Supporting Information

Copper(I)-Catalyzed Asymmetric *Exo*-selective [3+2] Cycloaddition of Azomethine Ylides with β -Trifluoromethyl β , β -Disubstituted Enones

Bing Xu, Zhan-Ming Zhang, Bing Liu, Shan Xu, Lu-Jia Zhou and Junliang Zhang*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China

E-mail: jlzhang@chem.ecnu.edu.cn

Contents

1.	General Information	S1
2.	Screening the Known Ligands	S2
3.	Table S1. Optimization of Reaction Conditions	S2
4.	General Procedure for the Synthesis of products 3aa-3ma , 4-7	S3
5.	X-ray structure of 5	S25
6.	¹ H, ¹⁹ F, ¹³ C NMR, HPLC Spectra	S26
7.	References	S100

1. General Information

All reactions were carried out under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. ¹H NMR spectra, ¹³C NMR spectra were recorded on a Bruker 300, and 400 MHz spectrometer in CDCl₃. All signals are reported in ppm with the internal TMS signal at 0 ppm as a standard. Data for ¹H NMR spectra are reported as follows: chemical shift (ppm, referenced to TMS; s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet), coupling constant (Hz), and intergration. Data for ¹³C NMR are reported in terms of chemical shift (ppm) relative to residual solvent peak (CDCl₃: 77.0 ppm). Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Dichloromethane, dichloroethane, toluene were freshly distilled from CaH₂; THF and MTBE was freshly distilled from sodium metal prior to use. The substrate **1a-11**, ¹**2a-2o**, ²**1m**, ³ were synthesized according to the procedure of references. In addition, the spectral data of the substrates were consisted with the literature.

2. Screening the Known Ligands^a

^a All reactions were carried out with 0.1 mmol of **1a**, 0.2 mmol of **2a**, 5 mol% of catalyst ([Cu] to Ligand = 1:1.1) in 2.0 mL THF at -30 °C for 2-8 h. ^b The yield of **3aa** (*exo*-product). ^c The yield of **3aa'** (*endo*-product). ^d NMR yield with CH₂Br₂ as an internal standard. ^e The diastereomeric ratios were determined by ¹H, ¹⁹F NMR analysis of the crude products. ^f The *ee* of **3aa** (*exo*-product). Determined by chiral HPLC.

3. Table S1. Optimization of Reaction Conditions^a

$Ar^{1} - CF_{3}$ $Ar^{1} = 4-CIC_{6}H_{4}$ 1a	+ $Ar^2 \sim N \sim CO_2 Me$ - $Ar^2 = 4-BrC_6H_4$ 2a	[M] (5 mol%) (S)-MeO-DTBM-Biph (5.5 mol%) Cs ₂ CO ₃ (50 mol%) Solvent, T	ep → Ar ²	Ar^1 Me CF_3 CO_2Me 3aa	MeO PAr ₂ MeO PAr ₂ PAr ₂ Ar = $3,5-(^{t}Bu)_{2}-4-MeO-C_{6}H_{2}$ (S)-MeO-DTBM-Biphep
Entry	[M]	Solvent	T (°C)	Dr ^b	Yield (<i>Ee</i>) [%] ^{<i>c,d</i>}
1	Cu(CH ₃ CN) ₄ BF ₄	THF	-30	>20:1	99(98)
2	Cu(CH ₃ CN) ₄ PF ₆	THF	-30	>20:1	98(98)
3	Cu(CH ₃ CN) ₄ NTf ₂	THF	-30	>20:1	98(98)
4	Cu(CH ₃ CN) ₄ ClO ₄	THF	-30	>20:1	98(98)
5	(CuOTf)2•Tol	THF	-30	>20:1	97(97)
6	AgOAc	THF	-30	4:1	78(94)
7	Cu(CH ₃ CN) ₄ BF ₄	Acetone	-30	>20:1	93(95)

8	Cu(CH ₃ CN) ₄ BF ₄	Toluene	-30	>20:1	80(99)
9	Cu(CH ₃ CN) ₄ BF ₄	^{<i>i</i>} Pr ₂ O	-30	>20:1	88(99)
10	Cu(CH ₃ CN) ₄ BF ₄	MTBE	-30	>20:1	89(98)
11	Cu(CH ₃ CN) ₄ BF ₄	Et ₂ O	-30	>20:1	87(98)
12	Cu(CH ₃ CN) ₄ BF ₄	THF	-20	>20:1	93(98)
13	Cu(CH ₃ CN) ₄ BF ₄	THF	0	>20:1	92(97)
14	Cu(CH ₃ CN) ₄ BF ₄	THF	20	>20:1	80(94)

[a] All reactions were carried out with 0.1 mmol of **1a**, 0.2 mmol of **2a**, 5 mol% of catalyst ([Cu] to Ligand = 1:1.1) in 2.0 mL THF at -30 °C for 4-12 h. [b] The diastereomeric ratios were determined by ¹H, ¹⁹F NMR analysis of the crude products. [c] NMR yield with CH₂Br₂ as an internal standard. [d] Determined by chiral HPLC.

4. General Procedure for the Synthesis of products 3aa-3ma.

Typical procedure for asymmetric copper-catalyzed cycloaddition of enones with azomethine ylides.

The solution of ligand (5.5 mol%) and Cu(CH₃CN)₄BF₄ (5 mol%) in THF (4 mL) was stirred at room temperature for 2 h. After the reaction temperature was dropped to - 30 °C, azomethine ylides **2** (0.4 mmol), Cs₂CO₃ (0.1 mmol) and enones **1** (0.2 mmol) were added sequentially. The reaction was determined by TLC analysis. After the enones **1** were consumed completely, the solvent was removed under reduced pressure. The crude product was analyzed with ¹H NMR and ¹⁹F NMR to determine the diastereomeric ratio. Then the crude product was then purified by flash column chromatography on silica gel to afford the desired product. The enantionmeric excesses of the products were determined by chiral stationary phase HPLC using a Chiralpak IC, IE, IF, OZ-3 and AD-H.

4.1 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-5-(4-bromophenyl)-4-(4-chlorobenzoyl)-3methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3aa**).

The reaction of enone 1a (50.0 mg, 0.2 mmol) and iminoester 2a (102.4 mg, 0.4 mmol),

after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3aa** as a colorless ropy liquid (99.6 mg, 99% yield) with > 20:1 d.r. and 98% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.72 (m, 2 H), 7.43-7.37 (m, 4 H), 7.25-7.23 (m, 2 H), 4.76 (d, *J* = 8.9 Hz, 1 H), 4.18 (d, *J* = 9.0 Hz, 1 H), 3.82 (s, 1 H), 3.81 (s, 3 H), 2.68 (s, 1 H), 1.35 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.15. ¹³C NMR (101 MHz, CDCl₃) δ 197.22, 169.87, 140.61, 138.21, 135.46, 132.02, 129.73, 129.19, 128.18, 126.35 (q, *J*_C-F = 282.1 Hz), 122.09, 68.97, 65.33, 57.46 (q, *J* = 23.8 Hz), 56.13, 52.57, 16.91 (d, *J* = 2.6 Hz). MS (EI): m/z (%) = 503 (M⁺, 9.54), 139 (100); HRMS calculated for [C₂₁H₁₈NO₃F₃ClBr]⁺: 503.0111 found: 503.0105. Enantiomeric excess was determined by HPLC with a Chiralpak OZ-3 column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 254 nm); minor enantiomer tr = 19.9 min, major enantiomer tr = 17.2 min. [α]_D²⁰ = 13.0 (*c* = 0.25, CHCl₃).

4.2 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-4-(4-chlorobenzoyl)-5-(4-fluorophenyl)-3- methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3ab**).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2b** (78.0 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ab** as a colorless ropy liquid (87.7 mg, 99% yield) with > 20:1 d.r. and 97% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.73 (m, 2 H), 7.40-7.33 (m, 4 H), 7.00-6.95 (m, 2 H), 4.77 (d, *J* = 9.0 Hz, 1 H), 4.20 (d, *J* = 9.0 Hz, 1 H), 3.83-3.81 (m, 4 H), 2.66 (s, 1 H), 1.36 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.16, -113.67. ¹³C NMR (101 MHz, CDCl₃) δ 197.34, 169.94, 162.42 (d, *J* = 246.9 Hz), 140.54, 135.55, 134.87 (d, *J* = 3.2 Hz), 129.70, 129.15, 128.22 (d, *J* = 8.2 Hz), 127.83 (q, *J*_{C-F} = 281.8 Hz), 115.84 (d, *J* = 21.4 Hz), 69.04, 65.45, 57.54 (q, *J* = 23.7 Hz), 56.33, 52.56, 16.95 (d, *J* = 2.7 Hz). MS (EI): m/z (%) = 443 (M⁺, 18.12), 139 (100); HRMS calculated for [C₂₁H₁₈NO₃F₄Cl]⁺: 443.0911 found: 443.0907. Enantiomeric excess was determined by

HPLC with a Chiralpak OZ-3 column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 21.2 min, major enantiomer tr = 15.6 min. $[\alpha]_D^{20} = 5.7$ (c = 0.50, CHCl₃).

4.3 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-4-(4-chlorobenzoyl)-5-(4-chlorophenyl)-3methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3ac**).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2c** (84.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ac** as a colorless ropy liquid (89.6 mg, 98% yield) with > 20:1 d.r. and 99% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.74 (m, 2 H), 7.41-7.39 (m, 2 H), 7.33-7.26 (m, 4 H), 4.79 (d, *J* = 8.7 Hz, 1 H), 4.20 (d, *J* = 8.9 Hz, 1 H), 3.85-3.81 (m, 4 H), 2.71 (s, 1 H), 1.36 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.15. ¹³C NMR (101 MHz, CDCl₃) δ 197.24, 169.89, 140.59, 137.65, 135.45, 133.94, 129.72, 129.17, 129.07, 127.85, 126.35 (q, *J*_{C-F} = 281.8 Hz), 68.96, 65.30, 57.46 (q, *J* = 23.4 Hz), 56.18, 52.57, 16.91. MS (EI): m/z (%) = 459 (M⁺, 14.34), 139 (100); HRMS calculated for [C₂₁H₁₈NO₃F₃Cl₂]⁺: 459.0616 found: 459.0613. Enantiomeric excess was determined by HPLC with a Chiralpak IE column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 25.0 min, major enantiomer tr = 34.6 min. [α]_D²⁰ = 10.3 (*c* = 0.50, CHCl₃).

4.4 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-4-(4-chlorobenzoyl)-5-(4-cyanophenyl)-3methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3ad**).

The reaction of enone 1a (50.0 mg, 0.2 mmol) and azomethine ylide 2d (80.8 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product 3ad as a colorless ropy liquid (87.0 mg, 97% yield) with > 20:1 d.r. and 98% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.73 (m, 2 H), 7.57 (d, *J* = 8.2 Hz, 2 H), 7.50 (d, *J* = 8.1 Hz, 2 H), 7.40-7.37 (m, 2 H), 4.89 (d, *J* = 8.8 Hz, 1 H), 4.18 (d, *J* = 8.9 Hz, 1 H), 3.85 (s, 1 H), 3.80 (s, 3 H), 2.71 (s, 1 H), 1.35 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.10. ¹³C NMR (101 MHz, CDCl₃) δ 196.79, 169.96, 144.96, 140.82, 135.27, 132.64, 129.70, 129.24, 127.47 (q, *J*_{C-F} = 281.5 Hz), 127.28, 118.35, 112.00, 68.58, 64.90, 57.13 (q, *J* = 25.1, 24.6 Hz), 55.71, 52.57, 16.82 (d, *J* = 2.7 Hz). MS (EI): m/z (%) = 450 (M⁺, 18.42), 139 (100); HRMS calculated for [C₂₂H₁₈N₂O₃F₃Cl]⁺: 450.0958 found: 450.0955. Enantiomeric excess was determined by HPLC with a Chiralpak OZ-3 column (hexanes: 2-propanol = 90:10, 0.8 mL/min, 254 nm); minor enantiomer tr = 40.6 min, major enantiomer tr = 24.7 min. [α]_D²⁰ = 1.8 (*c* = 0.25, CHCl₃).
4.5 Synthesis of methyl (2*S*, 3R, 4*R*, 5*R*)-4-(4-chlorobenzoyl)-3-methyl-3-(trifluoro methyl)-5-(4-(trifluoromethyl)phenyl)pyrrolidine-2-carboxylate (3ae).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2e** (98.0 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ae** as a colorless ropy liquid (93.5 mg, 95% yield) with > 20:1 d.r. and 99% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.75 (m, 2 H), 7.55 (d, *J* = 8.2 Hz, 2 H), 7.49 (d, *J* = 8.2 Hz, 2 H), 7.42-7.38 (m, 2 H), 4.90 (d, *J* = 8.8 Hz, 1 H), 4.22 (d, *J* = 9.0 Hz, 1 H), 3.86 (s, 1 H), 3.82 (s, 3 H), 2.74 (s, 1 H), 1.36 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -62.69, -71.14. ¹³C NMR (101 MHz, CDCl₃) δ 197.44, 170.15, 143.69, 141.09, 135.71, 130.69 (q, *J* = 32.5 Hz), 130.10, 129.57, 128.05 (q, *J*_{C-F} = 281.8 Hz), 127.19, 126.20 (q, *J* = 3.8 Hz), 124.15 (q, *J*_{C-F} = 270.52 Hz), 69.25, 65.52, 57.74 (q, *J* = 23.9 Hz), 56.38, 52.92, 17.19 (d, *J* = 2.7 Hz). MS (EI): m/z (%) = 493 (M⁺, 16.25), 139 (100);

HRMS calculated for $[C_{22}H_{18}NO_3F_6C1]^+$: 493.0879 found: 493.0876. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 254 nm); minor enantiomer tr = 12.5 min, major enantiomer tr = 11.2 min. $[\alpha]_D^{20} = 15.2$ (c = 0.25, CHCl₃).

4.6 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-4-(4-chlorobenzoyl)-5-(4-methoxyphenyl)3-methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (3af).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2f** (83.0 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3af** as a colorless ropy liquid (90.1 mg, 99% yield) with > 20:1 d.r. and 96% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.73 (m, 2 H), 7.38-7.35 (m, 2 H), 7.30-7.26 (m, 2 H), 6.83-6.79 (m, 2 H), 4.72 (d, *J* = 8.9 Hz, 1 H), 4.22 (d, *J* = 9.0 Hz, 1 H), 3.81-3.80 (m, 4 H), 3.73 (s, 3 H), 2.64 (s, 1 H), 1.35 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.16. ¹³C NMR (101 MHz, CDCl₃) δ 197.60, 169.89, 159.34, 140.30, 135.68, 130.85, 129.69, 129.05, 127.95 (q, *J*_{C-F} = 281.8 Hz), 127.65, 114.20, 69.22, 65.92, 57.71 (q, *J* = 23.5 Hz), 56.43, 55.13, 52.48, 16.96 (d, *J* = 2.5 Hz). MS (EI): m/z (%) = 455 (M⁺, 25.23), 139 (100); HRMS calculated for [C₂₂H₂₁NO₄F₃Cl]⁺: 455.1111 found: 455.1107. Enantiomeric excess was determined by HPLC with a Chiralpak IE column (hexanes: 2-propanol = 90:10, 0.8 mL/min, 210 nm); minor enantiomer tr = 22.5 min, major enantiomer tr = 35.1 min. [α] $_D^{20}$ = 8.5 (*c* = 0.50, CHCl₃).

4.7 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-4-(4-chlorobenzoyl)-3-methyl -5-(p-tolyl)-3- (trifluoromethyl)pyrrolidine-2-carboxylate (**3ag**).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2g** (76.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ag** as a colorless ropy liquid (85.8 mg, 98% yield) with > 20:1 d.r. and 94% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.74 (m, 2 H), 7.39-7.36 (m, 2 H), 7.23 (d, *J* = 7.9 Hz, 2 H), 7.10 (d, *J* = 7.7 Hz, 2 H), 4.75 (d, *J* = 8.9 Hz, 1 H), 4.24 (d, *J* = 8.9 Hz, 1 H), 3.82-3.81 (m, 4 H), 2.76 (s, 1 H), 2.28 (s, 3 H), 1.35 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.15. ¹³C NMR (101 MHz, CDCl₃) δ 197.62, 169.79, 140.32, 137.93, 135.80, 135.65, 129.74, 129.56, 129.06, 127.98 (q, *J*_{C-F} = 281.2 Hz), 126.28, 69.31, 66.13, 57.77 (q, *J* = 21.5 Hz), 56.44, 52.51, 21.03, 16.95. MS (EI): m/z (%) = 439 (M⁺, 23.93), 139 (100); HRMS calculated for [C₂₂H₂₁NO₃F₃Cl]⁺: 439.1162 found: 439.1165. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 37.3 min, major enantiomer tr = 30.5 min. [α]_D²⁰ = 12.4 (*c* = 0.50, CHCl₃).

4.8 Synthesis of methyl (2S, 3R, 4R, 5R)-5-([1,1'-biphenyl]-4-yl)-4- (4-chlorobenzoyl)
-3-methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (3ah).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2h** (101.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ah** as a colorless ropy liquid (99.9 mg, > 99% yield) with > 20:1 d.r. and 97% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.79 (m, 2 H), 7.55-7.53 (m, 4 H), 7.45-7.38 (m, 6 H), 7.35-7.31 (m, 1 H), 4.87 (d, *J* = 8.9 Hz, 1 H), 4.31 (d, *J* = 9.0 Hz, 1 H), 3.87 (s, 1

H), 3.83 (s, 3 H), 2.82 (s, 1 H), 1.39 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.08. ¹³C NMR (101 MHz, CDCl₃) δ 197.54, 169.81, 141.01, 140.44, 140.28, 137.95, 135.61, 129.78, 129.12, 128.73, 127.95 (q, *J*_{C-F} = 281.2 Hz), 127.57, 127.39, 126.93, 126.85, 69.26, 65.90, 57.72 (q, *J* = 23.5 Hz), 56.34, 52.53, 16.94 (d, *J* = 2.6 Hz). MS (EI): m/z (%) = 501 (M⁺, 30.27), 44 (100); HRMS calculated for [C₂₇H₂₃NO₃F₃Cl]⁺: 501.1319 found: 501.1314. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 254 nm); minor enantiomer tr = 34.0 min, major enantiomer tr = 27.4 min. [α]_D²⁰ = -3.5 (*c* = 0.50, CHCl₃).

4.9 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-4-(4-chlorobenzoyl)-3-methyl-5-phenyl- 3- (trifluoromethyl)pyrrolidine-2-carboxylate (**3ai**).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2i** (70.8 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ai** as a colorless ropy liquid (84.6 mg, > 99% yield) with > 20:1 d.r. and 92% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.74 (m, 2 H), 7.39-7.34 (m, 4 H), 7.32-7.24 (m, 3 H), 4.80 (d, *J* = 8.9 Hz, 1 H), 4.26 (d, *J* = 9.0 Hz, 1 H), 3.85-3.84 (m, 1 H), 3.81 (s, 3 H), 2.78 (s, 1 H), 1.37 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.16. ¹³C NMR (101 MHz, CDCl₃) δ 197.55, 169.78, 140.37, 138.93, 135.65, 129.72, 129.08, 128.91, 128.20, 127.96 (q, *J*_{C-F} = 281.8 Hz), 126.40, 69.28, 66.26, 57.73 (q, *J* = 23.6 Hz), 56.44, 52.50, 16.94 (q, *J* = 2.6 Hz). MS (EI): m/z (%) = 425 (M⁺, 20.47), 139 (100); HRMS calculated for [C₂₁H₁₉NO₃F₃Cl]⁺: 425.1006 found: 425.1004. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 254 nm); minor enantiomer tr = 28.5 min, major enantiomer tr = 21.0 min. [α]_D²⁰ = -13.9 (*c* = 0.25, CHCl₃).

4.10 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-4-(4-chlorobenzoyl)-5-(3-chlorophenyl)-3methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3aj**).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2j** (84.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3aj** as a colorless ropy liquid (90.8 mg, 99% yield) with > 20:1 d.r. and 92% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.75 (m, 2 H), 7.41-7.38 (m, 3 H), 7.24-7.20 (m, 3 H), 4.78 (d, *J* = 8.9 Hz, 1 H), 4.20 (d, *J* = 8.9 Hz, 1 H), 3.83-3.82 (m, 4 H), 2.70 (s, 1 H), 1.35 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.13. ¹³C NMR (101 MHz, CDCl₃) δ 197.19, 169.78, 141.28, 140.62, 135.48, 134.80, 130.18, 129.78, 129.19, 128.43, 126.76, 126.37 (q, *J*_{C-F} = 281.8 Hz), 124.67, 68.99, 65.35, 57.43 (q, *J* = 23.8 Hz), 56.12, 52.59, 16.91-16.86 (m, 1 C). MS (EI): m/z (%) = 459 (M⁺, 14.63), 139 (100); HRMS calculated for [C₂₁H₁₈NO₃F₃Cl₂]⁺: 459.0616 found: 459.0608. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 254 nm); minor enantiomer tr = 18.3 min, major enantiomer tr = 16.8 min. [α]_D²⁰ = 17.5 (*c* = 0.25, CHCl₃).

4.11 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-5-(3-bromophenyl)-4-(4-chlorobenzoyl)-3methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3ak**).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2k** (102.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ak** as a colorless ropy liquid (99.3 mg, 98% yield) with > 20:1 d.r. and 92% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.75 (m, 2 H), 7.55 (t, *J* = 1.8 Hz, 1 H), 7.42-7.37 (m, 3 H), 7.26 (t, *J* = 3.9 Hz, 1 H), 7.15 (t, *J* = 7.8 Hz, 1 H), 4.78 (d, *J* = 8.9 Hz, 1

H), 4.19 (d, J = 8.9 Hz, 1 H), 3.84-3.82 (s, 4 H), 2.70 (s, 1 H), 1.34 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.12. ¹³C NMR (101 MHz, CDCl₃) δ 197.17, 169.76, 141.51, 140.62, 135.44, 131.37, 130.45, 129.79, 129.66, 129.19, 126.34 (q, J_{C-F} = 281.2 Hz), 125.11, 122.98, 68.94, 65.25, 57.39 (q, J = 25.1, 24.6 Hz), 56.07, 52.60, 16.89. MS (EI): m/z (%) = 503 (M⁺, 9.08), 139 (100); HRMS calculated for [C₂₁H₁₈NO₃F₃ClBr]⁺: 503.0111 found: 503.0094. Enantiomeric excess was determined by HPLC with a Chiralpak OZ-3 column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 19.1 min, major enantiomer tr = 16.6 min. [α]_D²⁰ = 2.1 (*c* = 0.50, CHCl₃).
4.12 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-4-(4-chlorobenzoyl)-3-methyl-5-(naphtha lene-2-yl)-3-(trifluoromethyl)pyrrolidine-2-carboxylate (3al).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2l** (91.0 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3al** as a colorless ropy liquid (94.6 mg, > 99% yield) with > 20:1 d.r. and 95% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.76 (m, 6 H), 7.51-7.43 (m, 3 H), 7.37-7.34 (m, 2 H), 4.99 (d, *J* = 8.9 Hz, 1 H), 4.36 (d, *J* = 8.9 Hz, 1 H), 3.91 (s, 1 H), 3.84 (s, 3 H), 2.91 (s, 1 H), 1.40 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.08. ¹³C NMR (101 MHz, CDCl₃) δ 197.57, 169.86, 140.42, 136.29, 135.59, 133.17, 133.02, 129.74, 129.08, 128.93, 127.97 (q, *J*_{C-F} = 281.9 Hz), 127.92, 127.58, 126.36, 126.19, 125.60, 123.94, 69.27, 66.30, 57.69 (q, *J* = 23.6 Hz), 56.40, 52.56, 16.99 (d, *J* = 2.7 Hz). MS (EI): m/z (%) = 475 (M⁺, 31.26), 139 (100); HRMS calculated for [C₂₅H₂₁NO₃F₃Cl]⁺: 475.1162 found: 475.1160. Enantiomeric excess was determined by HPLC with a Chiralpak OZ-3 column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 254 nm); minor enantiomer tr = 26.6 min, major enantiomer tr = 23.2 min. [α]_D²⁰ = 26.1 (*c* = 0.25, CHCl₃).

4.13 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*S*)-4-(4-chlorobenzoyl)-3-methyl-5-((E)-styryl)-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3am**).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2m** (81.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3am** as a colorless ropy liquid (89.3 mg, 99% yield) with > 20:1 d.r. and 98% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.87 (m, 2 H), 7.46-7.42 (m, 2 H), 7.31-7.20 (m, 5 H), 6.57-6.53 (m, 1 H), 6.25-6.19 (m, 1 H), 4.40 (t, *J* = 7.9 Hz, 1 H), 4.10 (d, *J* = 8.3 Hz, 1 H), 3.81 (s, 3 H), 3.79 (d, *J* = 1.5 Hz, 1 H), 2.47 (s, 1 H), 1.34 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.32. ¹³C NMR (101 MHz, CDCl₃) δ 197.39, 169.94, 140.55, 135.86, 135.70, 133.13, 129.85, 129.20, 128.54, 128.05, 127.75 (q, *J*_{C-F} = 281.8 Hz), 126.72, 126.50, 69.10, 64.86, 57.56 (q, *J* = 23.4 Hz), 54.89, 52.56, 16.81 (d, *J* = 2.7 Hz). MS (EI): m/z (%) = 451 (M⁺, 27.48), 139 (100); HRMS calculated for [C₂₃H₂₁NO₃F₃Cl]⁺: 451.1162 found: 451.1158. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol = 90:10, 0.5 mL/min, 254 nm); minor enantiomer tr = 23.3 min, major enantiomer tr = 32.9 min. [α] $_D^{20}$ = 13.3(*c* = 0.25, CHCl₃).

4.14 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*S*)-4-(4-chlorobenzoyl)-5-cyclohexyl-3-methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3an**).

The reaction of enone **1a** (50.0 mg, 0.2 mmol) and azomethine ylide **2n** (73.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3an** as a colorless ropy liquid (79.3 mg, 92% yield) with > 20:1 d.r. and 90% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.91 (m, 2 H), 7.49-7.45 (m, 2 H), 3.89 (d, *J* =

7.9 Hz, 1 H), 3.76 (s, 3 H), 3.65 (d, J = 1.6 Hz, 1 H), 3.55 (t, J = 8.3 Hz, 1 H), 2.32 (s, 1 H), 1.98-1.94 (m, 1 H), 1.73-1.68 (m, 1 H), 1.61-1.55 (m, 2 H), 1.39-1.21 (m, 4 H), 1.18 (s, 3 H), 1.12-1.04 (m, 2 H), 0.90-0.84 (m, 1 H). ¹⁹F NMR (282 MHz, CDCl₃) δ - 71.19. ¹³C NMR (101 MHz, CDCl₃) δ 197.96, 169.41, 140.42, 135.26, 129.89, 129.28, 128.28 (q, $J_{C-F} = 282.2$ Hz), 69.20, 68.71, 57.32 (q, J = 22.6 Hz), 53.47, 52.40, 42.25, 30.83, 30.63, 26.11, 25.85, 25.64, 16.31 (d, J = 2.8 Hz). MS (EI): m/z (%) = 431 (M⁺, 13.60), 139 (100); HRMS calculated for [C₂₁H₂₅NO₃F₃Cl]⁺: 431.1475 found: 431.1473. Enantiomeric excess was determined by HPLC with a Chiralpak OZ-3 column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 254 nm); minor enantiomer tr = 17.1 min, major enantiomer tr = 11.0 min. [α]_D²⁰ = 35.1 (c = 0.25, CHCl₃).

4.15 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-4-benzoyl-5-(4-bromophenyl)-3-methyl-3- (trifluoromethyl)pyrrolidine-2-carboxylate (**3ba**).

The reaction of enone **1b** (42.8 mg, 0.2 mmol) and azomethine ylide **2a** (102.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ba** as a colorless ropy liquid (89.9 mg, 96% yield) with > 20:1 d.r. and 90% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.82 (m, 2 H), 7.69-7.55 (m, 1 H), 7.45-7.41 (m, 4 H), 7.28-7.25 (m, 2 H), 4.81 (d, *J* = 8.8 Hz, 1 H), 4.27 (d, *J* = 8.9 Hz, 1 H), 3.84 (s, 1 H), 3.81 (s, 3 H), 2.71 (s, 1 H), 1.36 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.17. ¹³C NMR (101 MHz, CDCl₃) δ 198.48, 169.82, 138.34, 137.16, 133.90, 131.95, 128.81, 128.34, 128.22, 127.85 (q, *J*_{C-F} = 281.8 Hz), 121.95, 69.03, 65.27, 57.41 (q, *J* = 23.7 Hz), 56.08, 52.53, 16.84 (d, *J* = 2.6 Hz). MS (EI): m/z (%) = 469 (M⁺, 9.80), 105 (100); HRMS calculated for [C₂₁H₁₉NO₃F₃Br]⁺: 469.0500 found: 469.0497. Enantiomeric excess was determined by HPLC with a Chiralpak OZ-3 column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 21.8 min, major enantiomer tr = 17.2 min. [α] p^{20} = 0.7 (*c* = 0.25, CHCl₃).

4.16 Synthesis of methyl (2S, 3R, 4R, 5R)-5-(4-bromophenyl)-4-(4-fluorobenzoyl)-3-

methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (3ca).

The reaction of enone **1c** (46.1 mg, 0.20 mmol) and azomethine ylide **2a** (102.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ca** as a colorless ropy liquid (97.3 mg, > 99% yield) with > 20:1 d.r. and 98% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.83 (m, 2 H), 7.41-7.38 (m, 2 H), 7.26-7.23 (m, 2 H), 7.11-7.06 (m, 2 H), 4.77 (d, *J* = 8.8 Hz, 1 H), 4.19 (d, *J* = 9.0 Hz, 1 H), 3.82 (s, 1 H), 3.80 (s, 3 H), 2.69 (s, 1 H), 1.34 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.15, -103.34. ¹³C NMR (101 MHz, CDCl₃) δ 196.72, 169.85, 166.15 (d, *J* = 256.9 Hz), 138.26, 133.59 (d, *J* = 2.9 Hz), 131.96, 131.11 (d, *J* = 9.6 Hz), 128.17, 127.78 (q, *J*_{C-F} = 281.2 Hz), 122.00, 116.01 (d, *J* = 22.0 Hz), 68.94, 65.26, 57.36 (q, *J* = 23.8 Hz), 56.05, 52.53, 16.85-16.80 (m, 1 C). MS (EI): m/z (%) = 487 (M⁺, 8.66), 123 (100); HRMS calculated for [C₂₁H₁₈NO₃F₄Br]⁺: 487.0406 found: 487.0403. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 17.7 min, major enantiomer tr = 15.4 min. [α] ρ^{20} = 1.0 (*c* = 0.25, CHCl₃)

4.17 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-4-(4-bromobenzoyl)-5-(4-bromophenyl)-3methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3da**).

The reaction of enone **1d** (58.4 mg, 0.2 mmol) and azomethine ylide **2a** (102.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3da** as a colorless ropy liquid (102.1 mg, 93% yield) with 12:1 d.r. and 98%

ee. ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.65 (m, 2 H), 7.56-7.53 (m, 2 H), 7.41-7.38 (m, 2 H), 7.25-7.23 (m, 2 H), 4.76 (d, J = 8.9 Hz, 1 H), 4.17 (d, J = 9.0 Hz, 1 H), 3.82 (s, 1 H), 3.80 (s, 3 H), 2.69 (s, 1 H), 1.34 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.12. ¹³C NMR (101 MHz, CDCl₃) δ 197.39, 169.83, 138.16, 135.78, 132.13, 131.97, 129.75, 129.42, 128.14, 127.70 (q, $J_{C-F} = 282.0$ Hz), 122.04, 68.89, 65.26, 57.38 (q, J = 23.8 Hz), 56.04, 52.54, 16.86 (d, J = 2.6 Hz). MS (EI): m/z (%) = 547 (M⁺, 10.44), 183 (100); HRMS calculated for [C₂₁H₁₈NO₃F₃Br₂]⁺: 546.9606 found: 546.9603. Enantiomeric excess was determined by HPLC with a Chiralpak OZ-3 column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 20.8 min, major enantiomer tr = 18.2 min. [α]_D²⁰ = 17.9 (c = 0.25, CHCl₃).

4.18 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-5-(4-bromophenyl)-3-methyl-3-(trifluoro methyl)-4-(4-(trifluoromethyl)benzoyl)pyrrolidine-2-carboxylate (**3ea**).

The reaction of enone **1e** (56.4 mg, 0.2 mmol) and azomethine ylide **2a** (102.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ea** as a colorless ropy liquid (107.1 mg, >99% yield) with > 20:1 d.r. and 98% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.1 Hz, 2 H), 7.69 (d, *J* = 8.2 Hz, 2 H), 7.45-7.42 (m, 2 H), 7.29-7.27 (m, 2 H), 4.79 (t, *J* = 9.2 Hz, 1 H), 4.25 (d, *J* = 9.1 Hz, 1 H), 3.87-3.83 (m, 4 H), 2.72 (t, *J* = 9.7 Hz, 1 H), 1.38 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -63.29, -71.18. ¹³C NMR (101 MHz, CDCl₃) δ 197.74, 169.90, 139.72, 138.06, 134.97 (q, *J* = 32.7 Hz), 132.09, 128.61, 128.20, 127.66 (q, *J*_{C-F} = 281.7 Hz), 125.90 (q, *J* = 3.7 Hz), 123.29 (q, *J*_{C-F} = 271.4 Hz), 122.22, 68.92, 65.39, 57.53 (q, *J* = 24.0 Hz), 56.52, 52.61, 17.07-16.83 (m, 1 C). MS (EI): m/z (%) = 537 (M⁺, 10.84), 173 (100); HRMS calculated for [C₂₂H₁₈NO₃F₆Br]⁺: 537.0374 found: 537.0377. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 13.1 min, major enantiomer tr = 12.0

min. $[\alpha]_D^{20} = -9.0$ (*c* = 0.50, CHCl₃).

4.19 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-5-(4-bromophenyl)-3-methyl-4-(4-nitro benzoyl)-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3fa**).

The reaction of enone **1f** (52.0 mg, 0.2 mmol) and azomethine ylide **2a** (102.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3fa** as a colorless ropy liquid (102.5 mg, > 99% yield) with > 20:1 d.r. and 98% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 8.26-8.23 (m, 2 H), 7.93-7.89 (m, 2 H), 7.44-7.41 (m, 2 H), 7.30-7.27 (m, 2 H), 4.76 (d, *J* = 9.2 Hz, 1 H), 4.23 (d, *J* = 9.2 Hz, 1 H), 3.85 (s, 1 H), 3.82 (s, 3 H), 2.69 (s, 1 H), 1.38 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.14. ¹³C NMR (101 MHz, CDCl₃) δ 197.33, 170.00, 150.56, 141.49, 137.92, 132.17, 129.24, 128.21, 127.53 (q, *J*_{C-F} = 281.5 Hz), 124.02, 122.38, 68.85, 65.52, 57.62 (q, *J* = 23.9 Hz), 56.87, 52.66, 17.14 (d, *J* = 2.4 Hz). MS (EI): m/z (%) = 514 (M⁺, 16.85), 150 (100); HRMS calculated for [C₂₁H₁₈N₂O₅F₃Br]⁺: 514.0351 found: 514.0355. Enantiomeric excess was determined by HPLC with a Chiralpak OZ-3 column (hexanes: 2-propanol = 90:10, 0.5 mL/min, 254 nm); minor enantiomer tr = 29.1 min, major enantiomer tr = 32.5 min. [α]p²⁰ = 17.0 (*c* = 0.25, CHCl₃).

4.20 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-5-(4-bromophenyl)-3-methyl-4-(4-methy lbenzoyl)-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3ga**).

The reaction of enone **1g** (45.6 mg, 0.2 mmol) and azomethine ylide **2a** (102.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the

product **3ga** as a colorless ropy liquid (95.0 mg, 98% yield) with > 20:1 d.r. and 98% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.73 (m, 2 H), 7.42-7.38 (m, 2 H), 7.25-7.21 (m, 4 H), 4.79 (t, J = 8.4 Hz, 1 H), 4.23 (d, J = 8.9 Hz, 1 H), 3.84-3.80 (m, 4 H), 2.71-2.66 (m, 1 H), 2.37 (s, 3 H), 1.34 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.16. ¹³C NMR (101 MHz, CDCl₃) δ 197.88, 169.84, 145.04, 138.44, 134.71, 131.90, 129.53, 128.54, 128.20, 127.91 (q, $J_{C-F} = 282.0$ Hz), 121.87, 69.04, 65.22, 57.38 (q, J = 23.7 Hz), 55.91, 52.51, 21.62, 16.79 (d, J = 2.6 Hz). MS (EI): m/z (%) = 483 (M⁺, 9.48), 119 (100); HRMS calculated for [C₂₂H₂₁NO₃F₃Br]⁺: 483.0657 found: 483.0659. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 22.3 min, major enantiomer tr = 19.1 min. [α]_D²⁰ = -0.2 (c = 0.25, CHCl₃).

4.21 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-5-(4-bromophenyl)-4-(4-methoxybenzoyl)-3-methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3ha**).

The reaction of enone **1h** (48.8 mg, 0.2 mmol) and azomethine ylide **2a** (102.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ha** as a colorless ropy liquid (92.5 mg, 93% yield) with > 20:1 d.r. and 98% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.82 (m, 2 H), 7.41-7.39 (m, 2 H), 7.24-7.22 (m, 2 H), 6.91-6.87 (m, 2 H), 4.79 (d, *J* = 8.6 Hz, 1 H), 4.19 (d, *J* = 8.8 Hz, 1 H), 3.86-3.79 (m, 7 H), 2.68 (s, 1 H), 1.34 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.14. ¹³C NMR (101 MHz, CDCl₃) δ 196.54, 169.93, 164.24, 138.61, 131.96, 130.96, 130.29, 128.26, 128.05 (q, *J*_{C-F} = 281.6 Hz), 121.90, 114.07, 69.12, 65.26, 57.40 (q, *J* = 23.4 Hz), 55.79, 55.56, 52.58, 16.81. MS (EI): m/z (%) = 499 (M⁺, 8.96), 135 (100); HRMS calculated for [C₂₂H₂₁NO₄F₃Br]⁺: 499.0606 found: 499.0610. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 35.2 min, major enantiomer tr = 26.5 min.

 $[\alpha]_D^{20} = 22.2 \ (c = 0.25, \text{CHCl}_3).$

4.22 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-5-(4-bromophenyl)-4-(3,4-dichlorobenzoyl)- 3-methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3ia**).

The reaction of enone **1i** (56.4 mg, 0.2 mmol) and azomethine ylide **2a** (102.6 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ia** as as a colorless ropy liquid (106.9 mg, > 99% yield) with > 20:1 d.r. and 98% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 2.1 Hz, 1 H), 7.59-7.57 (m, 1 H), 7.48 (d, J = 8.4 Hz, 1 H), 7.43-7.40 (m, 2 H), 7.25-7.23 (m, 2 H), 4.74 (d, J = 9.0 Hz, 1 H), 4.12 (d, J = 9.1 Hz, 1 H), 3.81 (s, 4 H), 2.69 (s, 1 H), 1.35 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.10. ¹³C NMR (101 MHz, CDCl₃) δ 196.25, 169.85, 138.74, 137.99, 136.51, 133.71, 132.08, 130.89, 130.19, 128.15, 127.65 (q, J_{C-F} = 281.8 Hz), 127.24, 122.21, 68.88, 65.37, 57.49 (q, J = 23.8 Hz), 56.27, 52.61, 16.96-16.91 (m, 1 C). MS (EI): m/z (%) = 537 (M⁺, 11.65), 173 (100); HRMS calculated for [C₂₁H₁₇NO₃F₃Cl₂Br]⁺: 536.9721 found: 536.9718. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 15.3 min, major enantiomer tr = 13.4 min. [α]_D²⁰ = -20.0 (c = 0.25, CHCl₃).

4.23 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-5-(4-bromophenyl)-3-methyl-4-(3-nitro benzoyl)-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3ja**).

The reaction of enone 1j (52.0 mg, 0.2 mmol) and azomethine ylide 2a (102.4 mg, 0.4

mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ja** as a colorless ropy liquid (102.1 mg, > 99% yield) with > 20:1 d.r. and 98% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 8.64 (t, *J* = 2.0 Hz, 1 H), 8.41-8.39 (m, 1 H), 8.08-8.05 (m, 1 H), 7.63 (t, *J* = 8.0 Hz, 1 H), 7.44-7.41 (m, 2 H), 7.30-7.26 (m, 2 H), 4.78 (t, *J* = 9.2 Hz, 1 H), 4.22 (d, *J* = 9.2 Hz, 1 H), 3.86-3.80 (m, 4 H), 2.72 (t, *J* = 9.6 Hz, 1 H), 1.38 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -71.09. ¹³C NMR (101 MHz, CDCl₃) δ 196.48, 169.90, 148.53, 138.32, 137.86, 133.59, 132.17, 130.16, 128.24, 127.98, 127.59 (q, *J*_{C-F} = 282.0 Hz), 123.15, 122.36, 68.90, 65.50, 57.62 (q, *J* = 24.0 Hz), 56.65, 52.68, 17.11 (d, *J* = 2.6 Hz). MS (EI): m/z (%) = 514 (M⁺, 1.07), 84 (100); HRMS calculated for [C₂₁H₁₈N₂O₅F₃Br]⁺: 514.0351 found: 514.0356. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 210 nm); minor enantiomer tr = 43.0 min, major enantiomer tr = 38.9 min. [α]p²⁰ = -9.0 (*c* = 0.25, CHCl₃).

4.24 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-5-(4-bromophenyl)-4-(2-chlorobenzoyl)-3methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**3ka**).

The reaction of enone **1k** (50.0 mg, 0.2 mmol) and azomethine ylide **2a** (73.2 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ka** as a colorless ropy liquid (99.7 mg, 99% yield) with > 20:1 d.r. and 98% *ee*. ¹H NMR (300 MHz, CDCl₃) δ 7.48-7.46 (m, 2 H), 7.36-7.32 (m, 4 H), 7.24-7.19 (m, 1 H), 7.15-7.12 (m, 1 H), 4.75 (d, *J* = 9.3 Hz, 1 H), 4.19 (d, *J* = 9.3 Hz, 1 H), 3.79 (s, 4 H), 2.65 (s, 1 H), 1.45 (s, 3 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -72.00. ¹³C NMR (101 MHz, CDCl₃) δ 199.88, 169.70, 138.26, 138.05, 132.53, 131.98, 131.65, 131.12, 129.17, 128.68, 127.51 (q, *J*_{C-F} = 282.0 Hz), 126.81, 122.20, 68.93, 64.70, 60.42, 57.32 (q, *J* = 24.0 Hz), 52.53, 17.33. MS (EI): m/z (%) = 503 (M⁺, 10.76), 139 (100); HRMS calculated for [C₂₁H₁₈NO₃F₃ClBr]⁺: 503.0111 found: 503.0101. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 19

mL/min, 210 nm); minor enantiomer tr = 21.5 min, major enantiomer tr = 18.4 min. $[\alpha]_D^{20} = -109.0 \ (c = 0.50, \text{CHCl}_3).$

4.25 Synthesis of methyl (2S, 3R, 4R, 5R)-5-(4-bromophenyl)-4-(4-chlorobenzoyl)-3ethyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (3la).

The reaction of enone 11 (52.4 mg, 0.2 mmol) and azomethine ylide 2a (102.4 mg, 0.4 mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3la** as a colorless ropy liquid (102.9 mg, >99% yield) with > 20:1 d.r. and 98% ee. ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.72 (m, 2 H), 7.41-7.35 (m, 4 H), 7.26-7.20 (m, 2 H), 4.62 (t, J = 8.2 Hz, 1 H), 4.18 (d, J = 9.4 Hz, 1 H), 3.90 (d, J = 6.4 Hz, 1 H), 3.81 (s, 3 H), 2.72 (s, 1 H), 2.14-2.04 (m, 1 H), 2.00-1.90 (m, 1 H), 0.85-0.80 (m, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -66.52. ¹³C NMR (101 MHz, CDCl₃) δ 197.42, 169.98, 140.49, 137.77, 135.74, 132.03, 129.51, 129.20, 128.21, 127.89 (q, *J*_{C-F} = 283.3 Hz), 122.19, 68.17, 66.61, 62.13 (q, *J* = 22.3 Hz), 56.26, 52.60, 24.66, 9.86 (d, *J* = 1.8 Hz). MS (EI): m/z (%) = 517 (M⁺, 8.16), 139 (100); HRMS calculated for [C₂₂H₂₀NO₃F₃ClBr]⁺: 517.0267 found: 517.0272. Enantiomeric excess was determined by HPLC with a Chiralpak IC column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 254 nm); minor enantiomer tr = 16.2 min, major enantiomer tr = 12.9 min. $[\alpha]_D^{20}$ = -30.9 (*c* = 0.25, CHCl₃).

4.26 Synthesis of methyl (2S, 3S, 4R, 5S)-5-(4-bromophenyl)-4-nitro-3-phenyl-3-(triflu oromethyl)pyrrolidine-2-carboxylate (3ma).

The reaction of enone 1m (43.4 mg, 0.2 mmol) and azomethine ylide 2a (102.4 mg, 0.4 20

mmol), after a flash column chromatography (hexanes: AcOEt = 6:1) afforded the product **3ma** as a colorless ropy liquid (71.7 mg, 76% yield) with > 20:1 d.r. and 98% *ee.* ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.64 (m, 2 H), 7.58-7.55 (m, 2 H), 7.43-7.39 (m, 3 H), 7.29-7.26 (m, 2 H), 5.44 (d, J = 7.4 Hz, 1 H), 4.94 (m, 2 H), 3.82 (s, 3 H), 3.09 (s, 1 H). ¹⁹F NMR (282 MHz, CDCl₃) δ -66.19. ¹³C NMR (101 MHz, CDCl₃) δ 168.11, 135.17, 132.52, 131.13, 129.43, 128.76, 128.11, 127.83 (q, J = 2.0 Hz), 126.15 (q, J_{C-F} = 284.7 Hz), 123.30, 96.54, 66.92, 66.62, 66.13 (d, J = 22.7 Hz), 53.14. ESI-MS calculated for C19H17BrF3N2O4: m/z (%): 473.0318 (M+Na⁺), found: 473.0315. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol = 80:20, 0.8 mL/min, 210 nm); minor enantiomer tr = 18.6 min, major enantiomer tr = 11.2 min. [α]_D²⁰ = 31.1 (c = 0.25, CHCl₃).

4.27 Synthesis of methyl (*R*)-5-(4-bromophenyl)-4-(4-chlorobenzoyl)-3-methyl-3- (trifluoromethyl)-3H-pyrrole-2-carboxylate (**4**).

The solution of compound **3aa** (100.6 mg, 0.2 mmol) in Toluene (2 mL) was stirred at 70 °C in a sealed tube. Subsequently, DDQ (2.0 mmol) added to the above solution. Then the reaction was determined by TLC analysis. After the **3aa** was consumed completely, the reaction mixture was quenched by the addition of NaHCO₃ aq. and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, concentrated. The crude product was analyzed with ¹H NMR and ¹⁹F NMR to determine the diastereomeric ratio. Then the crude product was then purified by flash column chromatography on silica gel (hexanes: AcOEt = 20:1) to afford the desired product **4** as a brown liquid (90.0 mg, 90% yield) with > 20:1 d.r. and 98% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 2 H), 7.45-7.41 (m, 2 H), 7.38-7.36 (m, 2 H), 7.29 (d, *J* = 8.4 Hz, 2 H), 4.01 (s, 3 H), 2.08 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -21

67.28. ¹³C NMR (101 MHz, CDCl₃) δ 191.35, 169.50, 160.49, 154.57, 140.86, 133.75, 131.81, 131.34, 130.61, 130.36, 129.82, 129.26, 126.64 (q, $J_{C-F} = 282.2$ Hz), 125.00, 70.65 (q, J = 28.1, 27.6 Hz), 53.30, 16.29. MS (EI): m/z (%) = 499 (M⁺, 13.16), 139 (100); HRMS calculated for [C₂₁H₁₄NO₃F₃ClBr]⁺: 498.9798 found: 498.9793. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol = 97:3, 0.5 mL/min, 233 nm); minor enantiomer tr = 15.4 min, major enantiomer tr = 17.1 min. [α]_D²⁰ = 197.0 (c = 0.50, CHCl₃).

4.28 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-5-(4-bromophenyl)-4-((*S*)-(4-chlorophenyl) (hydroxy)methyl)-3-methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**5**).

The solution of compound **3aa** (100.6 mg, 0.2 mmol) in ^{*i*}PrOH (2 mL) was stirred at 0 °C in a sealed tube. Subsequently, LiBH₄ (4.8 mg, 0.22 mmol) added to the above solution. The reaction was determined by TLC analysis. After the 3aa was consumed completely, remove the solvent under reduced pressure. The crude product was analyzed with ¹H NMR and ¹⁹F NMR to determine the diastereomeric ratio. Then the crude product was then purified by flash column chromatography on silica gel (hexanes: AcOEt = 2:1) to afford the desired product 5 as a white solid (72.7 mg, 72% yield) with 7:1 d.r. and >99% ee. Mp: 74-75 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.18 (m, 2 H), 7.00-6.97 (m, 2 H), 6.92-6.89 (m, 2 H), 6.63-6.59 (m, 2 H), 4.54 (d, *J* = 9.0 Hz, 1 H), 3.75 (s, 3 H), 3.50 (s, 1 H), 3.37 (d, J = 9.1 Hz, 1 H), 2.76 (t, J = 9.1 Hz, 1 H), 2.65 (s, 1 H), 2.37 (s, 1 H), 1.64 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -71.87. ¹³C NMR (101 MHz, CDCl₃) δ 169.31, 139.34, 138.63, 134.22, 131.38, 128.84, 128.43, 128.33 (q, J_C- $_{\rm F}$ = 281.5 Hz), 128.19, 121.26, 72.92, 69.14, 64.76, 56.96, 56.07 (q, J = 23.1 Hz), 52.44 (d, J = 2.2 Hz), 15.28. MS (EI): m/z (%) = 505 (M⁺, 6.10), 255 (100); HRMS calculated for $[C_{21}H_{20}NO_3F_3ClBr]^+$: 505.0267 found: 505.0256. Enantiomeric excess was determined by HPLC with a Chiralpak OZ-3 column (hexanes: 2-propanol = 95:5, 0.5

mL/min, 210 nm); minor enantiomer tr = 54.9 min, major enantiomer tr = 25.2 min. $[\alpha]_D^{20} = -66.9 \ (c = 0.25, CHCl_3).$

4.29 Synthesis of methyl (2*S*, 3*R*, 4*R*, 5*R*)-5-(4-bromophenyl)-4-(4-chlorobenzoyl)-1hydroxy-3-methyl-3-(trifluoromethyl)pyrrolidine-2-carboxylate (**6**).

The solution of compound 3aa (100.6 mg, 0.2 mmol) in DCM (2 mL) was stirred at 25 ^oC in a sealed tube. Subsequently, MCPBA (0.22 mmol) added to the above solution. Then the reaction was determined by TLC analysis. After the 3aa was consumed completely, the reaction mixture was quenched by the addition of NaHCO₃ aq. and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, concentrated. The crude product was analyzed with ¹H NMR and ¹⁹F NMR to determine the diastereomeric ratio. Then the crude product was then purified by flash column chromatography on silica gel (hexanes: AcOEt = 6:1) to afford the desired product **6** as a white solid (62.3 mg, 60% yield) with > 20:1 d.r. and 99% ee. Mp: 119-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.68 (m, 2 H), 7.45-7.37 (m, 4 H), 7.33-7.30 (m, 2 H), 5.37 (s, 1 H), 4.51 (d, J = 9.5 Hz, 1 H), 4.05 (d, J = 9.5 Hz, 1 H), 3.82 (s, 3 H), 3.72 (s, 1 H), 1.31 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -72.29. ¹³C NMR (126 MHz, CDCl₃) δ 195.81, 168.14, 140.87, 137.33, 135.38, 132.00, 129.84, 129.23, 128.94, 127.23 (q, $J_{C-F} = 281.9$ Hz), 122.28, 75.89, 71.01, 52.46, 52.01, 49.83 (q, J = 26.2 Hz), 17.30-17.25 (m, 1 C). ESI-MS calculated for C₂₁H₁₈BrClF₃NO₄Na: m/z: 541.9958 (M+Na⁺), found: 541.9852. Enantiomeric excess was determined by HPLC with a Chiralpak IF column (hexanes: 2-propanol = 95:5, 0.5 mL/min, 254 nm); minor enantiomer tr = 40.5 min, major enantiomer tr = 31.5 min. $\left[\alpha\right]_{D}^{20} = 21.6$ (c = 0.25, CHCl₃).

4.30 Synthesis of (2R,3R,4R)-2-(4-bromophenyl)-3-(4-chlorobenzoyl)-5-(methoxy-23 carbonyl)-4-methyl-4-(trifluoromethyl)-3,4-dihydro-2H-pyrrole 1-oxide (7).

The solution of compound 3aa (100.6 mg, 0.2 mmol) in DCM (2 mL) was stirred at 25 °C in a sealed tube. Subsequently, MCPBA (0.42 mmol) added to the above solution. Then the reaction was determined by TLC analysis. After the 3aa was consumed completely, the reaction mixture was quenched by the addition of $NaHCO_3$ aq. and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, concentrated. The crude product was analyzed with ¹H NMR and ¹⁹F NMR to determine the diastereomeric ratio. Then the crude product was then purified by flash column chromatography on silica gel (hexanes: AcOEt = 6:1) to afford the desired product 7 as a white solid (51.7 mg, 50% yield) with >20:1 d.r. and >99% ee. Mp: 70-71 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.73 (m, 2 H), 7.54-7.51 (m, 2 H), 7.46-7.42 (m, 2 H), 7.16-7.12 (m, 2 H), 5.76 (d, J = 8.6 Hz, 1 H), 4.54 (d, J = 8.6 Hz, 1 H), 3.93 (s, 3 H), 1.57 (s, 3 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -72.61. ¹³C NMR (126 MHz, CDCl₃) δ 193.86, 159.40, 141.55, 134.51, 133.14, 132.56, 129.92, 129.64 (q, $J_{C-F} =$ 281.8 Hz), 129.45, 129.24, 123.94, 79.03, 54.54 (q, *J* = 28.6 Hz), 52.97, 49.94, 29.68, 15.86. MS (EI): m/z (%) = 517 (M⁺, 1.23), 139 (100); HRMS calculated for $[C_{21}H_{16}NO_4F_3ClBr]^+$: 516.9903 found: 516.9897. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol = 90:10, 0.8 mL/min, 254 nm); minor enantiomer tr = 37.3 min, major enantiomer tr = 25.1 min. $\left[\alpha\right]_{D}^{20}$ = - $39.0 (c = 0.25, CHCl_3).$

24

5. X-ray structures of 5 and 7.

Compound 5

Compound 7

---71.1466

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppn)

---71.1565

7.7/17 7.7/67 7.7/65 7.7/55 7. A47660 447660 44768 44748 42486 42265 −27555 −27555 −22787 −1.3506

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppn)

7.8002 7.8953 7.88855 7.88855 7.88855 7.88855 7.88855 7.88855 7.88855 7.8866 7.8855 7.4520 7.4520 7.2506 7.72306 7.72306 7.72306 7.72306 7.72306 7.7239 7.72508 7.7239 7.72508 7.7239 7.72508 7.7239 7.72508 7.7239 7.72508 7.7239 7.72508 7.7239 7.72508 7.72

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

7.2940 7.2938 7.2438 7.2438 7.2438 7.2488 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 7.2469 1.5592 1.5593 1.5592 1.55933 1.55933 1.55933 1.55933 1.55933 1.55

---71.1930

---71.1653

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppn)

7.1573 7.15685 7.15685 7.15685 7.155816 7.155816 7.15520 7.15520 7.15520 7.15520 7.15520 7.15520 7.15602 7.15602 7.126

R 2568 8 2519 8 2519 8 2539 8 25395 8 25395 8 25395 8 25395 7 1 2015 7 1 2015 7 1 2015 7 2 405 7 2 405 7 1 405 7 1 405 7 1 405 7 1 405 7 1 405 7 1 405 7 1 405 7 1 405 7 2 405 7 400 7 400 7 400 7 400 7 400 7 400 7 400 7 400 7 400000000

---71.1389

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

---71.1396

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

R. 6485 R. 6485 R. 6485 R. 4138 R. 4138 R. 4138 R. 4138 R. 4135 R. 4135 R. 4135 R. 4138 R. 4135 R. 4138 R. 1050 R. 1076 R. 107

440.17----

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fi (ppn)

7.74年 1.7280 1.7281 1.7

(135,668,129 (135,668) (131,1772 (131,1772) (131,1772) (131,1772) (131,1772) (131,1772) (131,1772) (131,1772) (121,1778) (121,1788) (121,1778)

---66.1862

---67.2731

7,11875 7,11875 7,11875 8,8,9913 8,9,9913 8,9,9914 8,9,9014 9,9014 9,90149 9,90149 9,90149 9,90149 9,90149 9,90149 9,90149 9,901499,90149 9,90149 9,90149 9,90149 9,

--71.8729

2,7096 2,77029 2,6883 2,6883 2,6883 2,6883 2,6883 2,6883 2,6883 2,6883 2,6883 2,6463 2,440 2,73058 2,3

-1.5667

7. References

(1) (a) H. Kawai, S. Okusu, E. Tokunaga, H. Sato, M. Shiro, N. Shibata, Angew. Chem.

Int. Ed. **2012**, *51*, 4959–4962. (b) H. Kawai, Z. Yuan, T. Kitayama, E. Tokunaga, 100

N. Shibata, Angew. Chem. Int. Ed. 2013, 52, 5575-5579.

- (2) (a) S. Cabrera, R. G. Arrayás, J. C. Carretero, J. Am. Chem. Soc, 2005, 127, 16394–16395. (b) C. Nájera, M. de Gracia Retamosa, J. M. Sansano, Org. Lett. 2007, 9, 4025–4028. (c) A. López-Pérez, J. Adrio, J. C. Carretero, J. Am. Chem. Soc, 2008, 130, 10084–10085.
- (3) J.-R. Gao, H. Wu, B. Xiang, W.-B. Yu, L. Han, Y.-X. Jia, J. Am. Chem. Soc, 2013, 135, 2983–2986.