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Cyclic voltammetry curve under Xe lamp excitation 

 
Fig. S 1: Cyclic voltammogram of n-SrTiO3 in the dark and under irradiation by a 150 W Xenon 

lamp. Similar to the current-voltage curve under laser irradiation (Figure 1a of the main text), a 

diode-like behavior was observed under Xenon lamp irradiation.  
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Laser spot size determination  

The spot size of the laser is determined by knife edge scan. Pulsed laser beam can be treated 

approximately as a Gaussian beam. A sharp knife edge is used and move in very small steps across 

the laser beam in either horizontal or vertical manner (horizontal as x, vertical as y). For horizontal 

direction, a laser diode constantly measures the power of laser beam as the knife edge is moving 

across the laser beam, such that a laser power versus knife edge position profile can be obtained. 

Then the intensity versus position profile is fitted with a sigmoid function. The derivative of the 

sigmoid function is then fitted with a Gaussian function.  
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Such that the standard deviation 𝜎𝜎 can be extracted and the full width half maximum can be 

calculated by  
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The same procedure applied to vertical (y) direction of the beam and 𝑤𝑤(𝑦𝑦) can be obtained. Then 

the laser spot size is calculated by 
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ICP calculation of photodissolution on n-SrTiO3 photoelectrode 

 

Fig. S 2: ICP spectra of a) Sr metal in solution and b) Ti metal in solution pre- and post-catalysis 

ICP analysis is also performed to examine photodissolution during catalysis. Fig. S 2A shows the 

Sr concentration in solution increasing after catalysis taken place. Fig. S 2B shows the same is 

happening to Ti. Quantitatively, according to the calibration curve for Sr and Ti, the concentration 

for both species is 5 ppb which corresponds to a molar concentration of 1.71×10-8 M for both 

species. Totally 10 ml of solution is used, which gives a total of 1.71 ×  10−10 𝑚𝑚𝐸𝐸𝑚𝑚 Sr and Ti in 

solution. To electrochemically dissolve one mole Sr, 2 moles of electrons are needed as Sr has 

the form of Sr2+ in SrTiO3 crystal. Then, total number of charges to needed to dissolve Sr will 

be 1.71 × 10−10𝑚𝑚𝐸𝐸𝑚𝑚 × 2 × 𝑁𝑁𝐴𝐴 × 1.6 × 10−19𝐶𝐶 = 3.3 × 10−5𝐶𝐶. Typical day of experiments 

transfer total of 0.182 C of charge, therefore, the efficiency for photodissolution of Sr 

is 3.3×10−5𝐶𝐶
0.182𝐶𝐶

× 100% = 0.018%. Same procedure is applied to Ti and Ti has the form of Ti4+. So 

the efficiency for photodissolution of Ti is 6.6×10−5𝐶𝐶
0.182𝐶𝐶

× 100% = 0.036%. Total efficiency for 

electrochemical photodissolution is then 0.018% +  0.036% =  0.054%. 
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Photocurrent density calculation from transient photocurrent 

 
Fig. S 3: Example transient photocurrent under pulsed laser excitation 

 
Transient photocurrent is performed to determine the photocurrent density under pulsed laser 

condition. Fig. S 3 shows transient photocurrent with 0.05 mJ/cm2 laser excitation. Integrate the 

transient photocurrent gives a total of 4.25 ×  10−5 𝑚𝑚𝐶𝐶 of charge generated per laser pulse. The 

laser repetition rate is 500 Hz, such that for 1s, the total number of charge generated is 4.25 ×

 10−5 𝑚𝑚𝐶𝐶 × 500 = 2.13 ×  10−2 𝑚𝑚𝐶𝐶. Then the average current density per second can be 

determined from 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝑐𝑐ℎ𝑇𝑇𝑛𝑛𝑎𝑎𝑛𝑛 𝑝𝑝𝑛𝑛𝑛𝑛 𝑠𝑠𝑛𝑛𝑐𝑐𝑇𝑇𝑛𝑛𝑠𝑠
𝑇𝑇𝑇𝑇𝑠𝑠𝑛𝑛𝑛𝑛 𝑠𝑠𝑝𝑝𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛

= 2.13 × 10−2 𝑛𝑛𝐶𝐶
0.0075 𝑐𝑐𝑛𝑛2 = 2.8 𝑚𝑚𝑚𝑚 𝑐𝑐𝑚𝑚−2 
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