Supporting Information

for

Synthesis of biotin-labeled core glycans of GPI anchors and their application to the study of GPI interaction with pore-forming bacterial toxin

Jian Gao,^a Zhifang Zhou,^a Jiatong Guo,^{a,b} and Zhongwu Guo^{a,b,*}

^a Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA

^b Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, USA

* Corresponding Author E-mail: zguo@chem.ufl.edu

Table of Contents

I. Experimental procedures for the synthesis	-Page SI-2
II. Experimental procedures for ELISA	-Page SI-19
III. NMR spectra of synthetic intermediates and final products	-Page SI-20

I. Experimental procedures for the synthesis

General Methods: Chemicals and materials were purchased from commercial sources and were used as received without further purification unless otherwise noted. Molecular sieve 4Å (MS 4Å) was flame-dried under high vacuum and cooled to rt under a N₂ atmosphere immediately before use. Analytical TLC was carried out on Silica Gel 60Å F254 plates with detection by UV and/or by charring with 15% H₂SO₄ in EtOH (w/v). Mass spectrometry (MS) was performed using a high resolution ESI-TOF MS machine. NMR spectra were recorded on a 500 or 600 MHz machine with chemical shifts reported in ppm (δ) downfield from internal tetramethylsilane (TMS) reference. NMR signals are described as s (singlet), d (doublet), t (triplet) or m (multiplet), and the coupling constants are reported in Hz.

p-Tolyl (3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl)-(1→6)-2,3,4-tri-*O*-benzyl-1-thio- α -D-mannopyranoside 12:

A mixture of glycosyl donor **9** (700 mg, 1.17 mmol) and freshly activated MS 4Å in anhydrous CH₂Cl₂ (6 mL) was stirred at rt for 1 h and then cooled to -78 °C. A solution of AgOTf (903 mg, 3.51 mmol) in acetonitrile (1 mL) was added. After 15 min of stirring, *p*-TolSCl (169 μ L, 1.17 mmol) was added quickly. Fifteen minutes later, a solution of glycosyl acceptor **10** (591 mg, 1.06 mmol) and TTBP (263 mg, 1.06 mmol) in anhydrous CH₂Cl₂ (2.0 mL) was added. The reaction mixture was then warmed to rt in 1.5 h, stirred for another 20 min, and then quenched with Et₃N, diluted with CH₂Cl₂, and filtered. The filtrate was concentrated under vacuum, and the residue that contained compound **11** was dissolved in CH₂Cl₂ and CH₃OH (1:2, 12 mL). To this solution was added CH₃ONa (0.5 M in CH₃OH) until the pH reached 10. After 1 h of stirring, Amberlyst 15-hydrogen resin was added to neutralize the reaction mixture, which was filtered. The filtrate was concentrated under vacuum chromatography with EtOAc and hexane (1:2) as the eluents to afford **12** (818 mg, 78% for two steps) as a foamy solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.40 – 7.23 (m, 30H), 7.20 – 7.16 (m, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 5.52 (d, *J* = 1.8 Hz, 1H), 5.04 (d, *J* = 1.2 Hz, 1H), 4.95 (d, *J* = 11.4 Hz, 1H), 4.84 (d, *J* =

10.8 Hz, 1H), 4.71 (d, J = 12.6 Hz, 1H), 4.67 – 4.58 (m, 5H), 4.56 – 4.46 (m, 4H), 4.28 – 4.24 (m, 1H), 4.09 (s, 1H), 4.04 – 4.02 (m, 1H), 4.00 – 3.94 (m, 2H), 3.88 (m, 3H), 3.83 – 3.78 (m, 1H), 3.77 – 3.73 (m, 1H), 3.72 (dd, J = 10.8, 4.2 Hz, 1H), 3.63 (dd, J = 10.8, 1.8 Hz, 1H), 2.43 (d, J = 2.4 Hz, 1H), 2.22 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 138.52, 138.36, 138.17, 138.09, 137.88, 137.82, 137.52, 131.54, 130.85, 129.89, 128.50, 128.45, 128.41, 128.38, 128.32, 128.27, 127.97, 127.93, 127.91, 127.88, 127.85, 127.80, 127.78, 127.65, 127.57, 127.54, 99.53, 85.92, 80.20, 79.70, 76.36, 75.15, 75.09, 74.73, 74.21, 73.35, 72.35, 72.02, 71.98, 71.62, 70.99, 68.71, 68.09, 66.47, 21.00. HR ESI-TOF MS (m/z): calcd for C₆₁H₆₅O₁₀S [M + H]⁺, 989.4298; found, 989.4297.

p-Tolyl [2,3,4-tri-*O*-benzyl-6-*O*-(*tert*-butyldimethylsilyl)- α -D-mannopyranosyl]-(1 \rightarrow 2)-(3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 6)-2,3,4-tri-*O*-benzyl-1-thio- α -D-mannopyranoside 14:

To a stirred mixture of **12** (700 mg, 0.708 mmol), **13** (602 mg, 0.849 mmol) and freshly activated MS 4Å in anhydrous diethyl ether (6 mL) was added TMSOTf (15 μ L, 0.085 mmol) at 0 °C under N₂ protection. After the mixture was stirred for another 15 min, it was neutralized with Et₃N, filtered, and concentrated. The residue was subjected to silica gel column chromatography with EtOAc and hexane (1:5) as the eluents to give **14** (946 mg, 87%) as a foamy solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.40 – 7.12 (m, 47H), 7.09 (d, *J* = 8.0 Hz, 2H), 5.54 (s, 1H), 5.21 (s, 1H), 4.95 (d, *J* = 11.4, 1H), 4.92 (d, *J* = 11.4, 1H), 4.88 (s, 1H), 4.85 (d, *J* = 10.8 Hz, 1H), 4.74 (d, *J* = 12.0 Hz, 1H), 4.66 (d, *J* = 12.0 Hz, 2H), 4.60 (m, 3H), 4.54 (dd, *J* = 10.8, 5.4 Hz, 2H), 4.51 – 4.44 (m, 7H), 4.28 (m, 1H), 4.13 (m, 1H), 4.05 – 4.02 (m, 2H), 3.99 (dd, *J* = 10.8, 5.4 Hz, 1H), 3.95 – 3.86 (m, 5H), 3.79 (m, 4H), 3.73 – 3.65 (m, 3H), 3.60 (d, *J* = 11.4 Hz, 1H), 2.16 (s, 3H), 0.89 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 139.03, 138.79, 138.73, 138.59, 138.55, 138.40, 138.15, 138.08, 137.92, 137.42, 131.45, 131.14, 129.89, 128.41, 128.40, 128.38, 128.31, 128.27, 128.25, 128.24, 128.19, 128.07, 127.99, 127.86, 127.75, 127.72, 127.70, 75.12, 75.07, 74.99, 74.78, 74.76, 74.63, 73.55, 73.23, 73.21, 72.18, 72.13, 72.00, 71.94, 71.89,

71.85, 69.19, 66.73, 62.61, 25.96, 20.94, 18.33, -5.02, -5.27. HR ESI-TOF MS (m/z): calcd for $C_{94}H_{107}O_{15}SSi [M + H]^+$, 1535.7100; found, 1535.7158.

6-*O*-{[2,3,4-tri-*O*-Benzyl-6-*O*-(*tert*-butyldimethylsilyl)-α-D-mannopyranosyl]-(1→2)-(3,4,6tri-*O*-benzyl-α-D-mannopyranosyl)}-2,3,4-tri-*O*-benzyl-α-D-mannopyranosyl trichloroacetimidate 7:

To a solution of 14 (800 mg, 0.521 mmol) and TTBP (388 mg, 1.563 mmol) in wet CH₂Cl₂ (8 mL) were added N-iodosuccinimide (234 mg, 1.042 mmol) and AgOTf (268 mg, 1.042 mmol) at 0 °C. The mixture was stirred at rt for 2 h, quenched with saturated aq. Na₂S₂O₃ solution, and diluted with CH₂Cl₂ (200 mL). The organic phase, after being washed with saturated aq. NaCl solution, was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography with EtOAc and hexane (1:4) as the eluents to afford a white solid. To a solution of this product in anhydrous CH₂Cl₂ (8 mL) was added trichloroacetonitrile (261 μL, 2.605 mmol) and DBU (15 μL, 0.104 mmol) at 0 °C under N₂ protection. After 1 h of stirring, the mixture was concentrated in vacuum. The residue was purified on an Et₃N-neutralized silica gel column with EtOAc and hexane (1:10) as the eluents to afford 7 (582 mg, 71%) as a white foamy solid. ¹H NMR (600 MHz, CDCl₃) δ : 8.57 (s, 1H), 7.42 (d, J = 7.5 Hz, 2H), 7.38 – 7.12 (m, 43H), 6.34 (d, J = 1.8 Hz, 1H), 5.20 (s, 1H), 4.92 (d, J = 11.4 Hz, 1H), 4.91 (d, J = 11.4 Hz, 1H), 4.88 (s, 1H), 4.81 (d, J = 10.8 Hz, 1H), 4.79 (d, J = 12.6 Hz, 1H), 4.73 (d, J = 12.6 Hz, 1H), 4.65 (d, J = 12.0 Hz, 2H), 4.61 (m, 2H), 4.54 – 4.44 (m, 9H), 4.12 (d, J = 1.8 Hz, 1H), 4.03 (t, J = 1.8 Hz = 9.6 Hz, 1H), 3.99 - 3.84 (m, 9H), 3.74 (m, 6H), 3.58 (d, J = 11.4 Hz, 1H), 0.91 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ: 160.05, 139.02, 138.79, 138.75, 138.69, 138.58, 138.20, 138.17, 138.00, 137.88, 128.40, 128.39, 128.35, 128.25, 128.23, 128.21, 128.18, 128.07, 127.99, 127.96, 127.88, 127.86, 127.83, 127.78, 127.76, 127.74, 127.68, 127.64, 127.61, 127.46, 127.39, 127.32, 127.25, 127.23, 99.13, 98.89, 95.76, 90.99, 79.89, 79.75, 79.18, 75.17,

75.06, 74.97, 74.93, 74.66, 74.07, 74.05, 73.83, 73.55, 73.26, 73.17, 72.68, 72.26, 72.18, 71.92, 71.89, 71.83, 69.21, 66.25, 62.65, 25.99, 18.35, -5.00, -5.21.

6-*O*-(2-Azido-3,6-di-*O*-benzyl-2-deoxy-α-D-glucopyranosyl)-2,3,4,5-tetra-*O*-benzyl-1-*O*-(4-methoxybenzyl)-*myo*-inositol 8:

To a stirred mixture of 15 (569 mg, 1.00 mmol), 16 (600 mg, 0.909 mmol), and freshly activated MS 4Å in a mixture of 1,4-dioane and toluene (1:1, v/v, 6 mL) was added TMSOTf (18 µL, 0.10 mmol) at 0 °C under N₂ protection. After the mixture was stirred for another 15 min, it was neutralized with Et₃N, filtered, and concentrated. The residue was subjected to silica gel column chromatography with EtOAc and hexane (1:10) as the eluents to afford the α,β -mixture (767 mg, 79%) as colorless syrup. After the solution of $[Ir(COD)(PMePh_2)_2]PF_6$ (59 mg, 0.070 mmol) in THF (3 mL) was stirred under H₂ atmosphere at rt until the red color turned to pale yellow (in ca. 10 min) and H₂ was exchanged with argon for three times, to this solution was added slowly the above α,β-mixture (750 mg, 0.702 mmol) in anhydrous THF (4 mL). The mixture was stirred at rt for 30 min, at which point TLC showed the complete reaction. The mixture was concentrated in vacuum. The residue was dissolved in acetone and water (10 mL, 9:1, v/v), and the solution was treated with HgCl₂ (954 mg, 3.51 mmol) and HgO (23 mg, 0.105 mmol). Ten minutes later, the solution was concentrated, and the residue was purified by silica gel column chromatography with EtOAc and hexane (1:7) as the eluents to afford 8 (411 mg, 57%) as a white foamy solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.46 – 7.17 (m, 32H), 6.87 (d, J = 8.4 Hz, 2H), 5.74 (d, J = 3.0 Hz, 1H), 5.04 (d, J = 11.4 Hz, 1H), 4.97 (d, J = 10.2 Hz, 1H), 4.91 – 4.86 (m, 2H), 4.85 – 4.78 (m, 3H), 4.69 - 4.61 (m, 3H), 4.51 (s, 2H), 4.42 (d, J = 12.0 Hz, 1H), 4.27 (m, 2H), 4.14 (t, J = 9.6Hz, 1H), 4.04 (s, 1H), 4.00 - 3.96 (m, 1H), 3.82 - 3.76 (m, 4H), 3.71 (dt, J = 9.6, 3.6 Hz, 1H), 3.50 – 3.39 (m, 3H), 3.31 (dd, J = 10.2, 3.6 Hz, 1H), 3.21 (dt, J = 10.2, 3.6 Hz, 2H), 1.96 (d, J = 3.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ: 159.30, 138.81, 138.58, 138.35, 138.17, 138.15, 137.86, 129.62, 129.58, 128.55, 128.44, 128.32, 128.25, 128.19, 127.92, 127.79, 127.77, 127.74, 127.72, 127.64, 127.57, 127.52, 127.47, 127.44, 113.86, 97.38, 81.96, 81.88, 81.59, 80.82, 79.30, 75.71, 75.60, 74.80, 74.72, 74.16, 73.46, 73.36, 72.76, 71.99, 71.86, 69.43, 68.83, 62.57, 55.29.

The data were consistant with those reported in the literature (Z. Wu, X. Guo, J. Gao, and Z. Guo, *Chem. Commun.* **2013**, *49*, 11689-11691).

6-*O*-{[2,3,4-tri-*O*-Benzyl-6-*O*-(*tert*-butyldimethylsilyl)-α-D-mannopyranosyl]-(1→2)-(3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl)-(1→6)-(2,3,4-tri-*O*-benzyl-α-D-mannopyranosyl)-(1→4)-(2-azido-3,6-di-*O*-benzyl-2-deoxy-α-D-glucopyranosyl)}-2,3,4,5-tetra-*O*-benzyl-1-*O*-(4-methoxybenzyl)-*myo*-inositol 6:

To a stirred mixture of 7 (505 mg, 0.321 mmol), 8 (300 mg, 0.292 mmol), and freshly activated MS 4Å in 8 mL of anhydrous diethyl ether was added TMSOTf (5.8 µL, 0.032 mmol) at 0 °C under N₂ protection. After 15 min of stirring, the mixture was neutralized with Et₃N, filtered, and concentrated. The residue was subjected to silica gel column chromatography with EtOAc and hexane (1:6) as the eluents to afford 6 (620 mg, 87%) as a white foamy solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.39 (d, J = 7.2 Hz, 2H), 7.36 – 7.07 (m, 75H), 6.86 (d, J = 9.0 Hz, 2H), 5.80 (d, J = 3.6 Hz, 1H), 5.24 (s, 1H), 5.16 (s, 1H), 5.00 - 4.88 (m, 5H), 4.86 - 4.70 (m, 6H), 4.64 (m, 4H), 4.57 - 4.30 (m, 17H), 4.22 (d, J = 12.0 Hz, 1H), 4.13 - 4.03 (m, 6H), 3.98 - 3.76 (m, 11H), 3.74 - 4.03 (m, 6H), 3.98 - 3.76 (m, 11H), 33.64 (m, 4H), 3.51 (m, 9H), 3.32 (d, J = 10.2 Hz, 1H), 3.28 (dd, J = 11.4, 3.6 Hz, 1H), 3.20 (dd,10.2, 3.6 Hz, 1H), 0.88 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ: 159.29, 139.11, 138.96, 138.82, 138.71, 138.61, 138.58, 138.55, 138.41, 138.27, 138.22, 138.03, 137.83, 129.63, 129.48, 128.51, 128.42, 128.32, 128.27, 128.22, 128.18, 128.15, 128.12, 128.03, 127.97, 127.85, 127.76, 127.75, 127.72, 127.67, 127.64, 127.60, 127.49, 127.43, 127.39, 127.34, 127.28, 127.23, 127.17, 127.14, 127.12, 127.06, 126.82, 113.85, 100.52, 99.29, 98.72, 97.32, 81.94, 81.86, 81.55, 80.87, 80.02, 79.89, 79.65, 77.42, 76.26, 75.77, 75.50, 75.10, 75.08, 74.98, 74.88, 74.55, 74.43, 74.29, 74.20, 73.76, 73.44, 73.27, 73.18, 73.16, 72.72, 72.10, 71.97, 71.90, 71.76, 71.73, 71.66, 69.57, 69.06, 68.59, 66.43, 63.07, 62.40, 55.28, 25.98, 18.32, -4.95, -5.23. HR ESI-TOF MS (m/z): calcd for C₁₄₉H₁₆₄O₂₆N₃Si $[M + H]^+$, 2439.1372; found, 2439.1265.

 $6-O-[(2,3,4-tri-O-Benzyl-\alpha-D-mannopyranosyl)-(1\rightarrow 2)-(3,4,6-tri-O-benzyl-\alpha-D-mannopyranosyl) -(1\rightarrow 6)-(2,3,4-tri-O-benzyl-\alpha-D-mannopyranosyl)-(1\rightarrow 4)-(2-azido-3,6-di-O-benzyl-2-deoxy-\alpha-D-glucopyranosyl)]-2,3,4,5-tetra-O-benzyl-1-O-(4-methoxybenzyl)-myo-inositol 17:$

A solution of 6 (115 mg, 0.047 mmol) and triethylamine trihydrofluoride (1.0 mL) in CH₂Cl₂ and CH₃CN (1:1, 3 mL) was stirred at rt for one day under argon. The solution was quenched with dropwise addition of saturated aq. NaHCO₃ solution. The aq. phase was extracted with CH_2Cl_2 $(3 \times 30 \text{ mL})$, and the organic layer, after being dried over Na₂SO₄, was concentrated. The residue was purified by silica gel column chromatography with EtOAc and hexane (1:4) as the eluents to give 17 (96 mg, 88%) as colorless syrup. ¹H NMR (600 MHz, CDCl₃) δ : 7.40 (d, J = 6.6 Hz, 2H), 7.38 - 7.03 (m, 75H), 6.87 (d, J = 8.4 Hz, 2H), 5.79 (d, J = 3.6 Hz, 1H), 5.26 (s, 1H), 5.05 (s, 1H), 4.99 (d, J = 11.4 Hz, 1H), 4.95 – 4.35 (m, 30H), 4.32 (t, J = 9.6 Hz, 1H), 4.24 (d, J = 12.0Hz, 1H), 4.17 (d, J = 12.0 Hz, 1H), 4.12 (t, J = 9.6 Hz, 1H), 4.07 – 4.04 (m, 2H), 3.97 (t, J = 9.6Hz, 1H), 3.94 - 3.55 (m, 19H), 3.52 - 3.36 (m, 7H), 3.26 (dd, J = 11.4, 3.0 Hz, 1H), 3.21 (dd, J = 1.4, 3.0 Hz, 1.4, 3.0 Hz, 1.4, 3.0 Hz, 1.4, 10.2, 3.6 Hz, 1H), 2.01 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ : 159.30, 138.92, 138.84, 138.65, 138.61, 138.59, 138.55, 138.46, 138.41, 138.30, 138.27, 138.23, 138.10, 137.83, 129.63, 129.47, 128.49, 128.47, 128.42, 128.36, 128.31, 128.27, 128.20, 128.05, 127.98, 127.90, 127.81, 127.71, 127.67, 127.64, 127.62, 127.57, 127.49, 127.43, 127.36, 127.35, 127.30, 127.25, 127.17, 127.07, 127.00, 126.83, 100.44, 99.54, 99.36, 97.37, 81.94, 81.87, 81.55, 80.88, 80.03, 79.79, 79.72, 79.33, 77.13, 76.27, 75.78, 75.40, 75.16, 75.00, 74.92, 74.88, 74.73, 74.58, 74.27, 74.21, 74.17, 73.70, 73.27, 73.23, 72.80, 72.72, 72.34, 72.29, 72.16, 72.04, 71.95, 71.74, 71.72, 69.71, 69.09, 68.54, 66.05, 62.95, 62.18, 55.28. The data were consistant with those reported in the literature (Z. Wu, X. Guo, J. Gao, and Z. Guo, Chem Commun. 2013, 49, 11689-11691).

 $6-O-[(2,3,4-tri-O-Benzyl-6-O-succinyl-\alpha-D-mannopyranosyl)-(1\rightarrow 2)-(3,4,6-tri-O-benzyl-\alpha-D-mannopyranosyl)-(1\rightarrow 6)-(2,3,4-tri-O-benzyl-\alpha-D-mannopyranosyl)-(1\rightarrow 4)-(2-azido-3,6-di-azido-3,6-$

O-benzyl-2-deoxy-α-D-glucopyranosyl)]-2,3,4,5-tetra-*O*-benzyl-1-*O*-(4-methoxybenzyl)-*myo*inositol 17-I:

To a solution of 17 (85 mg, 0.037 mmol) in anhydrous CH₂Cl₂ (3.0 mL) were added succinic anhydride (14.8 mg, 0.148 mmol) and DMAP (18.1 mg, 0.148 mmol) at rt under N₂ protection. The mixture was stirred at rt overnight and then treated with AcOH, concentrated in vacuum, and purified by silica gel column chromatography with EtOAc and hexane (1:3) as the eluents to give **17-I** (72.7 mg, 82%) as a white solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.57 – 6.93 (m, 77H), 6.87 (d, J = 8.4 Hz, 2H), 5.78 (d, J = 3.6 Hz, 1H), 5.31 (s, 1H), 5.21 (s, 1H), 5.01 - 4.89 (m, 5H), 4.85-4.71 (m, 6H), 4.63 (dt, J = 11.7, 8.2 Hz, 3H), 4.57 -4.31 (m, 18H), 4.21 (m, 2H), 4.17 -4.07(m, 4H), 4.04 (s, 1H), 3.99 (t, J = 9.6 Hz, 1H), 3.91 – 3.74 (m, 12H), 3.72 – 3.66 (m, 2H), 3.58 – 3.32 (m, 10H), 3.29 - 3.25 (m, 2H), 2.53 - 2.47 (m, 1H), 2.46 - 2.37 (m, 2H), 2.29 - 2.23 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 173.16, 171.64, 159.31, 138.93, 138.82, 138.65, 138.55, 138.47, 138.42, 138.39, 138.31, 138.20, 138.02, 137.93, 137.68, 129.59, 129.51, 128.49, 128.46, 128.41, 128.38, 128.31, 128.26, 128.21, 128.16, 128.10, 127.99, 127.97, 127.93, 127.75, 127.71, 127.67, 127.64, 127.61, 127.56, 127.52, 127.42, 127.39, 127.29, 127.18, 127.13, 127.09, 126.97, 113.88, 100.05, 99.10, 98.34, 97.35, 81.89, 81.85, 81.52, 80.87, 80.20, 79.81, 79.65, 79.64, 76.33, 75.75, 75.45, 75.14, 75.06, 75.04, 74.90, 74.63, 74.51, 74.38, 74.19, 73.96, 73.66, 73.26, 73.20, 73.16, 72.71, 72.49, 72.19, 72.13, 71.97, 71.91, 71.85, 71.75, 71.60, 70.36, 69.76, 68.94, 68.54, 65.78, 64.33, 62.82, 55.28, 29.48, 28.60. HR ESI-TOF MS (m/z): calcd for C₁₄₇H₁₅₂O₂₉N₃ [M -H]⁺, 2423.0512; found, 2423.0503.

6-*O*-{[2,3,4-tri-*O*-Benzyl-6-*O*-(*N*-biotinylethylenediaminyl-succinamide)-α-D-mannopyranosyl] -(1→2)-(3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl)-(1→6)-(2,3,4-tri-*O*-benzyl-α-D-mannopyranosyl)-(1→4)-(2-azido-3,6-di-*O*-benzyl-2-deoxy-α-D-glucopyranosyl)}-2,3,4,5-tetra-*O*-benzyl-1-*O*-(4-methoxybenzyl)-*myo*-inositol 19:

To a solution of HATU (12.2 mg, 0.032 mmol) in anhydrous DMF and DCM (3 mL, 1:1) was added 17-I (65.0 mg, 0.027 mmol) at 0 °C under N₂ protection, followed by addition of DIPEA (11µL, 0.064 mmol). The mixture was stirred at 0 °C for 20 min and then biotin ethylenediamine 18 (14.8 mg, 0.040 mmol) was added. The reaction was allowed to continue for 10 h at rt. The mixture was poured into saturated aq. NH₄Cl, and the mixture was extracted with EtOAc. The organic phase, after being washed with saturated aq. NaCl, was dried over Na₂SO₄ and concentrated in vacuum. The residue was purified by silica gel column chromatography with EtOAc and hexane (1:2) as the eluents to give **19** (56.7 mg, 78%) as a white solid. ¹H NMR (600 MHz, CDCl₃) δ : 7.55 – 6.93 (m, 77H), 6.88 – 6.84 (d, J = 9.0 Hz, 2H), 6.80 (s, 1H), 6.37 (s, 1H), 6.28 (s, 1H), 5.77 (d, J = 3.0 Hz, 1H), 5.52 (s, 1H), 5.27 (s, 1H), 5.09 (s, 1H), 5.01 - 4.91 (m, 4H), 4.88 – 4.78 (m, 5H), 4.75 – 4.71 (m, 2H), 4.66 – 4.60 (m, 3H), 4.51 (m, 8H), 4.43 – 4.29 (m, 11H), 4.24 (d, J = 12.6 Hz, 1H), 4.19 (d, J = 12.0 Hz, 1H), 4.14 – 4.03 (m, 6H), 3.97 (t, J = 9.6Hz, 1H), 3.92 – 3.75 (m, 12H), 3.73 (t, J = 9.6 Hz, 1H), 3.66 (s, 1H), 3.58 (d, J = 10.8 Hz, 1H), 3.55 - 3.39 (m, 6H), 3.36 - 3.30 (m, 2H), 3.27 - 3.23 (m, 2H), 3.20 - 3.13 (m, 3H), 3.00 - 2.97 (m, 1H), 2.74 (dd, J = 12.6, 4.2 Hz, 1H), 2.60 (d, J = 12.6 Hz, 1H), 2.58 – 2.49 (m, 2H), 2.28 – 2.21 (m, 2H), 2.15 - 2.08 (m, 2H), 1.66 - 1.54 (m, 4H), 1.35 - 1.33 (m, 2H). ¹³C NMR (150) MHz, CDCl₃) δ: 173.69, 172.80, 172.45, 163.76, 159.31, 138.91, 138.82, 138.58, 138.54, 138.47, 138.39, 138.37, 138.29, 138.25, 138.20, 138.09, 137.97, 137.79, 129.62, 129.51, 128.49, 128.42, 128.37, 128.33, 128.32, 128.27, 128.21, 128.19, 128.15, 128.06, 128.00, 127.94, 127.75, 127.73, 127.71, 127.64, 127.57, 127.51, 127.44, 127.38, 127.31, 127.24, 127.18, 127.13, 127.04, 126.83, 113.88, 100.33, 99.17, 99.10, 97.36, 81.87, 81.51, 80.88, 80.21, 79.65, 79.49, 76.37, 75.75, 75.48, 75.20, 74.97, 74.88, 74.56, 74.36, 74.21, 74.17, 74.13, 73.75, 73.30, 73.23, 73.19, 72.72, 72.26, 72.24, 72.05, 72.03, 71.97, 71.91, 71.80, 71.75, 70.34, 69.61, 69.00, 68.60, 66.26, 63.39, 62.96, 61.47, 60.10, 55.40, 55.30, 40.40, 40.05, 39.22, 38.60, 35.62, 30.80, 29.72, 27.84, 27.81, 25.21. ESI-TOF MS (m/z): calcd for $C_{159}H_{174}O_{30}N_7S$ [M + H]⁺, 2693.2026; found, 2693.2097.

6-*O*-{[2,3,4-tri-*O*-Benzyl-6-*O*-(*tert*-butyldimethylsilyl)-α-D-mannopyranosyl]-(1→2)-(3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl)-(1→6)-(2,3,4-tri-*O*-benzyl-α-D-mannopyranosyl)-(1→4) -[2-(*tert*-butyl-carbamate)-2-deoxy-3,6-di-*O*-benzyl-α-D-glucopyranosyl]}-2,3,4,5-tetra-*O*-benzyl-1-*O*-(4-methoxybenzyl)-*myo*-inositol 20:

To a solution of 6 (155 mg, 0.064 mmol) in CH₃OH were added 1,3-propanedithiol (127 μ L, 1.27 mmol) and DIPEA (40 µL). After being stirred at rt overnight, the mixture was concentrated in *vacuo*, and the residue was purified by flash silica gel column chromatography with CH₃OH and CH₂Cl₂ (1:40) as the eluents to afford a free amine as colorless syrup. This product was dissolved in CH₃OH and CH₂Cl₂ (1:1, 3 mL), and to it were added di-*tert*-butyl dicarbonate (29 µL, 0.128 mmol) and Et₃N (60 μ L). After being stirred at rt overnight, the mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography with EtOAc and hexane (1:3) as the eluent to give **20** (126 mg, 79%) as colorless syrup. ¹H NMR (600 MHz, $CDCl_3$) δ : 7.39 – 6.98 (m, 77H), 6.78 (d, J = 8.4 Hz, 2H), 5.62 (d, J = 10.2 Hz, 1H), 5.44 (d, J = 1 3.0 Hz, 1H), $5.18 \text{ (s, 1H)}, 5.14 \text{ (s, 1H)}, 4.92 - 4.72 \text{ (m, 10H)}, 4.65 - 4.31 \text{ (m, 20H)}, 4.23 \text{ (t, } J = 1.00 \text{ (m, 20H)}, 4.23 \text{ (t$ 9.6 Hz, 1H), 4.14 (br d, 2H), 4.10 - 3.60 (m, 22H), 3.60 - 3.26 (m, 11H), 1.25 (s, 9H), 0.86 (s, 9H), 0.03 (s, 3H), 0.02 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 159.35, 155.11, 139.08, 138.88, 138.81, 138.70, 138.66, 138.56, 138.54, 138.32, 138.26, 138.17, 137.96, 129.37, 129.21, 128.37, 128.30, 128.27, 128.26, 128.21, 128.15, 128.11, 128.06, 127.98, 127.84, 127.70, 127.62, 127.58, 127.46, 127.36, 127.32, 127.21, 127.13, 127.11, 126.46, 113.88, 100.27, 99.40, 99.28, 98.69, 82.86, 81.90, 81.06, 80.60, 80.07, 79.85, 79.63, 79.13, 77.74, 77.67, 75.84, 75.70, 75.55, 75.04, 74.96, 74.82, 74.62, 74.53, 74.45, 74.26, 73.78, 73.74, 73.44, 73.16, 73.12, 72.75, 72.59, 72.14, 72.06, 72.03, 71.87, 71.83, 71.73, 71.63, 71.11, 69.43, 69.04, 66.49, 62.42, 55.08, 54.74, 28.30, 25.97, 18.31, -4.97, -5.24. HR ESI-TOF MS (m/z): calcd for $C_{154}H_{174}O_{28}NSi [M + H]^+$, 2513.1992; found, 2513.1960.

 $6-O-\{(2,3,4-\text{tri}-O-\text{Benzyl}-\alpha-\text{D}-\text{mannopyranosyl})-(1\rightarrow 2)-(3,4,6-\text{tri}-O-\text{benzyl}-\alpha-\text{D}-\text{mannopyranosyl})-(1\rightarrow 6)-(2,3,4-\text{tri}-O-\text{benzyl}-\alpha-\text{D}-\text{mannopyranosyl})-(1\rightarrow 4)-[3,6-\text{di}-O-\text{benzyl}-2-($ *tert* $-butylcarbamate)-2-deoxy-\alpha-\text{D}-glucopyranosyl]\}-2,3,4,5-tetra-O-benzyl-1-O-(4-methoxybenzyl)-$ *myo*-inositol 21:

A solution of **20** (115 mg, 0.046 mmol) and triethylamine trihydrofluoride (1.0 mL) in CH₂Cl₂ and CH₃CN (1:1, 3.0 mL) was stirred at rt overnight under a N₂ atmosphere. The mixture was quenched with dropwise addition of saturated aq. NaHCO₃, and the water phase was extracted with CH_2Cl_2 (3 × 30 mL). The organic layer was dried over Na₂SO₄ and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography with EtOAc and hexane (1:3) as the eluents to give 21 (95 mg, 87%) as colorless syrup. ¹H NMR (600 MHz, CDCl₃) δ : 7.37 – 7.08 (m, 77H), 6.80 (d, J = 8.4 Hz, 2H), 5.62 (d, J = 10.2 Hz, 1H), 5.46 (d, J = $3.0 \text{ Hz}, 1\text{H}, 5.21 \text{ (s, 1H)}, 5.06 \text{ (s, 1H)}, 4.94 - 4.73 \text{ (m, 10H)}, 4.61 - 4.55 \text{ (m, 4H)}, 4.53 - 4.45 \text{ (m, 1H)}, 4.53 - 4.45 \text{ (m, 2H)}, 4.53 - 4.45 \text{ (m, 2H)}, 4.54 - 4.55 \text{ (m, 2H)}, 4.54 - 4.55 \text{ (m, 2H)}, 4.55 + 4.55 \text$ 8H), 4.43 – 4.33 (m, 8H), 4.28 – 4.14 (m, 3H), 4.11 – 3.97 (m, 5H), 3.96 – 3.86 (m, 2H), 3.88 – 3.58 (m, 16H), 3.56 – 3.51 (m, 4H), 3.40 – 3.32 (m, 6H), 2.03 (br d, 1H), 1.26 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ: 159.36, 155.13, 138.81, 138.67, 138.65, 138.63, 138.58, 138.52, 138.38, 138.35, 138.29, 138.19, 138.05, 129.41, 129.22, 128.39, 128.35, 128.30, 128.28, 128.18, 128.02, 127.94, 127.89, 127.77, 127.75, 127.70, 127.64, 127.62, 127.52, 127.50, 127.46, 127.44, 127.38, 127.33, 127.24, 127.13, 113.89, 100.13, 99.40, 99.30, 82.83, 81.92, 81.07, 81.02, 80.61, 79.97, 79.73, 79.38, 79.16, 77.67, 77.38, 75.86, 75.75, 75.50, 75.01, 74.89, 74.88, 74.80, 74.55, 74.18, 74.11, 73.80, 73.55, 73.22, 73.20, 72.79, 72.60, 72.18, 72.13, 72.11, 72.07, 71.93, 71.80, 71.70, 71.18, 69.34, 69.04, 66.22, 62.20, 55.10, 54.62, 28.31. HR ESI-TOF MS (m/z): calcd for $C_{148}H_{160}O_{28}N [M + H]^+$, 2399.1127; found, 2399.1033.

 $6-O-\{(6-O-Azidoethyl-2,3,4-tri-O-benzyl-\alpha-D-mannopyranosyl)-(1\rightarrow 2)-(3,4,6-tri-O-benzyl-\alpha-D-mannopyranosyl)-(1\rightarrow 6)-(2,3,4-tri-O-benzyl-\alpha-D-mannopyranosyl)-(1\rightarrow 4)-[3,6-di-O-benzyl-\alpha-D-mannopyranosyl)-(1\rightarrow 4)-[3,6-di-O-benzyl-\alpha-D-mannopyranosyl]-(1\rightarrow 4)-[3,6-di-O-benzyl-\alpha-D-mannopyranosyl$

benzyl-2-(*tert*-butylcarbamate)-2-deoxy-α-D-glucopyranosyl]}-2,3,4,5-tetra-*O*-benzyl-1-*O*-(4-methoxybenzyl)-*myo*-inositol 23:

To a solution of **21** (90 mg, 0.038 mmol) in anhydrous THF (4 mL) was added NaH (5.5 mg, 0.228 mmol) at 0 °C under N₂ atmosphere. After stirring for 15 min, a THF solution containing 22 (33 mg, 0.152 mmol) was added, and the reaction was monitored by TLC. After 1 h of stirring at 0 °C, excessive NaH was decomposed with saturated aq. NaCl solution, and the mixture was diluted with ethyl acetate. The organic layer, after being washed with saturated aq. NaCl solution, was dried with Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography with EtOAc and hexane (1:4) as the eluents to afford 23 (64 mg, 69%) as colorless syrup. ¹H NMR (600 MHz, CDCl₃) δ : 7.38 – 7.06 (m, 77H), 6.79 (d, J = 8.4 Hz, 2H), 5.63 (d, J = 10.2 Hz, 1H), 5.44 (d, J = 2.4 Hz, 1H), 5.21 (s, 1H), 5.11 (s, 1H), 4.94 - 4.73 (m, 9H), 4.65 - 4.31 (m, 19H), 4.23 (t, J = 9.4 Hz, 1H), 4.17 (m, 2H), 4.04 (m, 6H), 3.93 (t, J = 9.4Hz, 1H), 3.82 (m, 7H), 3.74 – 3.25 (m, 24H), 3.15 m, 1H), 1.25 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) *δ*: 159.35, 155.12, 138.87, 138.70, 138.65, 138.59, 138.55, 138.45, 138.31, 138.28, 138.17, 138.13, 137.96, 129.56, 129.37, 129.21, 129.07, 128.38, 128.32, 128.29, 128.28, 128.26, 128.18, 128.15, 128.06, 128.00, 127.98, 127.85, 127.81, 127.75, 127.71, 127.66, 127.63, 127.61, 127.56, 127.49, 127.41, 127.38, 127.29, 127.24, 127.08, 127.05, 126.94, 126.50, 113.88, 100.21, 99.46, 99.39, 99.19, 82.82, 81.91, 81.12, 81.06, 80.60, 80.05, 79.73, 79.53, 79.17, 77.73, 77.48, 75.96, 75.73, 75.53, 74.93, 74.81, 74.80, 74.73, 74.60, 74.51, 74.20, 73.79, 73.72, 73.18, 72.73, 72.60, 72.20, 72.13, 72.04, 72.01, 71.97, 71.90, 71.84, 71.68, 71.16, 71.13, 70.60, 70.47, 70.32, 70.15, 69.49, 69.32, 69.04, 66.49, 55.09, 54.76, 50.74, 28.31. HR ESI-TOF MS (m/z): calcd for $C_{150}H_{163}O_{28}N_4 [M + H]^+$, 2468.1454; found, 2468.1511.

6-*O*-{[6-*O*-(*N*-Biotinylsuccinamide-ethyl)-α-D-mannopyranosyl]-(1 \rightarrow 2)-(α-D-mannopyranosyl)-(1 \rightarrow 6)-(α-D-mannopyranosyl)-(1 \rightarrow 4)-[2-amino-2-deoxy-α-D-glucopyranosyl]}-*myo*- inositol 4:

After a mixture of 23 (50 mg, 0.020 mmol) and 10% Pd/C (10 mg) in CH_2Cl_2 , CH_3OH , and H_2O (1:4:0.5, 3.3 mL) was stirred at rt under H₂ atmosphere (50 psi) for 1 day, it was filtered off, and the filtrate was concentrated in vacuo to afford 24 (17.7 mg, 90%) as an off-white solid: MALDI TOF MS (positive mode): calcd for $C_{37}H_{67}O_{27}N_2$ [M + H]⁺, 971.3; found, 971.8. To a solution of 24 (16.0 mg, 0.016 mmol) in anhydrous DMF (1 mL) were added 25 (6.7 mg, 0.020 mmol) and one drop Et_3N . The reaction mixture was stirred at rt for 1 h before showing a complete reaction by MALDI-TOF MS. The solution was concentrated under reduced pressure, and the residue was dissolved in 5% TFA in CH_2Cl_2 (v/v). After 20 min of stirring, the solvent was removed under reduced pressure by co-evaporation with toluene three times. The residue was purified by sizeexclusion chromatography on a G15 column with water as the eluent to give 4 (12.7 mg, 70% for the last two steps) as a foamy solid. ¹H NMR (600 MHz, D₂O) δ : 5.26 (d, J = 3.0 Hz, 1H), 5.05 (s, 1H), 4.93 (s, 1H), 4.84 (s, 1H), 4.47 - 4.40 (m, 1H), 4.29 - 4.22 (m, 1H), 3.98 (d, J = 10.2 Hz, 1H), 3.93 - 3.87 (m, 3H), 3.86 - 3.78 (m, 4H), 3.74 - 3.44 (m, 22H), 3.34 (dd, J = 10.2, 1.8 Hz, 1H), 3.26 - 3.16 (m, 5H), 3.06 (d, J = 4.8 Hz, 1H), 2.83 (dd, J = 13.2, 4.8 Hz, 1H), 2.61 (d, J = 13.2, 4.8 Hz, 1H), 2.83 (d, 12.6 Hz, 1H), 2.11 (t, J = 7.2 Hz, 2H), 1.60 – 1.39 (m, 4H), 1.28 – 1.22 (m, 2H). ¹³C NMR (150 MHz, D₂O) δ: 176.85, 165.27, 102.28, 101.93, 98.21, 96.11, 80.24, 78.79, 76.54, 72.61, 72.54, 72.44, 72.26, 72.12, 71.74, 71.48, 70.91, 70.78, 70.36, 70.12, 70.05, 69.75, 69.72, 69.67, 69.19, 66.70, 66.29, 66.19, 61.98, 60.75, 60.17, 59.98, 55.22, 54.31, 39.60, 38.85, 35.36, 27.79, 27.58, 25.07. HR ESI-TOF MS (m/z): calcd for $C_{42}H_{73}O_{27}N_4S$ [M + H]⁺, 1097.4183; found, 1097.4235.

 $6-O-\{[2,3,4-tri-O-Benzyl-6-O-(tert-butyldimethylsilyl)-\alpha-D-mannopyranosyl]-(1\rightarrow 2)-(3,4,6-tri-O-benzyl-\alpha-D-mannopyranosyl)-(1\rightarrow 6)-(2,3,4-tri-O-benzyl-\alpha-D-mannopyranosyl)-(1\rightarrow 4)-(2-azido-3,6-di-O-benzyl-2-deoxy-\alpha-D-glucopyranosyl)\}-2,3,4,5-tetra-O-benzyl-myo-inositol 26:$

To a solution of 6 (290 mg, 0.119 mmol) in CH₂Cl₂ (3 mL) was added 20% TFA in CH₂Cl₂ (3 mL) to give a final concentration of about 10% TFA. The mixture was stirred for 1 h, when TLC showed the completion of reaction. The solution was concentrated and then co-evaporated with toluene three times to remove TFA completely. The residue was dissolved in DMF (4 mL), and then to the solution were added TBSCI (27 mg, 0.178 mmol) and imidazole (16 mg, 0.238 mmol) at 0 °C. The mixture was stirred at rt for 2 h and diluted with EtOAc (100 mL). The organic layer, after washed with saturated aq. NaCl solution, was dried with Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography with EtOAc and hexane (1:4) as the eluents to give 26 (198 mg, 72% for two steps) as colorless syrup. ¹H NMR (600 MHz, CDCl₃) δ : 7.39 – 6.92 (m, 75H), 5.50 (d, J = 3.6 Hz, 1H), 5.26 (s, 1H), 5.15 (s, 1H), 5.01 (d, J = 11.4 Hz, 1H), 4.97 – 4.87 (m, 5H), 4.78 – 4.67 (m, 7H), 4.65 – 4.60 (m, 2H), 4.56 – 4.24 (m, 16H), 4.18 (d, J = 12.0 Hz, 1H), 4.09 - 3.60 (m, 22H), 3.50 - 3.46 (m, 2H), 3.43 - 3.31 (m, 6H), 2.96 (d, J = 1.0 Hz, 1.0 Hz)7.2 Hz, 1H), 0.87 (s, 9H), 0.04 (s, 3H), 0.02 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ : 139.06, 138.79, 138.66, 138.57, 138.55, 138.48, 138.43, 138.35, 138.33, 138.14, 138.05, 138.01, 137.64, 128.45, 128.42, 128.32, 128.31, 128.29, 128.22, 128.21, 128.15, 128.14, 128.06, 128.01, 127.92, 127.85, 127.77, 127.70, 127.68, 127.65, 127.63, 127.58, 127.53, 127.48, 127.41, 127.38, 127.28, 127.20, 127.16, 127.10, 126.87, 100.14, 99.26, 98.73, 97.57, 81.75, 81.32, 80.91, 80.52, 79.97, 79.66, 77.29, 76.03, 75.77, 75.33, 75.04, 74.97, 74.93, 74.84, 74.55, 74.48, 74.31, 74.25, 73.48, 73.30, 73.19, 73.17, 73.11, 73.03, 72.20, 72.08, 71.97, 71.90, 71.82, 71.68, 70.40, 69.04, 68.71, 66.39, 64.03, 62.47, 60.03, 25.97, 18.32, -4.96, -5.23. HR ESI-TOF MS (m/z): calcd for $C_{141}H_{156}O_{25}N_3Si [M + H]^+$, 2319.0797; found, 2319.0837.

6-*O*-{[2,3,4-tri-*O*-Benzyl-6-*O*-(*tert*-butyldimethylsilyl)-α-D-mannopyranosyl]-(1 \rightarrow 2)-(3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl)-(1 \rightarrow 6)-(2,3,4-tri-*O*-benzyl-α-D-mannopyranosyl)-(1 \rightarrow 4)-[3,6-di-*O*-benzyl-2-(*tert*-butylcarbamate)-2-deoxy-α-D-glucopyranosyl]}-2,3,4,5-tetra-*O*-benzyl-*myo*-inositol 27:

A mixture of 26 (180 mg, 0.078 mmol), 1,3-propanedithiol (155 µL, 1.55 mmol), and DIPEA (50 µL) in CH₃OH (2 mL) was stirred at rt overnight. The mixture was concentrated in vacuo and the residue was purified by flash silica gel column chromatography with CH₃OH and CH₂Cl₂ (1:40) as the eluents to afford the free amine as colorless oil. This product was dissolved in CH₃OH and CH₂Cl₂ (1:1, 3 mL), and to the solution were added di-*tert*-butyl dicarbonate (36 µL, 0.155 mmol) and Et₃N (80 µL). After stirred at rt overnight, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography with EtOAc and hexane (1:2) as the eluents to afford 27 (150 mg, 81% for two steps) as colorless syrup. ¹H NMR (600 MHz, $CDCl_3$) δ : 7.34 – 7.06 (m, 75H), 5.42 (d, J = 8.4 Hz, 1H), 5.34 (s, 1H), 5.19 (s, 1H), 5.15 (s, 1H), 5.06 (d, J = 11.4 Hz, 1H), 4.94 - 4.63 (m, 14H), 4.56 - 4.32 (m, 14H), 4.19 - 3.76 (m, 16H), 3.74 - 3.29 (m, 16H), 2.60 (d, J = 9.6 Hz, 1H), 1.27 (s, 9H), 0.87 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ: 155.30, 139.06, 138.88, 138.80, 138.70, 138.56, 138.49, 138.35, 138.09, 137.98, 128.55, 128.48, 128.41, 128.30, 128.27, 128.25, 128.22, 128.16, 128.12, 128.00, 127.93, 127.87, 127.83, 127.72, 127.71, 127.67, 127.62, 127.59, 127.54, 127.50, 127.46, 127.37, 127.30, 127.26, 127.19, 127.15, 127.11, 100.27, 99.27, 98.70, 98.30, 81.46, 81.36, 80.98, 80.74, 80.18, 80.02, 79.88, 79.63, 79.31, 77.54, 77.45, 75.88, 75.68, 75.02, 74.98, 74.85, 74.77, 74.60, 74.53, 74.48, 74.22, 73.82, 73.47, 73.29, 73.16, 72.25, 72.07, 71.88, 71.85, 71.75, 71.64, 71.02, 69.43, 69.04, 66.43, 62.45, 54.52, 28.25, 25.98, 18.33, -4.96, -5.22. HR ESI-TOF MS (m/z): calcd for C₁₄₆H₁₆₆O₂₇NSi $[M + H]^+$, 2393.1417; found, 2393.1431.

6-*O*-{(2,3,4-tri-*O*-Benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-(3,4,6-tri-*O*-benzyl- α -D-

mannopyranosyl)- $(1\rightarrow 6)$ -(2,3,4-tri-O-benzyl- α -D-mannopyranosyl)- $(1\rightarrow 4)$ -[3,6-di-O-benzyl -2-(*tert*-butylcarbamate)-2-deoxy- α -D-glucopyranosyl]}-2,3,4,5-tetra-O-benzyl-1-O-(di-O-benzylphosphoryl)-*myo*-inositol 29:

To a mixture of 27 (135 mg, 0.056 mmol), dibenzyl diisopropylphosphoramidate (76 µL, 0.226 mmol) and MS 4 Å in anhydrous CH₂Cl₂ (3 mL) was added 1*H*-tetrazole (0.45 M in CH₃CN, 0.5 mL, 0.226 mmol). After stirred at rt under N₂ atmosphere for 1 h, the mixture was cooled to -20 °C, and t-BuOOH (5.5 M in decane; 61 µL, 0.338 mmol) was added. After 2 h of stirring at 0 °C, excessive t-BuOOH was quenched wirh saturated aq. NaHCO₃ solution. The mixture was extracted with CH_2Cl_2 (3 × 50 mL). The organic layer was dried with Na_2SO_4 and concentrated in vacuo. The residue was dissolved in CH_2Cl_2 and CH_3CN (1:1, 2 mL), and to the solution was added triethylamine trihydrofluoride (1.0 mL). The mixture was stirred at rt overnight under N₂ atmosphere. The reaction was quenched with dropwise addition of saturated aq. NaHCO₃ solution. The aq. phase was extracted with CH_2Cl_2 (3 × 50 mL); the organic layer was dried over Na₂SO₄ and concentrated in vacuum. The residue was purified by silica gel column chromatography with EtOAc and hexane (1:2) as the eluents to give **29** (95 mg, 66% for three steps) as colorless syrup. ¹H NMR (600 MHz, CDCl₃) δ : 7.53 – 6.77 (m, 85H), 5.37 (d, J = 10.2 Hz, 1H), 5.25 (s 2H), 5.07 -4.82 (m, 12H), 4.78 (d, J = 11.4 Hz, 1H), 4.68 (m, 2H), 4.63 -4.34 (m, 18H), 4.26 -4.20 (m, 1H), 4.17 – 4.00 (m, 7H), 3.96 – 3.88 (m, 2H), 3.88 – 3.68 (m, 12H), 3.62 – 3.50 (m, 5H), 3.48 – 3.34 (m, 4H), 3.31 – 3.25 (m, 2H), 2.05 (s, 1H), 1.24 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ : 155.34, 138.91, 138.64, 138.59, 138.57, 138.52, 138.48, 138.38, 138.24, 138.21, 138.11, 138.03, 137.88, 135.49, 135.43, 135.39, 128.79, 128.74, 128.70, 128.66, 128.61, 128.48, 128.40, 128.35, 128.31, 128.28, 128.26, 128.19, 128.15, 128.07, 127.97, 127.93, 127.77, 127.71, 127.62, 127.52, 127.44, 127.38, 127.33, 127.24, 127.06, 126.57, 100.23, 99.38, 99.32, 98.89, 81.67, 81.63, 80.71, 80.17, 79.92, 79.72, 79.33, 78.57, 78.54, 77.34, 76.27, 76.22, 76.01, 75.80, 75.71, 75.48, 75.01, 74.89, 74.87, 74.79, 74.73, 74.53, 74.09, 73.77, 73.22, 73.15, 72.77, 72.49, 72.18, 72.11, 72.05, 71.90, 71.75, 71.73, 71.17, 69.96, 69.92, 69.52, 69.48, 69.22, 69.02, 66.17, 62.19, 54.51, 28.27. ³¹P NMR (162 MHz, CDCl₃) δ : -1.82. HR ESI-TOF MS (m/z): calcd for C₁₅₄H₁₆₅O₃₀NP [M + H]⁺, 2539.1154; found, 2539.1279.

 $6-O-\{(2,3,4-\text{tri}-O-\text{Benzyl-}6-O-\text{azidoethyl-}\alpha-D-\text{mannopyranosyl})-(1\rightarrow 2)-(3,4,6-\text{tri}-O-\text{benzyl-}\alpha-D-\text{mannopyranosyl})-(1\rightarrow 4)-[3,6-\text{di}-O-\text{benzyl-}2-(tert-\text{butylcarbamate})-2-\text{deoxy-}\alpha-D-\text{glucopyranosyl}]\}-2,3,4,5-\text{tetra-}O-\text{benzyl-}1-O-(\text{di}-O-\text{benzylphosphoryl})-myo-\text{inositol} 30:$

To a solution of **29** (85.0 mg, 0.033 mmol) in anhydrous THF (3 mL) was added NaH (4.8 mg, 0.2 mmol) at 0 °C under N₂ atmosphere. After stirring for 15 min, a THF solution of 22 (29.0 mg, 0.132 mmol) was added, and the reaction was monitored by TLC. After 1 h of stirring at 0 °C, excessive NaH was quenched with saturated aq. NaCl solution, and the mixture was diluted with EtOAc. The organic layer, after washed with saturated aq. NaCl solution, was dried with Na_2SO_4 and concentrated in vacuo. The residue was purified by silica gel column chromatography with EtOAc and hexane (1:3) as the eluents to give **30** (58.5mg, 67%) as colorless syrup. ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta$: 7.34 – 7.04 (m, 85H), 5.38 (d, J = 10.2 Hz, 1H), 5.24 (s, 2H), 5.12 (s, 1H), 5.05 – 4.97 (m, 3H), 4.93 – 4.75 (m, 10H), 4.70 – 4.62 (m, 3H), 4.55 (d, J = 12.0 Hz, 2H), 4.49 – 4.32 (m, 14H), 4.24 – 4.20 (m, 2H), 4.08 (m, 8H), 3.94 (t, J = 9.6 Hz, 1H), 3.88 – 3.75 (m, 8H), 3.68 (m, 4H), 3.58 (m, 3H), 3.54 – 3.40 (m, 6H), 3.29 (m, 4H), 3.19 – 3.14 (m, 1H), 1.23 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ: 155.34, 138.95, 138.89, 138.71, 138.67, 138.55, 138.51, 138.46, 138.38, 138.23, 138.18, 138.09, 137.95, 137.87, 135.43, 135.38, 128.79, 128.75, 128.69, 128.67, 128.48, 128.39, 128.33, 128.31, 128.26, 128.20, 128.18, 128.15, 128.11, 128.07, 128.01, 127.97, 127.91, 127.86, 127.76, 127.71, 127.61, 127.58, 127.52, 127.48, 127.43, 127.41, 127.38, 127.30, 127.24, 127.19, 127.07, 127.04, 126.99, 100.32, 99.37, 99.18, 98.95, 81.65, 81.63, 80.81, 80.17, 80.01, 79.74, 79.50, 79.33, 78.56, 78.52, 77.49, 76.33, 76.29, 76.11, 75.78, 75.68, 75.50, 74.93, 74.82, 74.79, 74.65, 74.59, 74.51, 74.11, 74.00, 73.68, 73.18, 73.13, 72.49, 72.23, 72.05, 72.00,

71.97, 71.90, 71.83, 71.80, 71.72, 71.11, 70.34, 70.13, 69.96, 69.92, 69.53, 69.49, 69.22, 69.03, 66.40, 54.63, 50.76, 28.27. ³¹P NMR (162 MHz, CDCl₃) δ : -1.65. HR ESI-TOF MS (m/z): calcd for C₁₅₆H₁₆₈O₃₀N₄P [M + H]⁺, 2608.1481; found, 2608.1472.

6-*O*-{[6-*O*-(*N*-Biotinylsuccinamide-ethyl)-α-D-mannopyranosyl]-(1 \rightarrow 2)-(α-D-mannopyranosyl)-(1 \rightarrow 6)-(α-D-mannopyranosyl)-(1 \rightarrow 4)-[2-amino-2-deoxy-α-D-glucopyranosyl]}-1-*O*-phosphoryl-*myo*-inositol 5:

A mixture of **30** (50.0 mg, 0.019 mmol) and 10% Pd/C (10 mg) in CH₂Cl₂, CH₃OH, and H₂O (1:4:0.5, 3.3 mL) was stirred at rt under H₂ atmosphere (50 psi) for 1 day. The solution was filtered, and the filtrate was concentrated *in vacuo* to give deprotected intermediate **31** (17.5 mg, 87%) as an off-white solid, which was directly used in the next step. MALDI-TOF MS (negtive mode): calcd for $C_{37}H_{66}O_{30}N_2P$ [M–H]⁻, 1049.3; found, 1049.4. To the solution of **31** (14.0 mg, 0.013 mmol) in anhydrous DMF (1 mL) were added 25 (5.5 mg, 0.016 mmol) and one drop of Et₃N. The mixture was stirred at rt for 1 h before MALDI-TOF MS showed a complete reaction. The solvent was removed under reduced pressure, and the residue was dissolved in 5% TFA in CH₂Cl₂. After 20 min of stirring, the solvent was removed, and the residue was co-evaporated with toluene three times and then purified by size exclusion column chromatography on a G15 column with water as the eluent to give 5 (10.6 mg, 68% for the last two steps) as a foamy solid. ¹H NMR (600 MHz, D_2O) δ : 5.44 (s, 1H), 5.05 (s, 1H), 4.92 (s, 1H), 4.84 (s, 1H), 4.46 - 4.41 (m, 1H), 4.27 – 4.24 (m, 1H), 4.03 – 3.95 (m, 3H), 3.92 – 3.86 (m, 3H), 3.83 – 3.78 (m, 3H), 3.77 – 3.43 (m, 22H), 3.39 (d, J = 9.6 Hz, 1H), 3.27 - 3.15 (m, 5H), 2.83 (dd, J = 13.2, 4.8 Hz, 1H), 2.61 (d, J = 13.2 Hz, 1H), 2.11 (t, J = 7.2 Hz, 2H), 1.58 –1.40 (m, 4H), 1.28 – 1.22 (m, 2H). ¹³C NMR (150 MHz, D_2O) δ : 176.87, 165.26, 102.26, 101.86, 98.22, 95.16, 78.79, 77.35, 76.41,

75.66, 72.66, 72.61, 72.18, 72.12, 71.75, 71.47, 70.79, 70.36, 70.34, 70.21, 70.12, 70.04, 69.75, 69.64, 69.20, 66.73, 66.70, 66.33, 66.22, 61.98, 60.76, 60.17, 60.07, 55.21, 53.75, 39.60, 38.83, 35.36, 27.78, 27.57, 25.05. ³¹P NMR (162 MHz, D₂O) δ : -1.30. HR ESI-TOF MS (m/z): calcd for C₄₂H₇₂O₃₀N₄P [M–H]⁻, 1175.3690; found, 1175.3744.

II. Experimental procedures for ELISA

The 96-well ELISA plates were incubated with a solution of CAMP factor (2 µg/mL, 100 µL/well) dissolved in coating buffer (0.1 M bicarbonate, pH 9.6) at 37 °C for 1 h, which was followed by treatment with a blocking buffer (1% BSA in PBST) and washing 3 times with PBST (containing 0.05% Tween-20). Then, the solution of compounds **4** and **5** with serial half-log dilutions from 200 µg/mL to 0.0244 µg/mL in PBS was added to the plates (100 µL/well). The plates were incubated at 37 °C for 2 h and washed with PBST. Then, to the plates was added a 1:1000 diluted solution of horseradish peroxidase (HRP)-linked streptavidin (100 µL/well), and the plates were incubated at rt for 1 h and washed with PBST. Thereafter, the PierceTM TMB Substrate Kit solution was added to the plates (100 µL/well), and the plates were incubated at rt for 1.5 min followed by the addition of 1 M H₂SO₄ solution (100 µL) according to the instructions of the manufacturer. Finally, the light absorptions of the plates were measured with a microplate reader for the colorimetric readout at 450 nm wavelength.

III. NMR spectra of synthetic intermediates and final products

SI-25

SI-68

SI-79

U1

SI-86