A zwitterionic hydrocarbon-soluble borenium ion based on a β-diketiminate backbone
Joseph A. B. Abdalla, Rémi C. Tirfoin, Haoyu Niu, and Simon Aldridge*
Supporting Information (22 pages total)
Contents:

1. General procedures S2
2. Preparation of novel compounds S3
3. Gutmann assays of Lewis acidity S14
4. Details of DFT calculations S15
5. DFT run file S16
6. Crystallography S21
7. References for supporting information S22

1. General procedures

All manipulations were carried out using standard Schlenk line or dry-box techniques under an atmosphere of argon. With the exception of fluorobenzene and 1,2-difluorobenzene, solvents were degassed by sparging with argon and dried by passing through a column of the appropriani8te drying agent using a commercially available Braun SPS. NMR spectra were measured in $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ or $\mathrm{C}_{4} \mathrm{D}_{8} \mathrm{O} ; \mathrm{C}_{6} \mathrm{D}_{6}$ was dried over potassium, $\mathrm{C}_{4} \mathrm{D}_{8} \mathrm{O}$ was stirred over potassium overnight and distilled, and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was distilled from calcium hydride and stored over molecular sieves, and all were stored under argon in Teflon valve ampoules. NMR samples were prepared under argon in 5 mm Wilmad 507-PP tubes fitted with J. Young Teflon valves. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Mercury-VX-300 or Bruker AVII-500 spectrometers and referenced internally to residual protio-solvent $\left({ }^{1} \mathrm{H}\right)$ or solvent $\left({ }^{13} \mathrm{C}\right)$ resonances and are reported relative to tetramethylsilane $\left(\delta_{\mathrm{H}}=0 \mathrm{ppm}\right) .{ }^{27} \mathrm{Al}$ NMR spectra were referenced with respect to $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$. Chemical shifts are quoted in δ (ppm) and coupling constants in Hz. ESI-MS measurements were performed on a Bruker MicroTOF ESI mass spectrometer connected to a glove box by PEEK tubing. Elemental analyses were carried out at London Metropolitan University. PhBCl_{2} was distilled prior to use. Starting materials $\mathrm{Na}\left[\mathrm{BAr}^{f} 4\right],{ }^{\mathrm{S} 1} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{BCl}_{2},{ }^{\mathrm{S} 2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3},{ }^{\mathrm{S} 3} \mathrm{~K}\left[\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right]^{\mathrm{S} 4}$ and 4 - $\mathrm{Bu}{ }^{\mathrm{S} 5}$ were prepared according to literature procedures. The synthesis of $7-\mathrm{tBu}$ has been communicated previously by us. ${ }^{\text {S5 }}$

2. Preparation of novel compounds

[1-Ph][PhBCl ${ }_{3}$]

$(\mathrm{NacNac})^{\mathrm{Dipp}} \mathrm{Li}\left(\mathrm{OEt}_{2}\right)(0.750 \mathrm{~g}, 1.50 \mathrm{mmol})$ was dissolved in toluene $(15 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{PhBCl}_{2}(0.39 \mathrm{~mL}, 3.00 \mathrm{mmol})$ was added dropwise, and the resulting pale yellow solution stirred at $0{ }^{\circ} \mathrm{C}$ for 10 mins . The ice bath was then removed and the reaction mixture allowed to warm to room temperature, and stirred for 90 mins. The mixture was then heated to $70^{\circ} \mathrm{C}$ and filtered while hot. Colourless crystals formed at room temperature and the solution was then stored at $-30{ }^{\circ} \mathrm{C}$ overnight to complete crystallization. The crystals were isolated by filtration and dried in vacuo. Yield: $0.730 \mathrm{~g}, 69 \%$.

Spectroscopic data: ${ }^{1} \mathrm{H}$ NMR (400 MHz , dichloromethane- ${ }_{2}, 298 \mathrm{~K}$): $\delta_{\mathrm{H}} 0.91\left(12 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}\right.$ $=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 1.21\left(12 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of $\left.\operatorname{Dipp}{ }^{i} \operatorname{Pr}\right), 2.49\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of β-diketiminato backbone), $2.49\left(4 \mathrm{H}\right.$, sept, ${ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 6.71(2 \mathrm{H}, \mathrm{d}$, $o-\mathrm{CH}, \mathrm{BPh}$ of cation), $6.89(2 \mathrm{H}, \mathrm{t}, m-\mathrm{CH}, \mathrm{BPh}$ of cation), $7.10(3 \mathrm{H}$, overlapping $\mathrm{m}, p-\mathrm{CH}$, BPh of cation and $o-\mathrm{CH}, \mathrm{BPh}$ of anion), $7.20\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{m}-\mathrm{CH}, \mathrm{BPh}\right.$ of anion), $7.25\left(4 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}\right.$ $=7.6 \mathrm{~Hz}, m-\mathrm{CH}$ of Dipp $), 7.47\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Dipp $), 7.70(1 \mathrm{H}, \mathrm{s}, \gamma-\mathrm{CH})$, 7.78 (d, 1H, p-CH, BPh of anion). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , dichloromethane- $\mathrm{d}_{2}, 298 \mathrm{~K}$): δ_{C} 23.6, $25.1\left(\mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{\mathrm{i}} \mathrm{Pr}\right)$, $23.6\left(\mathrm{CH}_{3}\right.$ of β-diketiminato backbone), $29.6\left(\mathrm{CH}\right.$ of Dipp $\left.{ }^{\mathrm{i}} \mathrm{Pr}\right)$, $115.9(\gamma-\mathrm{CH}), 125.8$ (aromatic C, BPh of cation), 126.4 (aromatic C, BPh of anion), 127.1 (aromatic C, BPh of anion), 127.5 (m-C of Dipp), 130.8 (aromatic C, BPh of anion), 131.4 ($p-$ C of Dipp), 133.9 (aromatic C, BPh of cation), 134.5 (ipso-C of Dipp), 134.9 (aromatic C, BPh of cation), 143.6 (o-C of Dipp), 172.8 (NC). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}(128 \mathrm{MHz}$, dichloromethane- $\left.\mathrm{d}_{2}, 298 \mathrm{~K}\right): \delta_{\mathrm{B}}-6.5\left(\mathrm{PhBCl}_{3}{ }^{-}\right)$, $33.7\left(\mathrm{Dipp}_{2} \mathrm{NacNacBPh}^{+}\right)$. ESI-MS: m / z $505.4\left([\mathrm{M}]^{+}, 100 \%\right)$; accurate mass: calc. 505.3755, meas. 505.3757. Elemental
microanalysis: calc. for $\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{~B}_{2} \mathrm{Cl}_{3}$: C $70.36 \% \mathrm{H} 7.34 \% \mathrm{~N} 4.00 \%$; meas. C $70.41 \% \mathrm{H}$ 7.19\% N 3.77\%.

[1-Ph][BAr $\left.{ }_{4}{ }_{4}\right]$

A solution of $[1-\mathrm{Ph}]\left[\mathrm{PhBCl}_{3}\right](0.350 \mathrm{~g}, 0.50 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ was added to a solution of $\mathrm{Na}\left[\mathrm{BAr}_{4}^{f}\right](0.445 \mathrm{~g}, 0.50 \mathrm{mmol})$ in dicholoromethane $(5 \mathrm{~mL})$ at room temperature. A pale yellow solution formed with a colourless precipitate. The reaction mixture was stirred for 30 mins and filtered, and volatiles removed in vacuo. The residue was washed with pentane to yield a colourless powder. Yield: $0.550 \mathrm{~g}, 81 \%$. The exchange of the anion was confirmed by presence of a sharp singlet in the ${ }^{11} \mathrm{~B}$ NMR spectrum at $\delta_{\mathrm{B}}-6.5 \mathrm{ppm}$, and disappearance of the peak for $\mathrm{PhBCl}_{3}{ }^{-}$at $\delta_{\mathrm{B}}-6.5 \mathrm{ppm} .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{11} \mathrm{~B}$ data for the cation were identical to that measured for $[1-\mathrm{Ph}]\left[\mathrm{PhBCl}_{3}\right]$.

$\left[1-C_{6} F_{5}\right]\left[\left(C_{6} F_{5}\right) B C_{3}\right]$

(NacNac$)^{\mathrm{Dipp}} \mathrm{Li}\left(\mathrm{OEt}_{2}\right)(0.400 \mathrm{~g}, 0.80 \mathrm{mmol})$ was dissolved in toluene $(15 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C} .\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{BCl}_{2}(0.40 \mathrm{~g}, 1.60 \mathrm{mmol})$ was added dropwise, and the resulting hazy pale yellow solution stirred at $0{ }^{\circ} \mathrm{C}$ for 10 mins . The ice bath was then removed and the reaction mixture allowed to warm to room temperature, and stirred for 90 mins. The mixture was then heated to $70^{\circ} \mathrm{C}$ and filtered while hot. Removal of volatiles in vacuo yielded an oily yellow residue, which was washed with pentane to yield the product as a colourless powder. Yield: 0.373 g , 53\%. Single crystals suitable for X-ray crystallography were obtained from a saturated pentane solution at room temperature.

Spectroscopic data: ${ }^{1} \mathrm{H}$ NMR (500 MHz , dichloromethane- $\mathrm{d}_{2}, 298 \mathrm{~K}$): $\delta_{\mathrm{H}} 1.17$ (24 H , two overlapping doublets, ${ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 2.57\left(4 \mathrm{H}\right.$, sept, ${ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{CH}$ of Dipp $\left.{ }^{\mathrm{i}} \mathrm{Pr}\right)$, $2.60\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of β-diketiminato backbone), $7.30\left(4 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, m\right.$ - CH of Dipp), $7.48\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Dipp), $7.78(1 \mathrm{H}, \mathrm{s}, \gamma-\mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , dichloromethane- $\left.\mathrm{d}_{2}, 298 \mathrm{~K}\right): \delta_{\mathrm{C}} 23.9\left(\mathrm{CH}_{3}\right.$ of β-diketiminato backbone), 24.2, 25.8 $\left(\mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 29.5\left(\mathrm{CH}\right.$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 117.4(\gamma-\mathrm{CH}), 126.5(m-\mathrm{C}$ of Dipp), $132.0(p-\mathrm{C}$ of Dipp), 134.7 (ipso-C of Dipp), 137.6 (dm, $\left.{ }^{1} J_{\mathrm{CF}}=260 \mathrm{~Hz}, m-\mathrm{CF}\right), 137.7\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=256 \mathrm{~Hz}\right.$, m-CF), $140.0\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=248 \mathrm{~Hz}, p-\mathrm{CF}\right), 143.2\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=244 \mathrm{~Hz}, p-\mathrm{CF}\right), 144.3(o-\mathrm{C}$ of Dipp), $146.2\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=244 \mathrm{~Hz}, o-\mathrm{CF}\right), 147.9\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=247 \mathrm{~Hz}, o-\mathrm{CF}\right), 173.6(\mathrm{NC}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz, benzene- $\left.\mathrm{d}_{6}, 298 \mathrm{~K}\right): \delta_{\mathrm{F}}-124.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{FF}}=18.8 \mathrm{~Hz}, o-\mathrm{CF}\right.$ of $\left.\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{BCl}_{3}{ }^{-}\right),-131.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{FF}}=23.3 \mathrm{~Hz}, o-\mathrm{CF}\right.$ of $\left.\mathrm{Dipp}_{2} \operatorname{NacNacB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)^{+}\right),-147.2\left(\mathrm{t},{ }^{3} J_{\mathrm{FF}}=20.7\right.$ Hz, p-CF of $\left.\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{BCl}_{3}{ }^{-}\right),-159.8\left(\mathrm{t},{ }^{3} J_{\mathrm{FF}}=17.7 \mathrm{~Hz}, p-\mathrm{CF}\right.$ of $\left.\mathrm{Dipp}_{2} \mathrm{NacNacB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)^{+}\right),-160.5$ (m, m-CF of $\left.\mathrm{Dipp}_{2} \operatorname{NaCNaCB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)^{+}\right)$, -147.2 (m, m - CF of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{BCl}_{3}{ }^{-}$). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (128 MHz , dichloromethane- $\left.\mathrm{d}_{2}, 298 \mathrm{~K}\right): \delta_{\mathrm{B}}-5.0\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{BCl}_{3}{ }^{-}\right), 32.0\left(\mathrm{Dipp}_{2} \mathrm{NacNacB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)^{+}\right)$. ESIMS (+ve): $m / z 595.3$ ([M] $]^{+}, 100 \%$); accurate mass: calc. 595.3282, meas. 595.3284; (-ve):
$m / z 282.9\left([\mathrm{M}]^{+}, 100 \%\right) ;$. Elemental microanalysis: calc. for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{~B}_{2} \mathrm{~F}_{10} \mathrm{Cl}_{3}$: C 55.98\% H 4.70% N 3.18%; meas. C 55.82% H 4.83% N 2.65%.

Figure S1: Molecular structure of $\left[1-\mathrm{C}_{6} \mathrm{~F}_{5}\right]\left[\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{BCl}_{3}\right]$ as determined by X-ray crystallography. Hydrogen atoms have been omitted and selected substituents shown in wireframe format for clarity; thermal ellipsoids have been depicted at the 40% probability level. Key bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: B-C 1.586(4), B-N 1.437(4), 1.442(4), C-N 1.368(4), 1.369(4), N-B-N 117.5(3), N-B-C 121.1(3), 122.2(3).

2-Ph

$[1-\mathrm{Ph}]\left[\mathrm{BAr}_{4}{ }^{\mathrm{f}}\right](0.150 \mathrm{~g}, 0.11 \mathrm{mmol})$ was dissolved in THF $(10 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. ${ }^{t} \operatorname{BuLi}(1.9 \mathrm{M}$ in pentane, $0.11 \mathrm{~mL}, 0.22 \mathrm{mmol})$ was added dropwise and the solution instantly turned pale brown. The reaction mixture was allowed to warm to room temperature and stirred for 2 h . Volatiles were removed in vacuo and the residue extracted into toluene. Removal of the toluene in vacuo yielded a yellow oil, which was used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR indicated $c a .95 \%$ conversion to 2-Ph.

Spectroscopic data: ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- $\mathrm{d}_{6}, 298 \mathrm{~K}$): $\delta_{\mathrm{H}} 0.92\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, CH_{3} of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 1.07\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 1.11\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, CH_{3} of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 1.37\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 1.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of β-diketiminato backbone), $3.31\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.40\left(2 \mathrm{H}\right.$, sept, ${ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 3.55\left(2 \mathrm{H}\right.$, sept, ${ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 3.98\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.70(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}), 6.70-7.13(11 \mathrm{H}, \mathrm{m}$, aromatic CH$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , benzene- $\mathrm{d}_{6}, 298 \mathrm{~K}$): δ_{C} $20.9\left(\mathrm{CH}_{3}\right.$ of β-diketiminato backbone), 24.0, 24.1, 25.2, $26.5\left(\mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 28.8,29.1$ (CH of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 85.1\left(\mathrm{C}=\mathrm{CH}_{2}\right), 108.5(\gamma-\mathrm{CH}), 124.6,125.0,126.6,134.6,139.1,140.0$, 141.4, 146.4, 147.0, 148.4 (ArC and NC). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (128 MHz , benzene- $\mathrm{d}_{6}, 298 \mathrm{~K}$): δ_{B} 31.3.

Figure $\mathrm{S} 2:{ }^{1} \mathrm{H}$ NMR spectrum of 2-Ph.

Figure $\mathrm{S} 3:{ }^{11} \mathrm{~B}$ NMR spectrum of 2-Ph.

Figure $\mathrm{S} 4:{ }^{13} \mathrm{C}$ NMR spectrum of 2-Ph.

3-Ph

$[1-\mathrm{Ph}]\left[\mathrm{BAr}^{f}\right](0.490 \mathrm{~g}, 0.36 \mathrm{mmol})$ was dissolved in THF $(10 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. ${ }^{t} \operatorname{BuLi}(1.9 \mathrm{M}$ in pentane, $0.38 \mathrm{~mL}, 0.72 \mathrm{mmol})$ was added dropwise and the solution instantly turned pale brown. The reaction mixture was allowed to warm to room temperature and stirred overnight. Volatiles were removed in vacuo and the residue extracted into toluene and filtered on to solid $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.180 \mathrm{~g}, 0.36 \mathrm{mmol})$ to yield a pale yellow solution. The reaction mixture was stirred room temperature for 3 h , before being concentrated to the point of incipient crystallization. Storage overnight at $-30{ }^{\circ} \mathrm{C}$ yielded the product as colourless crystals. Yield: $0.160 \mathrm{~g}, 44 \%$.

Spectroscopic data: ${ }^{1} \mathrm{H}$ NMR (400 MHz , benzene- $\mathrm{d}_{6}, 298 \mathrm{~K}$): $\delta_{\mathrm{H}} 0.56\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, CH_{3} of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 0.58\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 0.85\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$, CH_{3} of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 1.41\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of $\left.\operatorname{Dipp}{ }^{i} \operatorname{Pr}\right), 1.61\left(\mathrm{CH}_{3}\right.$ of β-diketiminato backbone), $2.08\left(2 \mathrm{H}\right.$, sept, ${ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 2.58\left(2 \mathrm{H}\right.$, sept, ${ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 3.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~B}\right), 6.40\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, o-\mathrm{CH}\right.$ of Ph$), 6.48\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=\right.$ $8.0 \mathrm{~Hz}, p-\mathrm{CH}$ of Dipp), $6.61\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, p-\mathrm{CH}\right.$ of Dipp $), 6.74\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.0\right.$ Hz, m-CH of Dipp), $6.91\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, m-\mathrm{CH}\right.$ of Dipp), $7.05(\mathrm{~m}, 3 \mathrm{H}, m-\mathrm{CH}$ and $p-$ CH of Ph$), 7.60(\mathrm{~s}, 1 \mathrm{H}, \gamma-\mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , benzene- $\left.\mathrm{d}_{6}, 298 \mathrm{~K}\right): \delta_{\mathrm{C}} 22.2\left(\mathrm{CH}_{3}\right.$ of β-diketiminato backbone), 22.9, 23.9, 24.1, $24.7\left(\mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 26.8\left(\mathrm{CH}_{2} \mathrm{~B}\right), 29.4$, $29.5\left(\mathrm{CH}\right.$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 115.4(\gamma-\mathrm{CH}), 125.8,126.2,127.3,128.9,129.7,130.5,131.0,131.3$, 135.5 (ipso-C, m-C and p-C of Dipp and ArC of Ph), 143.7, 144.1 (o-C of Dipp), 137.2 (dm, $\left.{ }^{1} J_{\mathrm{CF}}=250 \mathrm{~Hz}, m-\mathrm{CF}\right), 139.0\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=244 \mathrm{~Hz}, p-\mathrm{CF}\right), 148.9\left(\mathrm{dm},{ }^{1} J_{\mathrm{CF}}=250 \mathrm{~Hz}, o-\mathrm{CF}\right)$, 167.6, 186.9 (NC). ${ }^{19}$ F NMR (376 MHz , benzene- d_{6}, 298 K): $\delta_{\mathrm{F}}-131.4$ (br s, o-CF), -160.1 (br s, m-CF), -164.9 (br s, p-CF). ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (128 MHz , benzene- $\mathrm{d}_{6}, 298 \mathrm{~K}$): $\delta_{\mathrm{B}}-14.4$
$\left(-B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right), 32.9(-B \mathrm{Ph})$. Elemental microanalysis: calc. for $\mathrm{C}_{53} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{~B}_{2} \mathrm{~F}_{15}: \mathrm{C} 62.62 \% \mathrm{H}$ 4.46% N 2.76%; meas. C 62.45% H 4.06% N 2.57%.

$\left[\mathrm{K}_{\left.\left(\mathrm{OEt}_{2}\right)_{2}\right][6-\mathrm{tBu} \mathrm{Cl}]}\right.$

Benzene (10 mL) was added to $4-\mathrm{tBu}(0.150 \mathrm{~g}, 0.28 \mathrm{mmol})$ and $\mathrm{K}\left[\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right](0.090 \mathrm{~g}$, 0.45 mmol) and the resulting mixture stirred for 10 mins at room temperature. The solution was filtered onto a solution of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.142 \mathrm{~g}, 0.28 \mathrm{mmol})$ in benzene $(5 \mathrm{~mL})$, and the clear, pale yellow solution stirred for 30 mins. Volatiles were removed in vacuo and the residue washed with toluene to yield a beige powder. Yield: $0.211 \mathrm{~g}, 61 \%$. This solid was extracted into diethyl ether and hexane was added until the solution became cloudy. Storage at $-30{ }^{\circ} \mathrm{C}$ for several days yielded colourless crystals, suitable for X-ray crystallography. Exposure to vacuum results in loss of coordinated diethyl ether - however, a small amount (ca. 10\%) remains even after extended exposure to vacuum.

Spectroscopic data: ${ }^{1} \mathrm{H}$ NMR (400 MHz , thf- $\mathrm{d}_{8}, 298 \mathrm{~K}$): $\delta_{\mathrm{H}} 0.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of $\left.{ }^{t} \mathrm{Bu}\right), 0.83$ $\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 1.06\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 1.10$ $\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 1.12\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 1.27$ $\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 1.30\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 1.33$ $\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 1.43\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 1.61$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of β-diketiminato backbone), $1.99\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HH}}=19.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~B}\right), 2.71(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{2} J_{\mathrm{HH}}=19.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~B}\right), 3.09\left(1 \mathrm{H}\right.$, sept, ${ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 3.21\left(1 \mathrm{H}\right.$, sept, ${ }^{3} J_{\mathrm{HH}}=$ $6.8 \mathrm{~Hz}, \mathrm{CH}$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 3.71\left(1 \mathrm{H}\right.$, sept, ${ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 3.81\left(1 \mathrm{H}\right.$, sept, ${ }^{3} J_{\mathrm{HH}}=$ 6.8 Hz, CH of Dipp $\left.{ }^{i} \operatorname{Pr}\right)$, $5.79(\gamma-\mathrm{CH}), 7.06-7.23\left(6 \mathrm{H}, \mathrm{m}\right.$, aromatic CH). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , thf- $\left.\mathrm{d}_{8}, 298 \mathrm{~K}\right): \delta_{\mathrm{C}} 23.8\left(\mathrm{CH}_{3}\right.$ of β-diketiminato backbone $), 24.1,24.6,25.1,25.3,25.6$, 25.8, 26.0, $28.0\left(\mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right)$, 28.5, 28.5, 29.9, $30.2\left(\mathrm{CH}\right.$ of Dipp $\left.{ }^{i} \mathrm{Pr}\right), 32.4\left(\mathrm{CH}_{3}\right.$ of $\left.{ }^{t} \mathrm{Bu}\right)$, 101.9 ($\gamma-\mathrm{CH}$), 124.1, 124.2, 125.6, 125.8, 127.3, 127.4, 142.4, 143.0, 143.4, 144.7, 146.8, 147.6 (ArC), 168.8, $182.8(\mathrm{NC})$. C-F carbons not observed. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (128 MHz , thf- d_{8}, $298 \mathrm{~K}): \delta_{\mathrm{B}}-14.4 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , thf- $\mathrm{d}_{8}, 298 \mathrm{~K}$): $\delta_{\mathrm{F}}-129.8(\mathrm{br} \mathrm{s}, o-\mathrm{F}),-165.5(\mathrm{br} \mathrm{s}, p-\mathrm{F})$,
-168.3 (br s, m-F). Elemental microanalysis: calc. for $\mathrm{C}_{51} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{AlClBF}_{15} \mathrm{~K}$ (no coordinated diethyl ether): C $57.34 \% \mathrm{H} 4.54 \%$ N 2.58%; meas. C 57.86% H 3.93% N 2.87%.

7-tBu: NH_{3}

7-tBu ($0.300 \mathrm{~g}, 0.28 \mathrm{mmol}$) was dissolved in fluorobenzene $(10 \mathrm{~mL})$ and ammonia gas was bubbled through the solution for 2 min . The reaction mixture was then left to stir for 12 h , during which time it turned slightly cloudy. Volatiles were removed in vacuo and the residue extracted into minimal dichloromethane (ca. 15 mL). The solution was filtered and stored at $30^{\circ} \mathrm{C}$ for 12 h to yield a colorless, microcrystalline solid. Yield : $0.245 \mathrm{~g}, 80 \%$. Single crystals suitable for X-ray crystallography were obtained by layering a concentrated dichloromethane solution with hexane and storing at room temperature for several days.

Spectroscopic data: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, THF- $\left.\mathrm{d}_{8}, 298 \mathrm{~K}\right): \delta_{\mathrm{H}} 0.55\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of $\left.{ }^{t} \mathrm{Bu}\right), 0.79$ $\left(3 \mathrm{H}, \mathrm{d},=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of $\left.\operatorname{Dipp}{ }^{\mathrm{i}} \mathrm{Pr}\right), 1.02\left(3 \mathrm{H}, \mathrm{d},=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{\mathrm{i}} \operatorname{Pr}\right), 1.25\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}$ of Dipp $\left.{ }^{\mathrm{i}} \mathrm{Pr}\right), 1.28\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of $\left.\operatorname{Dipp}{ }^{\mathrm{i}} \mathrm{Pr}\right), 1.29-1.33(12 \mathrm{H}$, 4 overlapping doublets, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}$ of Dipp $\left.{ }^{\mathrm{i}} \mathrm{Pr}\right), 1.57\left(3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Dipp $\left.{ }^{\mathrm{i}} \mathrm{Pr}\right), 1.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of β-diketiminato backbone), $2.65\left(1 \mathrm{H}\right.$, sept, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, \mathrm{CH}$ of Dipp ${ }^{\mathrm{i}} \mathrm{Pr}$), $2.78-2.92\left(5 \mathrm{H}\right.$, overlapping multiplets, CH of $\operatorname{Dipp}{ }^{\mathrm{i}} \mathrm{Pr}$ and $\left.\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{B}\right), 3.11$ $\left(1 \mathrm{H}\right.$, sept, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{CH}$ of Dipp $\left.{ }^{i} \operatorname{Pr}\right), 3.85\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{3}\right), 5.70(1 \mathrm{H}, \mathrm{s}, \gamma-\mathrm{CH}), 7.23-$ $7.34(6 \mathrm{H}, \mathrm{m}$, aromatic CH$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , THF- $\mathrm{d}_{8}, 298 \mathrm{~K}$): $\delta_{\mathrm{C}} 23.5\left(\mathrm{CH}_{3}\right.$ of $\beta-$ diketiminato backbone), 24.0, 24.1, 24.7, 24.9, 24.9, 25.4, 26.0, $26.7\left(\mathrm{CH}_{3}\right.$ of $\left.\operatorname{Dipp}{ }^{\mathrm{i}} \mathrm{Pr}\right), 29.2$ (CH of Dipp ${ }^{\mathrm{i}} \mathrm{Pr}$), 29.3 (CH of Dipp ${ }^{\mathrm{i}} \mathrm{Pr}$), 30.3 (CH of Dipp ${ }^{\mathrm{i}} \mathrm{Pr}$), 30.8 (CH of Dipp ${ }^{\mathrm{i}} \mathrm{Pr}$), 30.9 $\left(\mathrm{CH}_{3}\right.$ of $\left.{ }^{t} \mathrm{Bu}\right), 100.3(\gamma-\mathrm{CH}), 125.6,125.6,125.7,125.9,128.8,128.9(\mathrm{ArC}), 137.4\left(\mathrm{dm},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=\right.$ $248 \mathrm{~Hz}, m-\mathrm{CF}), 139.3\left(\mathrm{dm},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=219 \mathrm{~Hz}, p-\mathrm{CF}\right), 149.4\left(\mathrm{dm},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=236 \mathrm{~Hz}, o-\mathrm{CF}\right), 141.4$, 141.8, 142.9, 144.3, 144.7, 144.8 (ArC), 170.2 (NC), 183.7 (NC). ${ }^{11} \mathrm{~B}$ NMR (160 MHz , THF- $\left.\mathrm{d}_{8}, 298 \mathrm{~K}\right): \delta_{\mathrm{B}}-14.9 .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}, 298 \mathrm{~K}$): $\delta_{\mathrm{F}}-132.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{FF}}=28.6 \mathrm{~Hz}\right.$, ortho-F), -163.3 ($\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{FF}}=20.7 \mathrm{~Hz}$, para-F), $-168.0(\mathrm{~m}$, meta-F). Elemental microanalysis : calcd. for $\mathrm{C}_{51} \mathrm{H}_{52} \mathrm{~N}_{3} \mathrm{GaBF}_{15}$: C 57.11%, H 4.89%, $\mathrm{N} 3.92 \%$ meas. C 56.67%, H 4.80%, N 3.89%.

3. Gutmann assay of Lewis acidity

Gutmann tests were performed on $3-\mathrm{Ph}$ and $7-\mathrm{tBu}$ by mixing the two equivalents of the compound with $\mathrm{Et}_{3} \mathrm{PO}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. A single resonance was observed in the ${ }^{31} \mathrm{P}$ NMR spectrum in each case. The acceptor number was calculated as A.N. $=2.21 \times\left(\left(\delta_{\mathrm{P}}\left(\right.\right.\right.$ Lewis acid $\left.+\mathrm{Et}_{3} \mathrm{PO}\right)$ -41).
$\mathrm{Dipp}_{2} \mathrm{NaCNac}^{(\mathrm{BC} 6 \mathrm{~F} 5) 3} \mathrm{BPh}: \delta_{\mathrm{P}}+77.0, \mathrm{~A} . \mathrm{N} .=79.6$.
$\mathrm{Dipp}_{2} \mathrm{NacNac}{ }^{(\mathrm{BC} 6 \mathrm{~F} 5) 3} \mathrm{Ga}\left({ }^{t} \mathrm{Bu}\right): \delta_{\mathrm{P}}+71.5$, A.N. $=67.6$.

4. Details of DFT calculations

DFT calculations were performed using the Amsterdam Density Functional (ADF) 2014 software package. Calculations were performed using the Vosko-Wilk-Nusair local density approximation with exchange from Becke, ${ }^{\text {S7 }}$ and correlation correction from Perdew, ${ }^{\text {S8 }}$ and 3dimensional dispersion effect (BP86-D3). Slater-type orbitals (STOs) ${ }^{\text {S9 }}$ were used for the triple zeta basis set with an additional set of polarization functions (TZP). The full-electron basis set approximation was applied with no molecular symmetry. General numerical quality was good.

5. DFT run file

```
#! /bin/sh
# ==============================
# 3-Ph
# ==============================
```

"\$ADFBIN/adf" <<eor
ATOMS

1 F	5.549435000000	10.894155000000
2 C	5.268911000000	9.777248000000
3 C	5.569538000000	9.846510000000
4 F	6.129480000000	10.945481000000
5 C	5.260980000000	8.779153000000
6 F	5.489125000000	8.842199000000
7 C	4.674295000000	7.665264000000
8 F	4.355040000000	6.629163000000
9 C	4.402993000000	7.637026000000
10 C	4.675033000000	8.685559000000
11 B	4.189972000000	8.805792000000
12 C	5.482485000000	9.281752000000
13 C	5.298973000000	9.207694000000
14 N	6.377912000000	9.103977000000
15 C	7.689422000000	9.432532000000
16 C	8.634647000000	8.418453000000
17 C	9.926791000000	8.821065000000
18 C	10.254162000000	10.162278000000
19 C	9.286805000000	11.133023000000
20 C	7.980828000000	10.799141000000
21 C	6.971052000000	11.911253000000
22 C	6.926234000000	12.902600000000
23 C	7.237928000000	12.649702000000
24 C	8.317420000000	6.935518000000
25 C	9.102187000000	6.244843000000
26 C	8.624134000000	6.243778000000
27 B	6.252497000000	8.814317000000
28 N	4.880124000000	8.712198000000
29 C	3.821841000000	9.014646000000
30 C	4.036523000000	9.235754000000
31 C	2.431947000000	9.083199000000
32 C	4.598677000000	8.321485000000
33 C	4.819998000000	9.248897000000
34 C	5.274259000000	10.667897000000
35 C	6.420701000000	11.096261000000
36 C	4.092222000000	11.638287000000
37 C	4.582632000000	8.821598000000
38 C	4.175586000000	7.519635000000
39 C	3.961458000000	6.635379000000
40 C	4.158618000000	7.008866000000
41 C	3.914243000000	5.994609000000
42 C	2.575805000000	5.278005000000
43 C	5.033388000000	4.958331000000
44 C	7.486545000000	8.628373000000
45 C	8.600895000000	9.478352000000
46 C	9.675961000000	9.292763000000
47 C	9.680572000000	8.234285000000
48 C	8.600157000000	7.3638820000

[^0]| 49 C | 7.512919000000 |
| :---: | :---: |
| 50 C | 2.964777000000 |
| 51 C | 3.000003000000 |
| 52 F | 4.046298000000 |
| 53 C | 2.020659000000 |
| 54 F | 2.150132000000 |
| 55 C | 0.908153000000 |
| 56 F | -0.061232000000 |
| 57 C | 0.804870000000 |
| 58 C | 1.822577000000 |
| 59 F | 1.681485000000 |
| 60 F | -0.280340000000 |
| 61 C | 3.724091000000 |
| 62 C | 4.647737000000 |
| 63 F | 5.823872000000 |
| 64 C | 4.457032000000 |
| | 5.429737000000 |
| 66 C | 3.255998000000 |
| 67 F | 3.047772000000 |
| 68 C | 2.291224000000 |
| 69 C | 2.542238000000 |
| 70 F | 1.553856000000 |
| 71 F | 1.115088000000 |
| 72 F | 3.800078000000 |
| 73 H | 5.641836000000 |
| 74 H | 6.265223000000 |
| 75 H | 10.573601000000 |
| 76 H | 11.165634000000 |
| 77 H | 9.511261000000 |
| 78 H | 6.084478000000 |
| | 6.193294000000 |
| 80 H | 7.762827000000 |
| 81 H | 6.781638000000 |
| 82 H | 6.490232000000 |
| 83 H | 8.068988000000 |
| 84 H | 7.272233000000 |
| 85 H | 7.375516000000 |
| 86 H | 8.740327000000 |
| 87 H | 8.976403000000 |
| 88 H | 10.016611000000 |
| 89 H | 8.194403000000 |
| 90 H | 9.588724000000 |
| 91 H | 8.236822000000 |
| 92 H | 3.286614000000 |
| 93 H | 1.860939000000 |
| 94 H | 2.189232000000 |
| 95 H | 2.373666000000 |
| 96 H | 5.621548000000 |
| 97 H | 6.785327000000 |
| 98 H | 6.090011000000 |
| 99 H | 7.132063000000 |
| 100 H | 4.441171000000 |
| 101 H | 3.723722000000 |
| 102 H | 3.404652000000 |
| 103 H | 4.723355000000 |
| 104 H | 4.040949000000 |
| 105 H | 3.677614000000 |
| 106 H | 3.847293000000 |
| 107 H | 2.462194000000 |
| 108 H | 2.606052000000 |

7.572203000000
9.920746000000
11.244909000000
11.729571000000
12.180490000000
13.461320000000
11.801321000000
12.691792000000
10.487458000000
9.605867000000
8.359846000000
10.094436000000
7.349852000000
6.303628000000
6.438246000000
5.113906000000
4.188092000000
4.874505000000
3.703253000000
5.844540000000
7.045983000000
7.960963000000
5.638350000000
6.502537000000
10.211827000000
8.737772000000
8.162358000000
10.419616000000
12.035749000000
11.486974000000
13.500924000000
13.369502000000
12.389167000000
13.230976000000
13.133298000000
11.982470000000
6.841036000000
5.366981000000
6.729150000000
6.217671000000
5.374085000000
6.157288000000
6.755790000000
9.343378000000
8.783948000000
9.966744000000
8.462497000000
10.694891000000
11.945174000000
11.190387000000
10.428496000000
12.515261000000
11.614844000000
11.375088000000
9.400209000000
7.254837000000
5.768351000000
6.501826000000
4.736512000000
4.747168000000
12.725865000000 6.033283000000
6.445986000000
7.155701000000
6.159411000000
6.558140000000
5.450227000000
5.183642000000
5.027441000000
5.301102000000
4.809149000000
4.333293000000
6.780500000000
6.818710000000
6.159411000000
7.488446000000
7.532848000000
8.121387000000
8.741061000000
8.095029000000
7.454305000000
7.553368000000
8.703028000000
4.124731000000
6.888408000000
6.844184000000
8.135539000000
7.898496000000
8.246985000000
9.027105000000
7.891420000000
7.721598000000
6.978626000000
10.396295000000
10.169866000000
10.958831000000
8.931580000000
9.906288000000 10.651029000000 9.573720000000
7.412026000000
7.284660000000
6.676131000000
8.609626000000
10.376837000000
11.339162000000
11.809710000000
12.504920000000
14.049239000000
15.225611000000
14.351735000000 13.320419000000 14.452567000000 12.911785000000 15.701466000000 16.138405000000 14.440184000000 10.944679000000 11.171109000000 12.726042000000

109	H	1.897826000000	5.944172000000	12.000760000000
110	H	4.870902000000	4.388422000000	10.932296000000
111	H	4.931765000000	4.427493000000	12.511996000000
112	H	5.907421000000	5.354550000000	11.664654000000
113	H	8.579870000000	10.210052000000	11.215333000000
114	H	10.422365000000	9.860185000000	12.580986000000
115	H	10.403922000000	8.119735000000	14.097002000000
116		8.579870000000	6.635024000000	14.130612000000
117	H	6.803770000000	6.990218000000	12.786187000000
END				
GUIBONDS				
1121.0				
2231.5				
312101.0				
43141.0				
$\begin{array}{llll}5 & 3 & 5 & 1.5\end{array}$				
6561.0				
$\begin{array}{llll}7 & 5 & 7 & 1.5\end{array}$				
8781.0				
9791.5				
109721.0				
$\begin{array}{llll}11 & 9 & 10 & 1.5\end{array}$				
1210111.5				
1311611.0				
1411501.0				
1511121.0				
$\begin{array}{lllll}16 & 12 & 73 & 1.0\end{array}$				
$\begin{array}{llll}17 & 12 & 74 & 1.0\end{array}$				
$18 \quad 12131.0$				
$\begin{array}{lllll}19 & 13 & 14 & 1.0\end{array}$				
$\begin{array}{lllll}20 & 13 & 30 & 1.5\end{array}$				
$\begin{array}{lllll}21 & 14 & 15 & 1.0\end{array}$				
$\begin{array}{lllll}22 & 14 & 27 & 1.0\end{array}$				
$\begin{array}{lllll}23 & 15 & 16 & 1.5\end{array}$				
$\begin{array}{lllll}24 & 15 & 20 & 1.5\end{array}$				
$\begin{array}{lllll}25 & 16 & 17 & 1.5\end{array}$				
2616241.0				
$\begin{array}{lllll}27 & 17 & 75 & 1.0\end{array}$				
$\begin{array}{lllll}28 & 17 & 18 & 1.5\end{array}$				
2918761.0				
$\begin{array}{llll}30 & 18 & 19 & 1.5\end{array}$				
$\begin{array}{llll}31 & 19 & 77 & 1.0\end{array}$				
$\begin{array}{llll}32 & 19 & 20 & 1.5\end{array}$				
3320211.0				
$\begin{array}{lllll}34 & 21 & 78 & 1.0\end{array}$				
3521231.0				
3621221.0				
$\begin{array}{llll}37 & 22 & 79 & 1.0\end{array}$				
3822811.0				
3922801.0				
4023821.0				
4123831.0				
4223841.0				
4324851.0				
4424251.0				
4524261.0				
4625881.0				
4725861.0				
4825871.0				

```
49 26 91 1.0
50 26 89 1.0
51 26 90 1.0
52 27 28 1.0
53 27 44 3
54 28 29 1.0
55 28 32 1.0
56 29 30 1.5
57 29 31 1.0
58 30 92 1.0
59 31 93 1.0
60 31 94 1.0
61 31 95 1.0
62 32 33 1.5
63 32 40 1.5
64 33 37 1.5
65 33 34 1.0
66 34 96 1.0
67 34 35 1.0
68 34 36 1.0
69 35 98 1.0
70 35 97 1.0
71 35 99 1.0
72 36 100 1.0
73 36 102 1.0
74 36 101 1.0
75 37 103 1.0
76 37 38 1.5
77 38 104 1.0
78}388391.
79 39 105 1.0
80 39 40 1.5
814041 1.0
82 41 106 1.0
834142 1.0
84 41 43 1.0
85 42 108 1.0
86 42 109 1.0
87 42 107 1.0
88 43 112 1.0
89 43 110 1.0
90 43 1111 1.0
91444451.0
924449 1.0
93 45 113 1.0
94 4546 1.5
95 46 114 1.0
964647 1.5
97 47 115 1.0
984748 1.5
99 48 116 1.0
10048491.5
10149 117 1.0
102 50 51 1.5
103 50 58 1.5
104 51 52 1.0
105 51 53 1.5
106 53 54 1.0
107 53 55 1.5
108 55 56 1.0
```

```
109 55 57 1.5
110 57 60 1.0
111 57 58 1.5
112 58 59 1.0
11361691.5
114 61 62 1.5
115 62 63 1.0
116 62 64 1.5
1176465 1.0
11864 66 1.5
11966 67 1.0
1206668 1.5
121 68 71 1.0
12268 69 1.5
123 69 70 1.0
END
BASIS
type TZP
core None
createoutput None
END
XC
GGA Becke88 Perdew86
DISPERSION Grimme3
END
GEOMETRY
    optim Delocalized
END
SAVE TAPE21 TAPE13
NumericalQuality Good
NOPRINT LOGFILE
eor
```


6. Crystallography

Details of the data collection, structure solution and refinement procedures relating to the X ray crystal structures of $[\mathbf{1}-\mathrm{Ph}]\left[\mathrm{PhBCl}_{3}\right],\left[1-\mathrm{C}_{6} \mathrm{~F}_{5}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{BCl}_{3}\right], \mathbf{3}-\mathrm{Ph},\left[\mathrm{K}\left(\mathrm{OEt}_{2}\right)_{2}\right][6-\mathrm{tBu} \mathrm{Cl}]$, 7-tBu NH_{3} and ($\left.\mathrm{Nacnac}{ }^{\text {BCF }}\right)^{\text {Dipp }} \mathrm{Al}$ (thf)Me are included in the respective CIFs. These are included as part of the online supplementary material and are also available from the Cambridge crystallographic Data Centre (CCDC), reference numbers 1038762 and 15447871544791.

7. References

S1. D. L. Reger, T. D. Wright, C. A. Little, J. J. S. Lamba and M. D. Smith, Inorg. Chem., 2001, 40, 3810-3814.

S2. M. Mewald, R. Frohlich, and M. Oestreich, Chem.-Eur. J., 2011, 17, 9406-9414.
S3. C. Wang, G. Erker, G. Kehr, K. Wedeking and R. Frohlich, Organometallics, 2005, 24, 4760-4773.

S4. C. J. Schaverien and J. B. Vanmechelen, Organometallics, 1991, 10, 1704-1709.
S5. J.A.B. Abdalla, I.M. Riddlestone, R. Tirfoin and S.Aldridge, Angew. Chem. Int. Ed., 2015, 54, 5098-5102.

S6. A. Adamcyk-Woźniak, M. Jakubczyk, A. Sporzyński and G. Żukowska, Inorg. Chem. Commun., 2011, 14, 1753-1755.

S7. A.D. Becke, Phys. Rev. A, 1988, 38, 3098-3100.
S8. J.P. Perdew, Phys. Rev. B, 1986, 33, 8822-8824.
S9. J.G. Snijders, P. Vernooijs and E.J. Baerends, Atomic Data and Nuclear Data Tables, 1982, 26, 483-509.

[^0]: 4.662147000000 3.948363000000 2.605531000000 2.073775000000 1.784724000000 0.464711000000 2.340714000000 1.546619000000 3.699291000000
 4.577059000000
 6.159942000000
 7.097325000000
 8.584152000000
 9.410443000000
 8.868604000000
 8.633153000000
 8.277234000000
 8.142438000000
 8.336849000000
 8.704797000000
 8.943078000000
 7.771306000000 10.260438000000
 8.717887000000
 9.835352000000
 7.383015000000 10.832880000000 11.311743000000 10.510925000000
 9.163493000000 11.066208000000 12.687478000000 13.704996000000 13.432396000000 14.348727000000 13.543842000000 15.014572000000 15.280626000000 14.243650000000 12.922576000000 11.802104000000 11.947160000000 11.691189000000 11.800158000000 11.780522000000 12.640600000000 13.536058000000 13.569492000000

