Supplementary Information

Ruthenium(II)-Catalyzed Intermolecular Synthesis of 2-Arylindolines through C-H Activation/Oxidative Cyclization Cascade

Manash Kumar Manna,^{ab} Samir Kumar Bhunia,^{ab} and Ranjan Jana*^{ab}

^aOrganic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology

4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India

^bAcademy of Scientific and Innovative Research (AcSIR), Kolkata-700032, West Bengal, India

E-mail: rjana@iicb.res.in

Table of Contents

General Information	S3
Optimization Details	S3-S5
General Experimental Procedure for Indoline Synthesis	
Characterization Data for Indoline	S6-S24
Mechanistic Study	S24-S30
Product Derivatization and Characterization	S31-S32
References	
¹ H and ¹³ C NMR Spectra	

General Information: All manipulations with air-sensitive reagents were carried out under a dry nitrogen atmosphere. Unless otherwise stated, all commercial reagents were used without additional purification. Solvents were dried using standard methods and distilled before use. The starting material *N*-aryl pyrimidines¹, deuterated N-phenyl pyrimidine $(1a-d_5)^2$ and Ru(OAc)2(*p*cymene)³ were prepared using literature reported method. TLC was performed on silica gel plates (Merck silica gel 60, f₂₅₄), and the spots were visualized with UV light (254 and 365 nm) or by charring the plate dipped in KMnO₄ or vanillin charring solution. ¹H NMR was recorded at 300 MHz (Bruker-DPX) and 600 MHz (Bruker-Avance) frequency and ¹³C NMR spectra were recorded at 75 MHz (Bruker-DPX) and 150 MHz (Bruker-Avance) frequency in CDCl₃ solvent using TMS as the internal standard. Chemical shifts were measured in parts per million (ppm) referenced to 0.0 ppm for tetramethylsilane. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br. = broad. Coupling constants, J were reported in Hertz unit (Hz). HRMS (m/z) were measured using EI and ESI techniques (JEOL-JMS 700 and Q-Tof Micro mass spectrometer respectively). Infrared (IR) spectra were recorded on Fourier Transform Infrared Spectroscopy (Bruker Tensor 27), only intense peaks were reported.

Optimization Details:

Entry	Catalyst	Silver	Oxidant	Additives	Solvent	Yield
no.		additives				
1	$[Ru(p-cymene)Cl_2]_2$	AgSbF ₆	Cu(OAc) ₂		DCE	34%
2	$[Ru(p-cymene)Cl_2]_2$	AgSbF ₆	$K_2S_2O_8$		DCE	17%
3	$[Ru(p-cymene)Cl_2]_2$	AgSbF ₆	$(NH_4)_2S_2O_8$		DCE	Trace
4	$[Ru(p-cymene)Cl_2]_2$	AgSbF ₆	Ag ₂ O		DCE	Trace

5	$[Ru(p-cymene)Cl_2]_2$	AgSbF ₆	Mn(OAc) ₂		DCE	Trace
6	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	AgOAc		DCE	8%
7	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	CuO		DCE	23%
8	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OTf) ₂		DCE	Trace
9	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	PhI(OAc) ₂		DCE	ND
10	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		1,4-Dioxane	15%
11	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		МеОН	12%
12	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		Isopropanol	6%
13	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		АсОН	Trace
14	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		THF	11%
15	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		Toluene	14%
16	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		DME	18%
17	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		Tert-Amyl	17%
					alcohol	
18	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		Acetone	22%
19	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		Acetonitrile	ND
20	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		TFE	38%
21	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	Cu(OAc) ₂		HFIP	45%
22	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgOTf	Cu(OAc) ₂		HFIP	32%
23	[Ru(<i>p</i> -cymene)Cl ₂] ₂	Ag(NTf) ₂	Cu(OAc) ₂		HFIP	37%
24	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgPF ₆	Cu(OAc) ₂		HFIP	43%
25	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgBF ₄	Cu(OAc) ₂		HFIP	48%
26	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgBF ₄	Cu(OAc) ₂	NaBF ₄	HFIP	43%
				(1 equiv)		
27	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgBF ₄	Cu(OAc) ₂	TBABF ₄	HFIP	33%
				(1 equiv)		
28	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgBF ₄	Cu(OAc) ₂	TBAPF ₆	HFIP	28%
				(1 equiv)		
29	$[Ru(p-cymene)Cl_2]_2$	AgBF ₄	Cu(OAc) ₂	HBF ₄	HFIP	35%
				(1 equiv)		

30	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgBF ₄	Cu(OAc) ₂	HFIP	51%
		(0.5			
		equiv)			
31	$[Ru(p-cymene)Cl_2]_2$	AgBF ₄	Cu(OAc) ₂	HFIP	58%
		(1 equiv)			
32	[Ru(<i>p</i> -cymene)I ₂] ₂	AgBF ₄	Cu(OAc) ₂	HFIP	74%
		(1 equiv)			
33	[Ru(<i>p</i> -cymene)I ₂] ₂	AgBF ₄	Cu(OAc) ₂	HFIP	65%
		(0.5			
		equiv)			
34	[Ru(<i>p</i> -cymene)I ₂] ₂	AgBF ₄	Cu(OAc) ₂	HFIP	67%
		(1 equiv)	(1 equiv)		
35	[Ru(<i>p</i> -cymene)I ₂] ₂	AgBF ₄	Cu(OAc) ₂	HFIP	65%
	(5 mol%)	(1 equiv)			
36	[Cp*RhCl ₂] ₂	AgSbF ₆	Cu(OAc) ₂	DCE	12%
	(5 mol%)				
37	$[Cp*IrCl_2]_2 (5 mol\%)$	AgSbF ₆	Cu(OAc) ₂	DCE	Trace
38	Pd(OAc) ₂		Cu(OAc) ₂	DCE	ND

General Experimental Procedure for Ruthenium-Catalyzed Indoline Synthesis from the Corresponding *N*-aryl pyrimidines and Vinyl Arenes:

A mixture of *N*-aryl pyrimidine (0.2 mmol), $[Ru(p-cymene)I_2]_2$ (0.02 mmol, 10 mol %), AgBF₄ (0.2 mmol, 1 equiv) and Cu(OAc)₂.H₂O (0.3 mmol, 1.5 equiv) was taken in a 15-mL pressure tube and the reaction tube was purged with nitrogen for 30 seconds. To this reaction mixture, hexafluoroisopropanol (HFIP) (1.0 mL) and the corresponding styrene (0.6 mmol) was added via syringe and the closed reaction mixture was allowed to stir at 90 °C for 18 h. After completion as indicated by TLC, the reaction the reaction mixture was cooled to ambient temperature. The reaction mixture was quenched with 20 mL saturated solution of Na₂S and extracted with ethyl acetate (3x20 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography using ethyl acetate/hexane as eluent to afford the desired indoline product.

Spectral Data:

5-methyl-2-phenyl-1-(pyrimidin-2-yl)indoline, 3a, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as a white solid, (37 mg, 65%), mp 90-92 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.38 (d, J = 4.8 Hz, 2H), 8.34 (d, J = 8.1 Hz, 1H), 7.15-7.25 (m, 5H), 7.09 (d, J = 8.4 Hz, 1H), 6.98 (s, 1H), 6.59 (t, J = 4.8 Hz, 1H), 5.92 (dd, $J_I = 10.5$ Hz, $J_2 = 2.4$ Hz, 1H), 3.76 (dd, $J_I = 15.9$ Hz, $J_2 = 10.2$ Hz, 1H), 2.98 (dd, $J_I = 15.9$ Hz, $J_2 = 2.4$ Hz, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 159.0, 157.4, 144.3, 141.6, 131.5, 130.5, 128.5, 127.8, 126.8, 125.6, 125.5, 115.4, 111.5, 62.7, 37.8, 21.0; IR (neat): v_{max} 1579, 1548, 1491, 1461, 1243, 798, 699 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₉H₁₈N₃ [M + H]⁺: 288.1501; found: 288.1501.

5-chloro-2-phenyl-1-(pyrimidin-2-yl)indoline, 3b, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as a white solid, (47 mg, 76%), mp 124-126 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.45 (d, J = 8.4 Hz, 1H), 8.42 (d, J = 4.8 Hz, 2H), 7.24-7.29 (m, 6H), 7.15 (s, 1H), 6.67 (t, J = 4.8 Hz, 1H), 5.98 (dd, $J_I = 10.5$ Hz, $J_2 = 2.4$ Hz, 1H), 3.78 (dd, $J_I = 16.2$ Hz, $J_2 = 10.5$ Hz, 1H), 3.03 (dd, $J_I = 16.2$ Hz, $J_2 = 2.4$ Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 158.8, 157.5, 143.8, 142.6, 132.4, 128.5, 127.3, 127.0, 126.6, 125.5, 124.9, 116.5, 112.1, 62.9, 37.5; IR (neat): v_{max} 1580, 1552, 1485, 1410, 1240, 790, 699 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₈H₁₅N₃Cl [M + H]⁺: 308.0955; found: 308.0955.

N-(2-phenyl-1-(pyrimidin-2-yl)indolin-5-yl)acetamide, 3c, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 2:8 hexane/ethyl acetate) afforded the desired product as a white solid, (40 mg, 61%), mp 198-200 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.37-8.40 (m, 3H), 7.52 (s, 1H), 7.17-7.23 (m, 7H), 6.61 (t, J = 4.8 Hz, 1H), 5.92 (dd, $J_I = 10.5$ Hz, $J_2 = 2.4$ Hz, 1H), 3.76 (dd, $J_I = 16.2$ Hz, $J_2 = 2.4$ Hz, 1H), 3.00 (dd, $J_I = 16.2$ Hz, $J_2 = 2.4$ Hz, 1H), 2.15 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 168.3, 158.9, 157.4, 144.0, 140.6, 132.4, 131.3, 128.5, 126.9, 125.5, 119.2, 117.6, 115.6, 111.7, 62.8, 37.8, 24.4; IR (neat): v_{max} 3422, 1652, 1577, 1553, 1494, 1417, 1303, 789, 701 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₀H₁₈N₄ONa [M + Na]⁺: 353.1378; found: 353.1378.

1-(2-phenyl-1-(pyrimidin-2-yl)indolin-5-yl)ethanone, 3d, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 1:1 hexane/ethyl acetate) afforded the desired product as a white solid, (54 mg, 86%), mp 176-178 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.53 (d, J = 8.4 Hz, 1H), 8.44 (d, J = 4.8 Hz, 2H), 7.95 (dd, $J_I = 8.4$ Hz, $J_2 = 1.8$ Hz, 1H), 7.80 (s, 1H), 7.18-7.25 (m, 5H), 6.72 (t, J = 4.8 Hz, 1H), 6.00 (dd, $J_I = 10.5$ Hz, $J_2 = 2.4$ Hz, 1H), 3.79 (dd, $J_I = 16.2$ Hz, $J_2 = 10.5$ Hz, 1H), 3.07 (dd, $J_I = 16.5$ Hz, $J_2 = 2.7$ Hz, 1H), 2.58 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 196.8, 158.7, 157.4, 148.1, 143.6, 131.2, 130.8, 129.6, 128.5, 127.0, 125.3, 124.9, 114.5, 112.9, 63.3, 37.2, 26.4; IR (neat): $v_{max} = 1669$, 1578, 1489, 1451, 1252, 970, 795 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₀H₁₇N₃ONa [M + Na]⁺: 338.1269; found: 338.1266.

Methyl 2-phenyl-1-(pyrimidin-2-yl)indoline-5-carboxylate, 3e, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 1:1 hexane/ethyl acetate) afforded the desired product as a white solid, (50 mg, 75%), mp 162-164 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.53 (d, *J* = 8.4 Hz, 1H), 8.44 (d, *J* = 4.8 Hz, 2H), 8.03 (dd, *J*₁ = 8.7 Hz, *J*₂ = 2.1 Hz, 1H), 7.84 (s, 1H), 7.20-7.25 (m, 5H), 6.71 (t, *J* = 4.5 Hz, 1H), 5.99 (dd, *J*₁ = 10.5 Hz, *J*₂ = 2.7 Hz, 1H), 3.90 (s, 3H), 3.79 (dd, *J*₁ = 16.2 Hz, *J*₂ = 10.5 Hz, 1H), 3.07 (dd, *J*₁ = 16.2 Hz, *J*₂ = 2.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 167.1, 158.8, 157.5, 148.0, 143.7, 130.6, 130.3, 128.5, 127.1, 126.2, 125.5, 123.4, 114.7, 112.8, 63.4, 51.8, 37.3; IR (neat): v_{max} 1705, 1578, 1487, 1457, 1287, 766, 704 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₀H₁₇N₃O₂Na [M + Na]⁺: 354.1218; found: 354.1211.

N-methyl-2-phenyl-1-(pyrimidin-2-yl)indoline-5-carboxamide, 3f, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 3:7 hexane/ethyl acetate) afforded the desired product as a white solid, (44 mg, 66%), mp 172-174 °C.

¹H NMR (300 MHz, d₆-DMSO): δ 8.54 (d, *J* = 4.5 Hz, 2H), 8.42 (d, *J* = 8.4 Hz, 1H), 8.26 (d, *J* = 4.8 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.68 (s, 1H), 7.13-7.27 (m, 5H), 6.90 (t, *J* = 4.8 Hz, 1H), 5.99 (dd, *J*₁ = 9.3 Hz, *J*₂ = 2.4 Hz, 1H), 3.82 (dd, *J*₁ = 16.5 Hz, *J*₂ = 10.5 Hz, 1H), 2.92 (dd, *J*₁ = 16.5 Hz, *J*₂ = 2.1 Hz, 1H), 2.76 (d, *J* = 4.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 168.2, 158.8, 157.5, 146.7, 143.8, 130.9, 128.5, 128.0, 127.1, 126.7, 125.4, 123.9, 114.8, 112.6, 63.2, 37.4, 26.8; IR (neat): ν_{max} 3323, 1632, 1578, 1551, 1485, 1456, 1416, 1292, 763, 699 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₀H₁₈N₄ONa [M + Na]⁺: 353.1378; found: 353.1384.

2-phenyl-1-(pyrimidin-2-yl)indolin-5-yl acetate, 3g, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 6:4 hexane/ethyl acetate) afforded the desired product as a white solid, (38 mg, 57%), mp 140-142 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.46 (d, J = 8.7 Hz, 1H), 8.38 (d, J = 4.8 Hz, 2H), 7.17-7.25 (m, 5H), 6.97 (d, J = 8.7 Hz, 1H), 6.90 (s, 1H), 6.62 (t, J = 4.8 Hz, 1H), 5.59 (dd, J_1 = 10.5 Hz, J_2 = 2.7 Hz, 1H), 3.78 (dd, J_1 = 16.2 Hz, J_2 = 2.7 Hz, 1H), 3.01 (dd, J_1 = 16.2 Hz, J_2 = 2.7 Hz, 1H) 2.28 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 170.0, 158.9, 157.4, 145.5, 144.0, 141.7, 131.7, 128.5, 126.9, 125.5, 120.0, 118.3, 115.9, 111.9, 63.0, 37.7, 21.2; IR (neat): v_{max} 1747, 1582, 1552, 1490, 1424, 1219, 898, 802 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₀H₁₇N₃O₂Na [M + Na]⁺: 354.1218; found: 354.1220.

2-phenyl-1-(pyrimidin-2-yl)indoline, 3h, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as a white solid, (42 mg, 76%), mp 110-112 °C. The same reaction was performed in 1.0 mmole scale by lowering the catalyst loading (7.5 mol%) and the desired compound obtained with comparable yield.

¹H NMR (300 MHz, CDCl₃): δ 8.49 (d, J = 8.1 Hz, 1H), 8.42 (d, J = 4.8 Hz, 2H), 7.17-7.34 (m, 7H), 7.00 (t, J = 7.2 Hz, 1H), 6.65 (t, J = 4.8 Hz, 1H), 5.96 (dd, $J_I = 10.2$ Hz, $J_2 = 2.4$ Hz, 1H), 3.81 (dd, $J_I = 15.9$ Hz, $J_2 = 10.2$ Hz, 1H), 3.05 (dd, $J_I = 15.9$ Hz, $J_2 = 2.7$ Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 159.1, 157.4, 144.2, 143.9, 130.4, 128.4, 127.4, 126.8, 125.5, 124.8, 122.0, 115.6, 111.7, 62.7, 37.8; IR (neat): v_{max} 1579, 1548, 1489, 1443, 799, 752 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₈H₁₆N₃ [M + H]⁺: 274.1344; found: 274.1347.

2-(4-chlorophenyl)-1-(pyrimidin-2-yl)indoline, 3i, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as a white solid, (45 mg, 74%), mp 112-114 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.47 (d, *J* = 8.1 Hz, 1H), 8.40 (d, *J* = 4.8 Hz, 2H), 7.30 (t, *J* = 7.8 Hz, 1H), 7.16-7.19 (m, 5H), 6.99 (td, *J_I* = 7.2 Hz, *J₂* = 1.2 Hz, 1H), 6.64 (t, *J* = 4.8 Hz, 1H), 5.89 (dd, *J_I* = 10.5 Hz, *J₂* = 2.7 Hz, 1H), 3.77 (dd, *J_I* = 15.9 Hz, *J₂* = 10.5 Hz, 1H), 2.98 (dd, *J_I* = 16.2 Hz, *J₂* = 2.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 159.0, 157.5, 143.7, 142.9, 132.5, 130.0, 128.6, 127.6, 127.1, 124.9, 122.1, 115.7, 112.0, 62.2, 37.7; IR (neat): v_{max} 1582, 1550, 1491, 1445, 1084, 794, 748 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₈H₁₅N₃Cl [M + H]⁺: 308.0955; found: 308.0950.

2-(4-(tert-butyl)phenyl)-1-(pyrimidin-2-yl)indoline, 3j, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as a white solid, (40 mg, 60%), mp 90-92 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.43-8.47 (m, 3H), 7.24-7.32 (m, 3H), 7.17-7.20 (m, 3H), 6.99 (td, $J_1 = 7.5$ Hz, $J_2 = 1.2$ Hz, 1H), 6.66 (t, J = 4.8 Hz, 1H), 5.98 (dd, $J_1 = 10.2$ Hz, J = 2.1 Hz, 1H), 3.78 (dd, $J_1 = 15.9$ Hz, $J_2 = 9.9$ Hz, 1H), 3.05 (d, J = 15.6 Hz, 1H), 1.27 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 159.2, 157.5, 149.5, 143.8, 141.0, 130.7, 127.3, 125.3, 125.2, 124.9, 122.0,

115.8, 111.7, 62.4, 37.8, 34.4, 31.4; IR (neat): v_{max} 1584, 1547, 1492, 1445, 790, 742 cm⁻¹; HRMS (ESI, m/z) calcd. for $C_{22}H_{23}N_3Na [M + Na]^+$: 352.1790; found: 352.1792.

2-(4-methoxyphenyl)-1-(pyrimidin-2-yl)indoline, 3k, Table 2

The same general procedure was followed except $AgSbF_{6}$.(40 mol%) was used instead of $AgBF_{4}$ (1 equiv) and DCE was used as a solvent instead of HFIP. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as a white solid, (28 mg, 46%), mp 114-116 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.44 (d, *J* = 8.4 Hz, 1H), 8.40 (d, *J* = 4.8 Hz, 2H), 7.25 (d, *J* = 8.1 Hz, 1H), 7.16-7.25 (m, 3H), 6.97 (t, *J* = 7.2 Hz, 1H), 6.76 (d, *J* = 8.7 Hz, 2H), 6.62 (t, *J* = 4.8 Hz, 1H), 5.89 (dd, *J*₁ = 10.5 Hz, *J*₂ = 2.4 Hz, 1H), 3.71-3.79 (m, 4H), 3.00 (dd, *J*₁ = 16.2 Hz, *J*₂ = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 159.0, 158.4, 157.4, 143.7, 136.3, 130.5, 127.3, 126.7, 124.8, 121.9, 115.6, 113.7, 111.7, 62.1, 55.1, 37.9; IR (neat): v_{max} 1580, 1551, 1487, 1446, 1241, 1029, 845, 761 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₉H₁₇N₃ONa [M + Na]⁺: 326.1269; found: 326.1268.

N-(4-(1-(pyrimidin-2-yl)indolin-2-yl)phenyl)acetamide, 3l, Table 2

The same general procedure was followed except $AgSbF_6$ (40 mol%) was used instead of $AgBF_4$ (1 equiv) and DCE was used as a solvent instead of HFIP. Column chromatography (SiO₂,

eluting with 4:6 hexane/ethyl acetate) afforded the desired product as a white solid, (28 mg, 42%), mp 222-224 °C.

¹H NMR (300 MHz, d₆-DMSO): δ 9.86 (br. s, 1H), 8.49 (d, J = 4.8 Hz, 2H), 8.39 (d, J = 8.1 Hz, 1H), 7.40 (d, J = 8.1 Hz, 2H), 7.20-7.27 (m, 2H), 7.05 (d, J = 8.4 Hz, 2H), 6.95 (t, J = 7.2 Hz, 1H), 6.83 (t, J = 4.8 Hz, 1H), 5.87 (dd, $J_I = 10.5$ Hz, $J_2 = 2.4$ Hz, 1H), 3.75 (dd, $J_I = 16.2$ Hz, $J_2 = 10.2$ Hz, 1H) 2.88 (d, J = 15.9 Hz, 1H), 1.98 (s, 3H); ¹³C NMR (75 MHz, d₆-DMSO): δ 168.2, 158.5, 157.9, 143.4, 138.7, 138.0, 130.4, 127.2, 125.5, 125.0, 122.0, 119.3, 115.3, 112.3, 61.8, 37.5, 23.9; IR (neat): v_{max} 3325, 1662, 1582, 1535, 1491, 1445, 1310, 834, 792, 750 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₀H₁₉N₄O [M + H]⁺: 331.1559; found: 331.1554.

2-(4-((tert-butyldimethylsilyl)oxy)phenyl)-1-(pyrimidin-2-yl)indoline, 3m, Table 2

The same general procedure was followed except $AgSbF_{6.}(40 \text{ mol}\%)$ was used instead of $AgBF_{4}$ (1 equiv) and DCE was used as a solvent instead of HFIP. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as a white solid, (39 mg, 48%), mp 88-90 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.46 (d, J = 8.1 Hz, 1H), 8.41 (d, J = 4.8 Hz, 2H), 7.30 (d, J = 7.5 Hz, 1H), 7.18 (d, J = 7.2 Hz, 1H), 7.11 (d, J = 8.4 Hz, 2H), 6.98 (t, J = 7.2 Hz, 1H), 6.69 (d, J = 8.4 Hz, 2H), 6.62 (t, J = 4.8 Hz, 1H), 5.89 (dd, $J_I = 10.2$ Hz, $J_2 = 2.4$ Hz, 1H), 3.75 (dd, $J_I = 15.9$ Hz, $J_2 = 10.2$ Hz, 1H), 3.02 (dd, $J_I = 15.9$ Hz, $J_2 = 2.4$ Hz, 1H), 0.95 (s, 9H), 0.15 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 158.7, 157.0, 154.0, 143.5, 136.5, 130.3, 126.9, 126.3, 124.4, 121.5, 119.4, 115.3, 111.3, 61.8, 37.5, 25.3, 17.7, -4.8; IR (neat): v_{max} 1582, 1550, 1490, 1444, 1257, 916, 838, 782 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₄H₃₀N₃OSi [M + H]⁺: 404.2158; found: 404.2153.

7-methyl-2-phenyl-1-(pyrimidin-2-yl)indoline, 3n, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 8:2 hexane/ethyl acetate) afforded the desired product as a white solid, (37 mg, 64%), mp 188-190 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.43 (d, J = 4.8 Hz, 2H), 7.17-7.36 (m, 5H), 7.08 (dd, $J_1 = 6.6$ Hz, $J_2 = 1.8$ Hz, 1H), 6.94-7.02 (m, 2H), 6.70 (t, J = 4.8 Hz, 1H), 5.95 (d, J = 9.0 Hz, 1H), 3.85 (dd, $J_1 = 15.3$ Hz, $J_2 = 9.0$ Hz, 1H), 2.94 (d, J = 15.3 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 161.1, 157.7, 143.5, 142.4, 132.4, 129.6, 128.5, 128.1, 127.0, 125.4, 124.4, 122.2, 112.6, 66.9, 38.8, 21.0; IR (neat): v_{max} 1576, 1545, 1473, 11433, 1283, 757, 697 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₉H₁₇N₃Na [M + Na]⁺: 310.1320; found: 310.1321.

2-(4-chlorophenyl)-7-methyl-1-(pyrimidin-2-yl)indoline, 3o, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 8:2 hexane/ethyl acetate) afforded the desired product as a white solid, (44 mg, 68%), mp 192-194 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.44 (d, J = 4.5 Hz, 2H), 7.23-7.30 (m, 4H), 7.10 (d, J = 6.9 Hz, 1H), 6.99-7.11 (m, 2H), 6.73 (t, J = 4.5 Hz, 1H), 5.91 (d, J = 9.0 Hz, 1H), 3.85 (dd, $J_1 = 15.6$ Hz, $J_2 = 9.3$ Hz, 1H), 2.90 (d, J = 15.6 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 161.0,

157.8, 142.2, 142.1, 132.7, 132.1, 129.8, 128.6, 128.2, 127.0, 124.5, 122.2, 112.8, 66.4, 38.7, 21.0; IR (neat): v_{max} 1574, 1550, 1468, 1428, 1281, 1088, 806, 771 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₉H₁₇N₃Cl [M + H]⁺: 322.1111; found: 322.1109.

2-(4-bromophenyl)-7-methyl-1-(pyrimidin-2-yl)indoline, 3p, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 8:2 hexane/ethyl acetate) afforded the desired product as a white solid, (45 mg, 62%), mp 180-182 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.44 (d, J = 4.8 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 6.6 Hz, 1H), 6.96-7.03 (m, 2H), 6.72 (t, J = 4.8 Hz, 1H), 5.89 (d, J = 9.0 Hz, 1H), 3.85 (dd, $J_1 = 15.6$ Hz, $J_2 = 9.0$ Hz, 1H), 2.90 (d, J = 15.0 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 161.0, 157.8, 142.6, 142.2, 132.1, 131.6, 129.8, 128.2, 127.4, 124.5, 122.2, 120.8, 112.8, 66.5, 38.6, 21.0; IR (neat): v_{max} 1574, 1549, 1468, 1427, 1281, 806, 771 cm⁻¹; HRMS (EI, m/z) calcd. for C₁₉H₁₆N₃Br [M]⁺: 365.0528; found: 365.0525.

2-(4-fluorophenyl)-5-methyl-1-(pyrimidin-2-yl)indoline, 3q, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as a white solid, (41 mg, 67%), mp 120-122 $^{\circ}$ C.

¹H NMR (600 MHz, CDCl₃): δ 8.40 (d, J = 4.8 Hz, 2H), 8.34 (d, J = 8.4 Hz, 1H), 7.22-7.24 (m, 2H), 7.11 (d, J = 8.4 Hz, 1H), 7.01 (s, 1H), 6.91-6.95 (m, 2H), 6.63 (t, J = 4.8 Hz, 1H), 5.91 (d, J = 10.2 Hz, 1H), 3.76 (dd, $J_I = 16.2$ Hz, $J_2 = 10.8$ Hz, 1H), 2.97 (dd, $J_I = 15.6$ Hz, $J_2 = 1.8$ Hz, 1H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 161.7 (d, $J_{C-F} = 243.0$ Hz), 158.9, 157.4, 141.4, 140.0 (d, $J_{C-F} = 3.0$ Hz), 131.6, 130.3, 127.9, 127.2 (d, $J_{C-F} = 8.0$ Hz), 125.6, 115.5, 115.2 ($J_{C-F} = 21.3$ Hz), 111.6, 62.1, 37.8, 20.9; IR (neat): v_{max} 1580, 1498, 1459, 1414, 1218, 826. HRMS (ESI, m/z) calcd. for C₁₉H₁₇FN₃ [M + H]⁺: 306.1407; found: 306.1400.

2-(4-chlorophenyl)-5-methoxy-1-(pyrimidin-2-yl)indoline, 3r, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as a white solid, (27 mg, 40%), mp 132-134 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.35-8.40 (m, 3H), 7.18-7.24 (m, 4H), 6.85 (dd, $J_1 = 8.7$ Hz, $J_2 = 2.7$ Hz, 1H), 6.79 (s, 1H), 6.62 (t, J = 4.8 Hz, 1H), 5.90 (dd, $J_1 = 10.2$ Hz, $J_2 = 2.4$ Hz, 1H), 3.82 (s, 3H), 3.78 (dd, $J_1 = 15.9$ Hz, $J_2 = 10.2$ Hz, 1H), 2.96 (dd, $J_1 = 16.2$ Hz, $J_2 = 2.4$ Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 158.7, 157.4, 155.4, 142.8, 137.4, 132.5, 131.6, 128.6, 127.0, 116.2, 112.0, 114.4, 111.3, 62.2, 55.7, 37.8; IR (neat): v_{max} 1584, 1549, 1493, 1428, 1256, 1035, 797 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₉H₁₇N₃OCl [M + H]⁺: 338.1060; found: 338.1064.

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as a gummy liquid, (45 mg, 70%),

¹H NMR (300 MHz, CDCl₃): δ 8.40-8.42 (m, 3H), 7.23 (d, J = 9.0 Hz, 1H), 7.10-7.15 (m, 2H), 6.99-7.03 (m, 3H), 6.65 (t, J = 4.8 Hz, 1H), 5.91 (dd, $J_I = 10.2$ Hz, $J_2 = 2.4$ Hz, 1H), 3.74 (dd, $J_I = 16.2$ Hz, $J_2 = 10.5$ Hz, 1H), 2.99 (dd, $J_I = 16.2$ Hz, $J_2 = 2.4$ Hz, 1H), 2.27 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 158.9, 157.5, 143.8, 142.7, 138.2, 132.5, 128.5, 127.9, 127.3, 126.6, 126.1, 125.0, 122.4, 116.5, 112.1, 62.9, 37.7, 21.6; IR (neat): v_{max} 1580, 1550, 1484, 1409, 1167, 790 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₉H₁₇N₃Cl [M + H]⁺: 322.1111; found: 322.1112.

4-(5-chloro-1-(pyrimidin-2-yl)indolin-2-yl)phenyl acetate, 3t, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 6:4 hexane/ethyl acetate) afforded the desired product as a white solid, (38 mg, 52%), mp 160-162 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.53 (d, *J* = 2.1 Hz, 1H), 8.42 (d, *J* = 4.8 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 8.1 Hz, 1H), 6.94-6.97 (m, 3H), 6.69 (t, *J* = 4.8 Hz, 1H), 5.95 (dd, *J_I* = 10.5 Hz, *J₂* = 2.7 Hz, 1H), 3.71 (dd, *J_I* = 15.9 Hz, *J₂* = 9.9 Hz, 1H), 2.99 (dd, *J_I* = 16.2 Hz, *J₂* = 2.7 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 169.5, 158.6, 157.5, 149.5, 144.8, 141.3, 133.0, 128.7, 126.6, 125.4, 121.7, 121.5, 115.9, 112.4, 62.7, 37.1, 21.1; IR (neat): v_{max} 1756, 1582, 1489, 1443, 1213, 909, 796 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₀H₁₆N₃O₂ClNa [M + Na]⁺: 388.0829; found: 388.0826.

1-(pyrimidin-2-yl)-2-(p-tolyl)-2,3-dihydro-1H-benzo[g]indole, 3u, Table 2

The same general procedure was followed except $AgSbF_{6}$.(40 mol%) was used instead of $AgBF_{4}$ (1 equiv) and DCE was used as a solvent instead of HFIP. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as a white solid, (38 mg, 56%), mp 216-218 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.43 (d, *J* = 4.8 Hz, 2H), 7.86 (dd, *J*₁ = 8.0 Hz, *J*₂ = 2.1 Hz, 1H), 7.76 (dd, *J*₁ = 8.1 Hz, *J*₂ = 2.4 Hz, 1H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.26-7.47 (m, 5H), 7.07 (d, *J* = 7.5 Hz, 2H), 6.74 (t, *J* = 4.8 Hz, 1H), 6.10 (d, *J* = 9.0 Hz, 1H), 4.07 (dd, *J*₁ = 15.6 Hz, *J*₂ = 9.0 Hz, 1H), 3.07 (dd, *J*₁ = 15.6 Hz, *J*₂ = 1.5 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 161.7, 157.7, 140.7, 139.3, 136.6, 134.0, 129.3, 129.1, 128.5, 126.1, 125.5, 125.4, 124.9, 124.8, 124.4, 123.0, 112.9, 67.8, 39.5, 21.1; IR (neat): ν_{max} 1577, 1433, 1284, 808 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₃H₂₀N₃ [M + H]⁺: 338.1657; found: 338.1651.

1-(1-(pyrimidin-2-yl)-2-(o-tolyl)indolin-5-yl)ethanone, 3v, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 6:4 hexane/ethyl acetate) afforded the desired product as a white solid, (29 mg, 44%), mp 144-146 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.57 (d, J = 8.4 Hz, 1H), 8.43 (d, J = 4.8 Hz, 2H), 7.96 (dd, J_I = 8.4 Hz, J_2 = 1.8 Hz, 1H), 7.78 (s, 1H), 7.19 (d, J = 7.5 Hz, 1H), 7.10 (td, J_I = 7.2 Hz, J_2 = 1.8 Hz, 1H), 6.88-6.98 (m, 2H), 6.71 (t, J = 4.8 Hz, 1H), 6.14 (dd, J_I = 10.5 Hz, J_2 = 3.0 Hz, 1H), 3.80 (dd, J_I = 15.9 Hz, J_2 = 10.5 Hz, 1H), 2.94 (dd, J_I = 16.2 Hz, J_2 = 3.0 Hz, 1H), 2.58 (s, 3H), 2.54 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 196.9, 158.7, 157.5, 148.5, 141.8, 134.2, 131.2, 130.8, 130.6, 129.7, 126.8, 126.1, 125.1, 123.4, 114.5, 112.9, 60.5, 36.1, 26.4, 19.5; IR (neat): v_{max}

1675, 1578, 1489, 1452, 1257, 971 cm⁻¹; HRMS (ESI, m/z) calcd. for $C_{21}H_{19}N_3ONa [M + Na]^+$: 352.1426; found: 352.1419.

2-(4-chlorophenyl)-6-methyl-1-(pyrimidin-2-yl)indoline, 3w, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as a white solid, (35 mg, 55%), mp 196-198 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.42 (d, *J* = 4.8 Hz, 2H), 8.31 (s, 1H), 7.17-7.23 (m, 4H), 7.06 (d, *J* = 7.5 Hz, 1H), 6.83 (d, *J* = 7.5 Hz, 1H), 6.66 (t, *J* = 4.8 Hz, 1H), 5.90 (dd, *J*₁ = 10.5 Hz, *J*₂ = 2.7 Hz, 1H), 3.74 (dd, *J*₁ = 15.9 Hz, *J*₂ = 10.2 Hz, 1H), 2.94 (dd, *J*₁ = 16.5 Hz, *J*₂ = 2.4 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 158.9, 157.4, 143.8, 142.9, 137.4, 132.4, 128.6, 127.1, 127.0, 124.5, 122.9, 116.3, 111.8, 62.5, 37.3, 22.0; IR (neat): v_{max} 1582, 1501, 1461, 1084, 794 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₉H₁₇N₃Cl [M + H]⁺: 322.1111; found: 322.1116.

6,7-dimethyl-2-phenyl-1-(pyrimidin-2-yl)indoline, 3x, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 8:2 hexane/ethyl acetate) afforded the desired product as a white solid, (30 mg, 50%), mp 200-202 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.42 (d, *J* = 4.8 Hz, 2H), 7.25-7.37 (m, 4H), 7.17-7.22 (m, 1H), 6.87-6.93 (m, 2H), 6.70 (t, *J* = 4.8 Hz, 1H), 5.98 (d, *J* = 8.7 Hz, 1H), 3.82 (dd, *J_I* = 15.3 Hz, *J₂* = 8.7 Hz, 1H), 2.92 (d, *J* = 15.3 Hz, 1H), 2.32 (s, 3H), 2.15 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 161.5, 157.7, 143.7, 142.8, 136.1, 130.1, 128.5, 127.2, 127.0, 126.2, 125.6, 121.7, 112.5, 67.4, 38.7, 20.1, 17.9; IR (neat): v_{max} 1577, 1547, 1430, 1282, 1049, 800, 753, 700 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₀H₂₀N₃ [M + H]⁺: 302.1657; found: 302.1655.

2-(4-chlorophenyl)-5-phenyl-1-(pyrimidin-2-yl)indoline, 3y, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as a white solid, (48 mg, 63%), mp 140-142 $^{\circ}$ C.

¹H NMR (300 MHz, d₆-DMSO): δ 8.52 (d, J = 4.8 Hz, 2H), 8.47 (d, J = 8.1 Hz, 1H), 7.54-7.66 (m, 4H), 7.40-7.45 (m, 2H), 7.28-7.33 (m, 3H), 7.18-7.21 (m, 2H), 6.87 (t, J = 4.8 Hz, 1H), 5.96 (dd, $J_I = 8.4$ Hz, $J_2 = 1.8$ Hz, 1H), 3.85 (dd, $J_I = 16.5$ Hz, $J_2 = 10.5$ Hz, 1H), 2.95 (dd, $J_I = 17.1$ Hz, $J_2 = 2.4$ Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 158.8, 157.5, 143.1, 142.7, 141.0, 135.2, 132.5, 130.7, 128.7, 128.6, 127.0, 126.7, 126.6, 126.5, 123.5, 115.7, 112.0, 62.4, 37.7; IR (neat): v_{max} 1580, 1547, 1486, 1411, 1087, 826, 761, 692 cm⁻¹; HRMS (EI, m/z) calcd. for C₂₄H₁₈N₃Cl [M]⁺: 383.1189; found: 383.1185.

2-(4-chlorophenyl)-1-(pyrimidin-2-yl)indolin-5-yl acetate, 3z, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 6:4 hexane/ethyl acetate) afforded the desired product as a white solid, (44 mg, 60%), mp 190-192 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.47 (d, J = 8.7 Hz, 1H), 8.40 (d, J = 4.8 Hz, 2H), 7.17-7.24 (m, 4H), 6.99 (d, J = 8.7 Hz, 1H), 6.93 (s, 1H), 6.66 (t, J = 4.8 Hz, 1H), 5.91 (dd, J_1 = 10.5 Hz, J_2 = 2.7 Hz, 1H), 3.78 (dd, J_1 = 16.2 Hz, J_2 = 10.5 Hz, 1H), 2.99 (dd, J_1 = 16.5 Hz, J_2 = 3.0 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 169.9, 158.7, 157.4, 145.5, 142.5, 141.4, 132.5, 131.3, 128.6, 127.0, 120.1, 118.3, 115.9, 112.0, 62.4, 37.5, 21.1; IR (neat): v_{max} 1756, 1582, 1489, 1442, 1214, 908, 795 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₀H₁₇N₃O₂Cl [M + H]⁺: 366.1009; found: 366.1011.

1-(2-(3-methoxyphenyl)-1-(pyrimidin-2-yl)indolin-5-yl)ethanone, 3aa, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 4:6 hexane/ethyl acetate) afforded the desired product as a white solid, (38 mg, 55%), mp 128-130 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.48 (d, J = 8.7 Hz, 1H), 8.45 (d, J = 4.8 Hz, 2H), 7.94 (dd, $J_1 = 8.7$ Hz, $J_2 = 1.8$ Hz, 1H), 7.79 (s, 1H), 7.16 (t, J = 7.8 Hz, 1H), 6.71-6.82 (m, 4H), 5.97 (dd, $J_1 = 10.5$ Hz, $J_2 = 2.7$ Hz, 1H), 3.78 (dd, $J_1 = 16.2$ Hz, $J_2 = 10.5$ Hz, 1H), 3.72 (s, 3H), 3.07 (dd, $J_1 = 16.2$ Hz, $J_2 = 2.7$ Hz, 1H), 2.58 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 196.9, 159.7, 158.8, 157.5, 148.2, 145.4, 131.3, 130.9, 129.7, 124.9, 117.6, 114.6, 113.0, 111.9, 111.5, 63.3, 55.1,

37.2, 26.4; IR (neat): v_{max} 1667, 1579, 1488, 1449, 1419, 1260, 968, 795 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₁H₁₉N₃O₂Na [M + Na]⁺: 368.1375; found: 368.1380.

5-fluoro-1-(pyrimidin-2-yl)-2-(p-tolyl)indoline, 3ab, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 19:1 hexane/ethyl acetate) afforded the desired product as a white solid, (24 mg, 40%), mp 104-106 $^{\circ}$ C.

¹H NMR (300 MHz, d₆-DMSO): δ 8.49 (d, J = 4.8 Hz, 2H), 8.34-8.39 (m, 1H), 7.00-7.10 (m, 6H), 6.83 (t, J = 4.8 Hz, 1H), 5.92 (dd, $J_I = 8.4$ Hz, $J_2 = 2.1$ Hz, 1H), 3.77 (dd, $J_I = 16.5$ Hz, J_2 10.5 Hz, 1H), 2.87 (d, J = 16.5 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 158.9, 158.5 (d, $J_{C-F} = 239.3$ Hz), 157.5, 140.9, 140.0 (d, $J_{C-F} = 2.0$ Hz), 136.6, 132.4 (d, $J_{C-F} = 8.3$ Hz), 129.2, 125.4, 116.2 (d, $J_{C-F} = 7.5$ Hz), 113.3 (d, $J_{C-F} = 21.8$ Hz), 112.2 (d, $J_{C-F} = 24.0$ Hz), 111.7, 62.7, 37.8, 21.1; IR (neat): v_{max} 1586, 1552, 1493, 1428, 1177, 818, 756 cm⁻¹; HRMS (ESI, m/z) calcd. for C₁₉H₁₇N₃F [M + H]⁺: 306.1407; found: 306.1413.

Methyl 2-(3-chlorophenyl)-1-(pyrimidin-2-yl)indoline-5-carboxylate, 3ac, Table 2 The same general procedure was followed. Column chromatography (SiO₂, eluting with 3:7 hexane/ethyl acetate) afforded the desired product as a white solid, (41 mg, 56%), mp 162-164 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.52 (d, *J* = 8.4 Hz, 1H), 8.45 (d, *J* = 4.8 Hz, 2H), 8.03 (dd, *J*₁ = 8.7 Hz, *J*₂ = 1.8 Hz, 1H), 7.84 (s, 1H), 7.21 (s, 1H), 7.07-7.18 (m, 3H), 6.74 (t, *J* = 4.8 Hz, 1H), 5.93 (dd, *J*₁ = 10.5 Hz, *J*₂ = 2.7 Hz, 1H), 3.90 (s, 3H), 3.78 (dd, *J*₁ = 16.2 Hz, *J*₂ = 10.5 Hz, 1H), 3.04 (dd, *J*₁ = 16.2 Hz, *J*₂ = 2.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 167.0, 158.6, 157.5, 147.8, 145.9, 134.3, 130.4, 130.1, 129.9, 127.3, 126.2, 125.8, 123.60, 123.57, 114.8, 113.0, 62.9, 51.9, 37.1; IR (neat): v_{max} 1709, 1583, 1458, 1424, 1279, 980, 767 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₀H₁₆N₃O₂ClNa [M + Na]⁺: 388.0829; found: 388.0824.

5-(tert-butyl)-2-(4-chlorophenyl)-1-(pyrimidin-2-yl)indoline, 3ad, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 9:1 hexane/ethyl acetate) afforded the desired product as a white solid, (44 mg, 60%), mp 100-102 $^{\circ}$ C.

¹H NMR (300 MHz, CDCl₃): δ 8.38 (d, *J* = 4.8 Hz, 2H), 8.33 (d, *J* = 8.7 Hz, 1H), 7.31 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.8 Hz, 1H), 7.16-7.20 (m, 5H), 6.62 (t, *J* = 4.8 Hz, 1H), 5.87 (dd, *J*₁ = 10.5 Hz, *J*₂ = 2.7 Hz, 1H), 3.78 (dd, *J*₁ = 15.6 Hz, *J*₂ = 10.2 Hz, 1H), 2.97 (dd, *J*₁ = 15.9 Hz, *J*₂ = 2.7 Hz, 1H), 1.32(s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 158.9, 157.4, 145.2, 143.0, 141.2, 132.3, 129.7, 128.5, 127.1, 124.2, 121.9, 115.1, 111.7, 62.2, 37.9, 34.3, 31.6; IR (neat): v_{max} 1580, 1548, 1496, 1465, 1414, 1266, 827, 792 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₂H₂₃N₃Cl [M + H]⁺: 364.1581; found: 364.1582.

Mechanistic Study:

(a) <u>H/D Exchange Experiment:</u>

A mixture of d₅ *N*-phenyl pyrimidine (0.2 mmol), $[Ru(p-cymene)I_2]_2$ (0.02 mmol, 10 mol %), AgBF₄ (0.2 mmol, 1 equiv) and Cu(OAc)₂.H₂O (0.3 mmol, 1.5 equiv) was taken in a 15-mL pressure tube and the reaction tube was purged with nitrogen for 30 seconds. To this reaction mixture, hexafluoroisopropanol (HFIP) (1.0 mL) was added via syringe and the closed reaction mixture was allowed to stir at 90 °C in absence of olefins. After 18 h, the reaction mixture was cooled to ambient temperature. The reaction mixture was quenched with 20 mL saturated solution of Na₂S and extracted with ethyl acetate (3x20 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude starting material was purified by column chromatography using ethyl acetate/hexane as eluent and H/D exchange was determined by ¹H NMR analysis.

-7.279-7.148-7.1486.756 $\sqrt{6.756}$ $\sqrt{6.724}$

9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 f1 (ppm)

(b) Procedure for C-7 H/D Exchange Experiment in the Product:

A mixture of d₅ *N*-phenyl pyrimidine (0.2 mmol), $[Ru(p-cymene)I_2]_2$ (0.02 mmol, 10 mol %), AgBF₄ (0.2 mmol, 1 equiv) and Cu(OAc)₂.H₂O (0.3 mmol, 1.5 equiv) was taken in a 15-mL pressure tube and the reaction tube was purged with nitrogen for 30 seconds. To this reaction mixture, hexafluoroisopropanol (HFIP) (1.0 mL) and the corresponding styrene (0.6 mmol) were added via syringe and the closed reaction mixture was allowed to stir at 90 °C for 18 h. After completion as indicated by TLC, the reaction the reaction mixture was cooled to ambient temperature. The reaction mixture was quenched with 20 mL saturated solution of Na₂S and extracted with ethyl acetate (3x20 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography using ethyl acetate/hexane as eluent to afford the desired indoline product. The H/D exchange at the C7 position of the product was determined by ¹H NMR analysis.

(c) Intermolecular Kinetic Experiment through competitive reaction:

A mixture of *N*-phenyl pyrimidine (0.1 mmol), d_5 -*N*-phenyl pyrimidine (0.1 mmol), [Ru(*p*-cymene)I₂]₂ (0.02 mmol, 10 mol %), AgBF₄ (0.2 mmol, 1 equiv) and Cu(OAc)₂.H₂O (0.3 mmol, 1.5 equiv) was taken in a 15-mL pressure tube and the reaction tube was purged with nitrogen for 30 seconds. To this reaction mixture, hexafluoroisopropanol (HFIP) (1.0 mL) and the corresponding styrene (0.6 mmol) were added via syringe and the closed reaction mixture was allowed to stir at 90 °C. After 15 min, the reaction the reaction mixture was cooled to ambient temperature. The reaction mixture was quenched with 20 mL saturated solution of Na₂S and extracted with ethyl acetate (3x20 mL). The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography

using ethyl acetate/hexane as eluent to afford the desired indoline product. The $k_{\rm H}/k_{\rm D}$ value was determined by ¹H NMR analysis.

Intermolecular Kinetic Experiment through parallel reaction:

Time (min)	5	10	15	20
NMR yield of 2i (%)	23	31	36	42

Time (min)	5	10	15	20
NMR yield of 2i- <i>d</i> n (%)	23	29	35	39

Kinetic Isotopic Effect = $k_{\rm H}/k_{\rm D} = 1.24/1.08 = 1.15$

Control experiments:

General Experimental Procedure for Rh(III)-Catalyzed C7-Thiolation and Selenation of Indolines:⁴

In an oven dried reaction tube 2-phenyl-1-(pyrimidin-2-yl)indoline, **3h**, (0.2 mmol), diphenyldisulfide or diphenyldiselenide (0.2 mmol), $[Cp*RhCl_2]_2$ (5 mol%), AgOTf (20 mol%), Ag₂CO₃ (1 equiv) were taken and dry toluene (1.0 mL) was added to it. The reaction vessel was sealed under air and heated at 130 °C for 24 h. After completion the reaction, the reaction vessel was cooled to ambient temperature. The reaction mixture was diluted with CH₂Cl₂ and transferred to a round-bottom flask. Silica gel was added to mixture and the solvent was evaporated. Then the mixture was subjected for column chromatography for further purification.

2-phenyl-7-(phenylthio)-1-(pyrimidin-2-yl)indoline, 4a, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 7:3 hexane/ethyl acetate) afforded the desired product as a white solid, (60 mg, 78%), mp 140-142 $^{\circ}$ C.

¹H NMR (600 MHz, CDCl₃): δ 8.46 (d, J = 4.8 Hz, 2H), 7.49 (d, J = 7.2 Hz, 2H), 7.32 (t, J = 7.2 Hz, 2H), 7.16-7.26 (m, 7H), 7.06 (d, J = 7.2 Hz, 1H), 6.93 (t, J = 7.2 Hz, 1H), 6.76 (t, J = 4.2 Hz, 1H), 6.05 (d, J = 9.0 Hz, 1H), 3.95 (dd, $J_1 = 15.6$ Hz, $J_2 = 9.6$ Hz, 1H), 3.05 (d, J = 15.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 160.7, 157.5, 143.9, 143.1, 138.9, 123.9, 132.2, 131.0, 128.8, 128.5, 127.1, 126.52, 126.45, 125.5, 124.9, 123.7, 113.2, 65.9, 39.0; IR (neat): v_{max} 1577, 1551, 1460, 1426, 1284, 1057, 743 cm⁻¹; HRMS (ESI, m/z) calcd. for $C_{24}H_{20}N_3S$ [M + H]⁺: 382.1378; found: 382.1375.

2-phenyl-7-(phenylselanyl)-1-(pyrimidin-2-yl)indoline, 4b, Table 2

The same general procedure was followed. Column chromatography (SiO₂, eluting with 7:3 hexane/ethyl acetate) afforded the desired product as a white solid, (62 mg, 72%), mp 140-142 $^{\circ}$ C.

¹H NMR (600 MHz, CDCl₃): δ 8.46 (d, *J* = 4.8 Hz, 2H), 7.51 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.8 Hz, 2H), 7.45-7.47 (m, 2H), 7.33-7.36 (m, 2H), 7.20-7.28 (m, 5H), 7.03 (d, *J* = 7.2 Hz, 1H), 6.84 (t, *J* = 7.8 Hz, 1H), 6.76 (t, *J* = 4.8 Hz, 1H), 6.11 (d, *J* = 9.6 Hz, 1H), 3.93 (dd, *J*₁ = 15.6 Hz, *J*₂ = 9.0 Hz, 1H), 3.04 (d, *J* = 9.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 160.5, 157.6, 144.0, 143.1, 135.0, 133.9, 132.8, 132.3, 129.0, 128.6, 127.1, 125.5, 124.9, 123.5, 123.2, 113.1, 65.0, 39.0; IR (neat): v_{max} 1575, 1547, 1460, 1426, 1284, 1056, 737 cm⁻¹; HRMS (ESI, m/z) calcd. for C₂₄H₂₀N₃Se [M + H]⁺: 430.0822; found: 430.0826.

References:

(1) N. K. Mishra, M. Choi, H. Jo, Y. Oh, S. Sharma, S. H. Han, T. Jeong, S. Han, S. Y. Lee and I. S. Kim, *Chem. Commun*, 2015, **51**, 17229-17232.

(2) J. W. Shaw, D. H. Grayson and I. Rozas, ARKIVOC, 2014, 161-174.

(3) D. A. Tocher, R. O. Gould and T. A. Stephenson, J. Chem. Soc. Dalton Trans, 1983, 1571-1581.

(4) W. Xie, B. Li and B. Wang, J. Org. Chem, 2016, 81, 396-403.

S34

^{00 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0} f1 (ppm)

S37

^{200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0} f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 fl (ppm)

S42

S43

S46

200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)

^{200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0} f1 (ppm)

205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

S52

S55

200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

^{200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0} fl (ppm)

^{200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0} f1 (ppm)

05 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

^{200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0} fl (ppm)

^{200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0} f1 (ppm)

^{200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0} f1 (ppm)

205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)

205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 fl (ppm)