0.000	

Enantioenriched 3fj

3fk HPLC using an OZ3 (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3fk**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	6.67	n.a.	687.213	339.847	50.05	n.a.	BMB
2	14.66	n.a.	142.715	339.218	49.95	n.a.	BMB*
总和:			829.928	679.065	100.00	0.000	

Enantioenriched 3fk

序号	保留时间		峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min			mAU	mAU*min	%		
1	6.60	n.a.		471.128	208.184	7.65	n.a.	BMB
2	14.35	n.a.		1064.687	2511.500	92.35	n.a.	BMB*
总和:				1535.815	2719.684	100.00	0.000	

3fl HPLC using an IC (*n*-Hexane/*i*PrOH=95/05, flow rate 0.8 ml/min) Racemic **3fl**

Enantioenriched 3fl

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	10.41	n.a.	20.858	9.570	3.92	n.a.	BM
2	11.49	n.a.	452.406	234.846	96.08	n.a.	MB
总和:			473.263	244.416	100.00	0.000	

160_____WUX #349 [由dell修改] _____mAU 7-45-2IC85150830 UV VIS 1 WVL:254 nm 2 - 12.653 1 - 11.40/7 140-120-100-80-60-40 20 0 min 18.5 -20 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 序号 保留时间 峰名称 峰高 峰面积 相对峰面积 样品量 类型 mAU mAU*min % min 1 11.41 141.639 64.024 49.36 n.a. BMB* n.a. 2 12.65 n.a. 145.431 65.673 50.64 n.a. BMB* 总和: 129.698 100.00 287.070 0.000 Enantioenriched 3fm 250_WUX #358 [由dell修改] mAU 7-45-1IC85150830 UV VIS 1 WVL:254 nm Ts -N CO₂CH₂^tBu ∕─CO₂CH₂^tBu 1 - 11.347 200-0 150-100-3fm 50-2 - 12.627 0min 19.2 -50 2.0 10.0 12.0 14.0 16.0 4.0 6.0 8.0

3fm HPLC using an IC (*n*-Hexane/*i*PrOH=85/15, flow rate 0.8 ml/min) Racemic **3fm**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	11.35	n.a.	211.933	93.221	84.60	n.a.	BMb
2	12.63	n.a.	38.393	16.964	15.40	n.a.	bMB
总和:			250.326	110.186	100.00	0.000	

3fn HPLC using an IC (*n*-Hexane/*i*PrOH=95/05, flow rate 0.8 ml/min) Racemic **3fn**

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	12.02	n.a.	38.899	22.693	49.30	n.a.	BM
2	13.17	n.a.	36.066	23.338	50.70	n.a.	MB
总和:			74.965	46.031	100.00	0.000	

Enantioenriched 3fn

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	12.01	n.a.	37.674	20.125	6.55	n.a.	BM
2	12.88	n.a.	425.630	287.355	93.45	n.a.	MB
总和:			463.304	307.480	100.00	0.000	

3fo HPLC using an OZ3 (*n*-Hexane/*i*PrOH=95/05, flow rate 0.8 ml/min) Racemic **3fo**

Enantioenriched 3fn

序号	保留时间	峰名称	峰高	峰面积	相对峰面积	样品量	类型
	min		mAU	mAU*min	%		
1	6.82	n.a.	86.883	59.752	7.59	n.a.	BMB
2	11.89	n.a.	400.798	727.456	92.41	n.a.	BMB*
总和:			487.682	787.208	100.00	0.000	

976 955	354 333 262 250
• •	
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\neg \neg \neg \neg$
\bigvee	

449 .993 \sim 91 • • 4 \sim 0 1

---0.000

.658

0

ОЧ	0 0 0 0 N N U N N				
M L	10110110110	70805	∞	\sim	ю Г О 4 М Н
• •		МО Ф 7 Л		\sim	носмон
NΝ	40000000	• • • • •	•	•	
00	4 M M N N N N N	20077		0	ноорчи
\dashv \dashv	$\vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash$		S	4	$\square \square $
$\langle \rangle$					$\searrow \bigvee \not \vdash$

-0.000 994408867478 $^{\circ}$ 000004 9 00 .991 $^{\circ}$ 87. 67. 0100077000100 4 Ω 4 N • • • • 0 4 \circ $\sim \sim$ L ξ L Ļ L J J J J 1 V

. . . . 10 9 8 7 6 5 3 2 4 1 ppm 3.89 2.12 2.92 **2.06** 2.08 0.99 3.06 1.00 9.28 8.87

ppm

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0		
	1.5 1.0 0.5	ppm
	.31 .24	

h

1.00 3.00 3.00

1.00

3.01

9.08

9.18

4.04

1.00

1.00

			\sim		2	00
0 0 0 0 0 0 0 0 0 0	0070C0H	40	8		N	0
$\Box + \Box = $	001000	$\infty \infty$	\sim		L	•
		• •	•	•	•	0
	4 4 4 6 0 0		\sim		0	
		$\langle \rangle$				

_N CO₂CH₂^tBu __CO₂CH₂^tBu Ò

Ts N_CO₂CH₂^tBu -CO₂CH₂^tBu Ó

3fd

