Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2017

A zwitterionic hydrocarbon-soluble borenium ion based on a β -diketiminate backbone

Joseph A. B. Abdalla, Rémi C. Tirfoin, Haoyu Niu, and Simon Aldridge*

Supporting Information (22 pages total)

Contents:

1.	General procedures	S2
2.	Preparation of novel compounds	S 3
3.	Gutmann assays of Lewis acidity	S14
4.	Details of DFT calculations	S15
5.	DFT run file	S16
6.	Crystallography	S21
6.	References for supporting information	S22

1. General procedures

All manipulations were carried out using standard Schlenk line or dry-box techniques under an atmosphere of argon. With the exception of fluorobenzene and 1,2-difluorobenzene, solvents were degassed by sparging with argon and dried by passing through a column of the appropriani8te drying agent using a commercially available Braun SPS. NMR spectra were measured in C₆D₆, CD₂Cl₂ or C₄D₈O; C₆D₆ was dried over potassium, C₄D₈O was stirred over potassium overnight and distilled, and CD₂Cl₂ was distilled from calcium hydride and stored over molecular sieves, and all were stored under argon in Teflon valve ampoules. NMR samples were prepared under argon in 5 mm Wilmad 507-PP tubes fitted with J. Young Teflon valves. ¹H and ¹³C NMR spectra were recorded on Varian Mercury-VX-300 or Bruker AVII-500 spectrometers and referenced internally to residual protio-solvent (¹H) or solvent (^{13}C) resonances and are reported relative to tetramethylsilane ($\delta_H = 0$ ppm). ²⁷Al NMR spectra were referenced with respect to Al(H₂O)₆³⁺. Chemical shifts are quoted in δ (ppm) and coupling constants in Hz. ESI-MS measurements were performed on a Bruker MicroTOF ESI mass spectrometer connected to a glove box by PEEK tubing. Elemental analyses were carried out at London Metropolitan University. PhBCl₂ was distilled prior to use. Starting materials Na[BAr^f₄], ^{S1} C₆F₅BCl₂, ^{S2} B(C₆F₅)₃, ^{S3} K[CH(SiMe₃)₂]^{S4} and 4-tBu^{S5} were prepared according to literature procedures. The synthesis of 7-tBu has been communicated previously by us.^{S5}

2. Preparation of novel compounds

[1-Ph][PhBCl₃]

(NacNac)^{Dipp}Li(OEt₂) (0.750 g, 1.50 mmol) was dissolved in toluene (15 mL) and cooled to 0 °C. PhBCl₂ (0.39 mL, 3.00 mmol) was added dropwise, and the resulting pale yellow solution stirred at 0 °C for 10 mins. The ice bath was then removed and the reaction mixture allowed to warm to room temperature, and stirred for 90 mins. The mixture was then heated to 70 °C and filtered while hot. Colourless crystals formed at room temperature and the solution was then stored at -30 °C overnight to complete crystallization. The crystals were isolated by filtration and dried *in vacuo*. Yield: 0.730 g, 69%.

Spectroscopic data: ¹H NMR (400 MHz, dichloromethane-d₂, 298 K): $\delta_{\rm H}$ 0.91 (12H, d, ³J_{HH} = 6.8 Hz, CH₃ of Dipp ⁱPr), 1.21 (12H, d, ³J_{HH} = 6.8 Hz, CH₃ of Dipp ⁱPr), 2.49 (6H, s, CH₃ of β-diketiminato backbone), 2.49 (4H, sept, ³J_{HH} = 6.8 Hz, CH of Dipp ⁱPr), 6.71 (2H, d, *o*-CH, BPh of cation), 6.89 (2H, t, *m*-CH, BPh of cation), 7.10 (3H, overlapping m, *p*-CH, BPh of cation and *o*-CH, BPh of anion), 7.20 (t, 2H, m-CH, BPh of anion), 7.25 (4H, d, ³J_{HH} = 7.6 Hz, *m*-CH of Dipp), 7.47 (2H, t, ³J_{HH} = 7.6 Hz, *p*-CH of Dipp), 7.70 (1H, s, γ-CH), 7.78 (d, 1H, p-CH, BPh of anion). ¹³C{¹H} NMR (100 MHz, dichloromethane-d₂, 298 K): $\delta_{\rm C}$ 23.6, 25.1 (CH₃ of Dipp ⁱPr), 23.6 (CH₃ of β-diketiminato backbone), 29.6 (CH of Dipp ⁱPr), 115.9 (γ-CH), 125.8 (aromatic C, BPh of cation), 126.4 (aromatic C, BPh of anion), 127.1 (aromatic C, BPh of anion), 127.5 (*m*-C of Dipp), 130.8 (aromatic C, BPh of anion), 131.4 (*p*-C of Dipp), 133.9 (aromatic C, BPh of cation), 134.5 (*ipso*-C of Dipp), 134.9 (aromatic C, BPh of cation), 143.6 (*o*-C of Dipp), 172.8 (NC). ¹¹B{¹H} NMR (128 MHz, dichloromethane-d₂, 298 K): $\delta_{\rm B}$ -6.5 (PhBCl₃'), 33.7 (Dipp₂NacNacBPh⁺). ESI-MS: *m*/z 505.4 ([M]⁺, 100%); accurate mass: calc. 505.3755, meas. 505.3757. Elemental

microanalysis: calc. for $C_{41}H_{51}N_2B_2Cl_3$: C 70.36% H 7.34% N 4.00%; meas. C 70.41% H 7.19% N 3.77%.

[1-Ph][BAr^f₄]

A solution of [1-Ph][PhBCl₃] (0.350 g, 0.50 mmol) in dichloromethane (5 mL) was added to a solution of Na[BAr^f₄] (0.445 g, 0.50 mmol) in dicholoromethane (5 mL) at room temperature. A pale yellow solution formed with a colourless precipitate. The reaction mixture was stirred for 30 mins and filtered, and volatiles removed *in vacuo*. The residue was washed with pentane to yield a colourless powder. Yield: 0.550 g, 81%. The exchange of the anion was confirmed by presence of a sharp singlet in the ¹¹B NMR spectrum at δ_B -6.5 ppm, and disappearance of the peak for PhBCl₃⁻ at δ_B -6.5 ppm. ¹H, ¹³C and ¹¹B data for the cation were identical to that measured for [1-Ph][PhBCl₃].

$[1-C_6F_5][(C_6F_5)BCl_3]$

 $(NacNac)^{Dipp}Li(OEt_2)$ (0.400 g, 0.80 mmol) was dissolved in toluene (15 mL) and cooled to 0 °C. (C₆F₅)BCl₂ (0.40 g, 1.60 mmol) was added dropwise, and the resulting hazy pale yellow solution stirred at 0 °C for 10 mins. The ice bath was then removed and the reaction mixture allowed to warm to room temperature, and stirred for 90 mins. The mixture was then heated to 70 °C and filtered while hot. Removal of volatiles in vacuo yielded an oily yellow residue, which was washed with pentane to yield the product as a colourless powder. Yield: 0.373 g, 53%. Single crystals suitable for X-ray crystallography were obtained from a saturated pentane solution at room temperature.

Spectroscopic data: ¹H NMR (500 MHz, dichloromethane-d₂, 298 K): $\delta_{\rm H}$ 1.17 (24H, two overlapping doublets, ³*J*_{HH} = 7.0 Hz, CH₃ of Dipp ^{*i*}Pr), 2.57 (4H, sept, ³*J*_{HH} = 7.0 Hz, CH of Dipp ^{*i*}Pr), 2.60 (6H, s, CH₃ of β-diketiminato backbone), 7.30 (4H, d, ³*J*_{HH} = 7.5 Hz, *m*-CH of Dipp), 7.48 (2H, t, ³*J*_{HH} = 7.5 Hz, *p*-CH of Dipp), 7.78 (1H, s, γ-CH). ¹³C{¹H} NMR (126 MHz, dichloromethane-d₂, 298 K): $\delta_{\rm C}$ 23.9 (CH₃ of β-diketiminato backbone), 24.2, 25.8 (CH₃ of Dipp ^{*i*}Pr), 29.5 (CH of Dipp), 117.4 (γ-CH), 126.5 (*m*-C of Dipp), 132.0 (*p*-C of Dipp), 134.7 (*ipso*-C of Dipp), 137.6 (dm, ¹*J*_{CF} = 260 Hz, *m*-CF), 137.7 (dm, ¹*J*_{CF} = 256 Hz, *m*-CF), 140.0 (dm, ¹*J*_{CF} = 248 Hz, *p*-CF), 143.2 (dm, ¹*J*_{CF} = 244 Hz, *p*-CF), 144.3 (*o*-C of Dipp), 146.2 (dm, ¹*J*_{CF} = 244 Hz, *o*-CF), 147.9 (dm, ¹*J*_{CF} = 247 Hz, *o*-CF), 173.6 (NC). ¹⁹F NMR (376 MHz, benzene-d₆, 298 K): $\delta_{\rm F}$ -124.7 (d, ³*J*_{FF} = 18.8 Hz, *o*-CF of C₆F₅BCl₃⁻), -131.6 (d, ³*J*_{FF} = 23.3 Hz, *o*-CF of Dipp₂NacNacB(C₆F₅)⁺), -147.2 (t, ³*J*_{FF} = 20.7 Hz, *p*-CF of C₆F₅BCl₃⁻), -159.8 (t, ³*J*_{FF} = 17.7 Hz, *p*-CF of Dipp₂NacNacB(C₆F₅)⁺), -160.5 (m, *m*-CF of Dipp₂NacNacB(C₆F₅)⁺), -160.5 (m, *m*-CF of Dipp₂NacNacB(C₆F₅)⁺), -160.5 (m, *m*-CF of Dipp₂NacNacB(C₆F₅)⁺), -147.2 (m, *m*-CF of C₆F₅BCl₃⁻), -160.5 (m, *m*-CF of Dipp₂NacNacB(C₆F₅)⁺), -160.5 (m, *m*-CF of Dipp₂NacNacB(C₆F₅)⁺), -160.5 (m, *m*-CF of Dipp₂NacNacB(C₆F₅)⁺), -147.2 (m, *m*-CF of C₆F₅BCl₃⁻), -160.5 (m, *m*-CF of Dipp₂NacNacB(C₆F₅)⁺). ESI-MS (+ve): *m*/z 595.3 ([M]⁺, 100%); accurate mass: calc. 595.3282, meas. 595.3284; (-ve):

m/z 282.9 ([M]⁺, 100%);. Elemental microanalysis: calc. for C₄₁H₄₁N₂B₂F₁₀Cl₃: C 55.98% H 4.70% N 3.18%; meas. C 55.82% H 4.83% N 2.65%.

Figure S1: Molecular structure of [1-C₆F₅][C₆F₅BCl₃] as determined by X-ray crystallography. Hydrogen atoms have been omitted and selected substituents shown in wireframe format for clarity; thermal ellipsoids have been depicted at the 40% probability level. Key bond lengths (Å) and angles (°): B-C 1.586(4), B-N 1.437(4), 1.442(4), C-N 1.368(4), 1.369(4), N-B-N 117.5(3), N-B-C 121.1(3), 122.2(3).

[1-Ph][BAr^f₄] (0.150 g, 0.11 mmol) was dissolved in THF (10 mL) and cooled to -78 °C. ^{*i*}BuLi (1.9M in pentane, 0.11 mL, 0.22 mmol) was added dropwise and the solution instantly turned pale brown. The reaction mixture was allowed to warm to room temperature and stirred for 2 h. Volatiles were removed *in vacuo* and the residue extracted into toluene. Removal of the toluene *in vacuo* yielded a yellow oil, which was used without further purification. ¹H and ¹³C NMR indicated *ca*. 95% conversion to **2**-Ph.

Spectroscopic data: ¹H NMR (400 MHz, benzene-d₆, 298 K): $\delta_{\rm H}$ 0.92 (6H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.07 (6H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.11 (6H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.37 (6H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.49 (3H, s, CH₃ of β-diketiminato backbone), 3.31 (1H, s, C=C*H*₂), 3.40 (2H, sept, ³*J*_{HH} = 6.8 Hz, CH of Dipp ^{*i*}Pr), 3.55 (2H, sept, ³*J*_{HH} = 6.8 Hz, CH of Dipp ^{*i*}Pr), 3.98 (1H, s, C=C*H*₂), 5.70 (1H, s, -CH), 6.70-7.13 (11H, m, aromatic CH). ¹³C{¹H} NMR (126 MHz, benzene-d₆, 298 K): $\delta_{\rm C}$ 20.9 (CH₃ of β-diketiminato backbone), 24.0, 24.1, 25.2, 26.5 (CH₃ of Dipp ^{*i*}Pr), 28.8, 29.1 (CH of Dipp ^{*i*}Pr), 85.1 (C=CH₂), 108.5 (γ-CH), 124.6, 125.0, 126.6, 134.6, 139.1, 140.0, 141.4, 146.4, 147.0, 148.4 (ArC and NC). ¹¹B{¹H} NMR (128 MHz, benzene-d₆, 298 K): $\delta_{\rm B}$ 31.3.

Figure S3: ¹¹B NMR spectrum of **2**-Ph.

Figure S4: ¹³C NMR spectrum of **2**-Ph.

[1-Ph][BAr^{f_4}] (0.490 g, 0.36 mmol) was dissolved in THF (10 mL) and cooled to -78 °C. ^tBuLi (1.9M in pentane, 0.38 mL, 0.72 mmol) was added dropwise and the solution instantly turned pale brown. The reaction mixture was allowed to warm to room temperature and stirred overnight. Volatiles were removed *in vacuo* and the residue extracted into toluene and filtered on to solid B(C₆F₅)₃ (0.180 g, 0.36 mmol) to yield a pale yellow solution. The

reaction mixture was stirred room temperature for 3 h, before being concentrated to the point of incipient crystallization. Storage overnight at -30 °C yielded the product as colourless crystals. Yield: 0.160 g, 44%.

Spectroscopic data: ¹H NMR (400 MHz, benzene-d₆, 298 K): δ_H 0.56 (6H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 0.58 (6H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 0.85 (6H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.61 (CH₃ of β-diketiminato backbone), 2.08 (2H, sept, ³*J*_{HH} = 6.8 Hz, CH of Dipp ^{*i*}Pr), 2.58 (2H, sept, ³*J*_{HH} = 6.8 Hz, CH of Dipp ^{*i*}Pr), 3.23 (2H, s, CH₂B), 6.40 (2H, d, ³*J*_{HH} = 8.0 Hz, *o*-CH of Ph), 6.48 (1H, t, ³*J*_{HH} = 8.0 Hz, *p*-CH of Dipp), 6.61 (1H, t, ³*J*_{HH} = 8.0 Hz, *p*-CH of Dipp), 6.74 (2H, d, ³*J*_{HH} = 8.0 Hz, *m*-CH of Dipp), 6.91 (2H, d, ³*J*_{HH} = 8.0 Hz, *m*-CH of Dipp), 7.05 (m, 3H, *m*-CH and *p*-CH of Ph), 7.60 (s, 1H, γ-CH). ¹³C {¹H} NMR (126 MHz, benzene-d₆, 298 K): δ_C 22.2 (CH₃ of β-diketiminato backbone), 22.9, 23.9, 24.1, 24.7 (CH₃ of Dipp ^{*i*}Pr), 26.8 (CH₂B), 29.4, 29.5 (CH of Dipp ^{*i*}Pr), 115.4 (γ-CH), 125.8, 126.2, 127.3, 128.9, 129.7, 130.5, 131.0, 131.3, 135.5 (*ipso*-C, *m*-C and *p*-C of Dipp and ArC of Ph), 143.7, 144.1 (*o*-C of Dipp), 137.2 (dm, ¹*J*_{CF} = 250 Hz, *m*-CF), 139.0 (dm, ¹*J*_{CF} = 244 Hz, *p*-CF), 148.9 (dm, ¹*J*_{CF} = 250 Hz, *o*-CF), -160.1 (br s, *m*-CF), -164.9 (br s, *p*-CF). ¹¹B {¹H} NMR (128 MHz, benzene-d₆, 298 K): δ_B -14.4

(-*B*(C₆F₅)₃), 32.9 (-*B*Ph). Elemental microanalysis: calc. for C₅₃H₄₅N₂B₂F₁₅: C 62.62% H 4.46% N 2.76%; meas. C 62.45% H 4.06% N 2.57%.

[K(OEt₂)₂][6-tBu⁻Cl]

Benzene (10 mL) was added to 4-tBu (0.150 g, 0.2 8 mmol) and K[CH(SiMe₃)₂] (0.090 g, 0.45 mmol) and the resulting mixture stirred for 10 mins at room temperature. The solution was filtered onto a solution of $B(C_6F_5)_3$ (0.142 g, 0.28 mmol) in benzene (5 mL), and the clear, pale yellow solution stirred for 30 mins. Volatiles were removed *in vacuo* and the residue washed with toluene to yield a beige powder. Yield: 0.211 g, 61%. This solid was extracted into diethyl ether and hexane was added until the solution became cloudy. Storage at -30 °C for several days yielded colourless crystals, suitable for X-ray crystallography. Exposure to vacuum results in loss of coordinated diethyl ether – however, a small amount (*ca.* 10%) remains even after extended exposure to vacuum.

Spectroscopic data: ¹H NMR (400 MHz, thf-d₈, 298 K): $\delta_{\rm H}$ 0.40 (9H, s, CH₃ of ^{*i*}Bu), 0.83 (3H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.06 (3H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.10 (3H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.27 (3H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.30 (3H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.33 (3H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.43 (3H, d, ³*J*_{HH} = 6.8 Hz, CH₃ of Dipp ^{*i*}Pr), 1.61 (3H, s, CH₃ of β-diketiminato backbone), 1.99 (1H, d, ²*J*_{HH} = 19.2 Hz, CH₂B), 2.71 (1H, d, ²*J*_{HH} = 19.2 Hz, CH₂B), 3.09 (1H, sept, ³*J*_{HH} = 6.8 Hz, CH of Dipp ^{*i*}Pr), 3.21 (1H, sept, ³*J*_{HH} = 6.8 Hz, CH of Dipp ^{*i*}Pr), 5.79 (γ-CH), 7.06-7.23 (6H, m, aromatic CH). ¹³C{¹H} NMR (126 MHz, thf-d₈, 298 K): $\delta_{\rm C}$ 23.8 (CH₃ of β-diketiminato backbone), 24.1, 24.6, 25.1, 25.3, 25.6, 25.8, 26.0, 28.0 (CH₃ of Dipp ^{*i*}Pr), 28.5, 28.5, 29.9, 30.2 (CH of Dipp ^{*i*}Pr), 32.4 (CH₃ of ^{*i*}Bu), 101.9 (γ-CH), 124.1, 124.2, 125.6, 125.8, 127.3, 127.4, 142.4, 143.0, 143.4, 144.7, 146.8, 147.6 (ArC), 168.8, 182.8 (NC). C-F carbons not observed. ¹¹B{¹H} NMR (128 MHz, thf-d₈, 298 K): $\delta_{\rm B}$ -14.4. ¹⁹F NMR (376 MHz, thf-d₈, 298 K): $\delta_{\rm F}$ -129.8 (br s, *o*-F), -165.5 (br s, *p*-F),

-168.3 (br s, *m*-F). Elemental microanalysis: calc. for $C_{51}H_{49}N_2AlClBF_{15}K$ (no coordinated diethyl ether): C 57.34% H 4.54% N 2.58%; meas. C 57.86% H 3.93% N 2.87%.

7-tBu[·]NH₃

7-tBu (0.300 g, 0.28 mmol) was dissolved in fluorobenzene (10 mL) and ammonia gas was bubbled through the solution for 2 min. The reaction mixture was then left to stir for 12 h, during which time it turned slightly cloudy. Volatiles were removed *in vacuo* and the residue extracted into minimal dichloromethane (ca. 15 mL). The solution was filtered and stored at - 30°C for 12 h to yield a colorless, microcrystalline solid. Yield : 0.245 g, 80%. Single crystals suitable for X-ray crystallography were obtained by layering a concentrated dichloromethane solution with hexane and storing at room temperature for several days.

Spectroscopic data : ¹H NMR (500 MHz, THF-d₈, 298 K): δ_H 0.55 (9H, s, CH₃ of ^{*t*}Bu), 0.79 $(3H, d, = 7.5 \text{ Hz}, \text{CH}_3 \text{ of Dipp }^{i}\text{Pr}), 1.02 (3H, d, = 7.5 \text{ Hz}, \text{CH}_3 \text{ of Dipp }^{i}\text{Pr}), 1.25 (3H, d, {}^{3}\text{J}_{HH})$ = 7.5 Hz, CH₃ of Dipp ⁱPr), 1.28 (3H, d, ${}^{3}J_{HH}$ = 7.5 Hz, CH₃ of Dipp ⁱPr), 1.29 – 1.33 (12H, 4 overlapping doublets, ${}^{3}J_{HH} = 7.5$ Hz, CH₃ of Dipp ${}^{i}Pr$), 1.57 (3H, d, ${}^{3}J_{HH} = 6.8$ Hz, CH₃ of Dipp ⁱPr), 1.69 (3H, s, CH₃ of β -diketiminato backbone), 2.65 (1H, sept, ³J_{HH} = 6.8 Hz, CH of Dipp ⁱPr), 2.78 – 2.92 (5H, overlapping multiplets, CH of Dipp ⁱPr and C(CH₂)B), 3.11 (1H, sept, ${}^{3}J_{HH} = 7.5$ Hz, CH of Dipp ${}^{i}Pr$), 3.85 (3H, br s, NH₃), 5.70 (1H, s, γ -CH), 7.23 – 7.34 (6H, m, aromatic CH). ¹³C {¹H} NMR (126 MHz, THF-d₈, 298 K): $\delta_{\rm C}$ 23.5 (CH₃ of βdiketiminato backbone), 24.0, 24.1, 24.7, 24.9, 24.9, 25.4, 26.0, 26.7 (CH₃ of Dipp ⁱPr), 29.2 (CH of Dipp ⁱPr), 29.3 (CH of Dipp ⁱPr), 30.3 (CH of Dipp ⁱPr), 30.8 (CH of Dipp ⁱPr), 30.9 (CH₃ of ^{*t*}Bu), 100.3 (γ -CH), 125.6, 125.6, 125.7, 125.9, 128.8, 128.9 (ArC), 137.4 (dm, ¹J_{CF} = 248 Hz, *m*-CF), 139.3 (dm, ${}^{1}J_{CF} = 219$ Hz, *p*-CF), 149.4 (dm, ${}^{1}J_{CF} = 236$ Hz, *o*-CF), 141.4, 141.8, 142.9, 144.3, 144.7, 144.8 (ArC), 170.2 (NC), 183.7 (NC). ¹¹B NMR (160 MHz, THF-d₈, 298 K): δ_B -14.9. ¹⁹F NMR (470 MHz, THF-d₈, 298 K): δ_F -132.2 (d, ²J_{FF} = 28.6 Hz, ortho-F), -163.3 (t, ${}^{3}J_{FF} = 20.7$ Hz, para-F), -168.0 (m, meta-F). Elemental microanalysis : calcd. for C₅₁H₅₂N₃GaBF₁₅: C 57.11%, H 4.89%, N 3.92% meas. C 56.67%, H 4.80%, N 3.89%.

3. Gutmann assay of Lewis acidity

Gutmann tests were performed on 3-Ph and 7-tBu by mixing the two equivalents of the compound with Et₃PO in CD₂Cl₂. A single resonance was observed in the ³¹P NMR spectrum in each case. The acceptor number was calculated as A.N. = 2.21 x ((δ_P (Lewis acid + Et₃PO) - 41).

Dipp₂NacNac^{(BC6F5)3}BPh: δ_P +77.0, A.N. = 79.6.

Dipp₂NacNac^{(BC6F5)3}Ga(^{*t*}Bu): δ_P +71.5, A.N. = 67.6.

4. Details of DFT calculations

DFT calculations were performed using the Amsterdam Density Functional (ADF) 2014 software package. Calculations were performed using the Vosko-Wilk-Nusair local density approximation with exchange from Becke,^{S7} and correlation correction from Perdew,^{S8} and 3-dimensional dispersion effect (BP86-D3). Slater-type orbitals (STOs)^{S9} were used for the triple zeta basis set with an additional set of polarization functions (TZP). The full-electron basis set approximation was applied with no molecular symmetry. General numerical quality was good.

5. **DFT run file**

#! /bin/sh

# =====		=====	
# 3-Ph			
# =====		=====	
"\$ADFBI	[N/adf" < <eor< th=""><th></th><th></th></eor<>		
ATOMS			
1 F	5.549435000000	10.894155000000	4.662147000000
2 C	5.268911000000	9.777248000000	3.948363000000
3 C	5.569538000000	9.84651000000	2.605531000000
4 F	6.129480000000	10.945481000000	2.073775000000
5 C	5.260980000000	8.779153000000	1.784724000000
6 F	5.489125000000	8.842199000000	0.464711000000
7 C	4.674295000000	7.665264000000	2.340714000000
8 F	4.355040000000	6.629163000000	1.546619000000
9 C	4.402993000000	7.637026000000	3.699291000000
10 C	4.675033000000	8.685559000000	4.577059000000
11 B	4.189972000000	8.805792000000	6.159942000000
12 C	5.482485000000	9.281752000000	7.097325000000
13 C	5.298973000000	9.207694000000	8.584152000000
14 N	6.377912000000	9.103977000000	9.410443000000
15 C	7.689422000000	9.432532000000	8.868604000000
16 C	8.634647000000	8.418453000000	8.633153000000
17 C	9.926791000000	8.821065000000	8.277234000000
18 C	10.254162000000	10.162278000000	8.142438000000
19 C	9.28680500000	11.133023000000	8.336849000000
20 C	7.980828000000	10.799141000000	8.704797000000
21 C	6,971052000000	11,911253000000	8,943078000000
22 C	6,926234000000	12,90260000000	7,771306000000
23 C	7.237928000000	12.649702000000	10.260438000000
24 C	8.317420000000	6.93551800000	8.717887000000
25 C	9,102187000000	6.24484300000	9.835352000000
26 C	8,62413400000	6.24377800000	7,38301500000
20 C 27 B	6.252497000000	8.814317000000	10.832880000000
28 N	4.880124000000	8,712198000000	11,311743000000
29 C	3 82184100000	9 01464600000	10 510925000000
20 C	4 036523000000	9 23575400000	9 163493000000
31 C	2 /319/700000	9 083199000000	11 066208000000
32 C	1 598677000000	8 321485000000	12 687478000000
32 C	4.330077000000	9 24889700000	13 70499600000
34 C	5 27/259000000	10 667897000000	13 432396000000
34 C	6 42070100000	11 096261000000	14 348727000000
35 C	4 002222000000	11 628287000000	12 542942000000
30 C	4.092222000000	11.038287000000	15.014572000000
37 C	4.562652000000	7 510625000000	15.014572000000
30 C	4.175586000000	7.519835000000	14 24265000000
39 C	3.961458000000	0.0353/9000000	14.243650000000
40 C	4.158618000000	7.008866000000	12.922576000000
41 C	3.914243000000	5.994609000000	
42 C	2.5/5805000000	5.2/8005000000	11.94/160000000
43 C	5.033388000000	4.958331000000	11.691189000000
44 C	7.486545000000	8.6283/3000000	11.800158000000
45 C	8.600895000000	9.478352000000	11.780522000000
46 C	9.675961000000	9.292763000000	12.64060000000
47 C	9.680572000000	8.234285000000	13.536058000000
48 C	8.600157000000	7.363882000000	13.569492000000

49 C	7.512919000000	7.572203000000	12.725865000000
50 C	2.964777000000	9.920746000000	6.033283000000
51 C	3.000003000000	11.244909000000	6.445986000000
52 F	4.046298000000	11.729571000000	7.155701000000
53 C	2.020659000000	12.180490000000	6.159411000000
54 F	2,150132000000	13,461320000000	6,558140000000
55 C	0.908153000000	11.801321000000	5,450227000000
55 C 56 F		12 691792000000	5 183642000000
57 C	0 80487000000	10 48745800000	5 027441000000
57 C	1 922577000000	0.60596700000	5.027441000000
	1 60140500000	9.003007000000	4 80014000000
59 F	1.081485000000	0.33964000000	4.809149000000
60 F	-0.28034000000	10.094436000000	4.333293000000
61 C	3.724091000000	7.349852000000	6.780500000000
62 C	4.64//3/000000	6.303628000000	6.818/1000000
63 F	5.823872000000	6.438246000000	6.159411000000
64 C	4.457032000000	5.113906000000	7.488446000000
65 F	5.429737000000	4.188092000000	7.532848000000
66 C	3.255998000000	4.874505000000	8.121387000000
67 F	3.047772000000	3.703253000000	8.741061000000
68 C	2.291224000000	5.844540000000	8.095029000000
69 C	2.542238000000	7.045983000000	7.454305000000
70 F	1.553856000000	7.960963000000	7.553368000000
71 F	1.115088000000	5.638350000000	8.703028000000
72 F	3.800078000000	6.502537000000	4.124731000000
73 Н	5.641836000000	10.211827000000	6.888408000000
74 H	6.265223000000	8.737772000000	6.844184000000
75 Н	10.573601000000	8.162358000000	8.135539000000
76 H	11.165634000000	10.419616000000	7.89849600000
77 H	9.511261000000	12.035749000000	8.24698500000
78 H	6.08447800000	11,486974000000	9.02710500000
79 H	6.193294000000	13.500924000000	7.89142000000
80 H	7,762827000000	13.369502000000	7,721598000000
81 H	6 78163800000	12 38916700000	6 978626000000
82 U	6 490232000000	13 23097600000	10 396295000000
02 II 02 II	9 06909900000	13 133208000000	10 16986600000
	7 272222000000	11 09247000000	10.059221000000
	7.272233000000	6 94102600000	0.00000000
	7.375516000000	5.04103000000	8.931380000000
80 H	8.740327000000	5.30098100000	9.906288000000
87 H	8.976403000000	6.72915000000	10.651029000000
88 H	10.016611000000	6.21/6/1000000	9.5/3/2000000
89 H	8.194403000000	5.374085000000	7.412026000000
90 H	9.588724000000	6.157288000000	7.28466000000
91 H	8.236822000000	6.755790000000	6.676131000000
92 H	3.286614000000	9.343378000000	8.609626000000
93 H	1.860939000000	8.783948000000	10.376837000000
94 H	2.189232000000	9.966744000000	11.339162000000
95 H	2.373666000000	8.462497000000	11.809710000000
96 H	5.621548000000	10.694891000000	12.504920000000
97 H	6.785327000000	11.945174000000	14.049239000000
98 H	6.090011000000	11.190387000000	15.225611000000
99 H	7.132063000000	10.428496000000	14.351735000000
100 H	4.441171000000	12.515261000000	13.320419000000
101 H	3.723722000000	11.614844000000	14.452567000000
102 H	3.404652000000	11.375088000000	12.911785000000
103 H	4.723355000000	9.400209000000	15.701466000000
104 H	4.040949000000	7.254837000000	16.138405000000
105 H	3.677614000000	5.768351000000	14.440184000000
106 H	3.847293000000	6.501826000000	10.944679000000
107 H	2.462194000000	4.736512000000	11.171109000000
108 H	2.606052000000	4.747168000000	12.726042000000

109	Η	1.897826000000	5.944172000000	12.000760000000
110	Н	4.870902000000	4.388422000000	10.932296000000
111	Н	4.931765000000	4.427493000000	12.511996000000
112	Н	5.907421000000	5.354550000000	11.664654000000
113	Н	8.579870000000	10.210052000000	11.215333000000
114	Н	10.422365000000	9.860185000000	12.580986000000
115	Н	10.403922000000	8.119735000000	14.097002000000
116	Н	8.579870000000	6.635024000000	14.130612000000
117	Н	6.803770000000	6.990218000000	12.786187000000
END				

GUIBONDS 1 1 2 1.0

1	1	2		1	•	0			
2	2	ک ۱	^	T	•	5	~		
3	2	1	0	1	T	•	U		
4	კ ე	4		1	•	0			
с С	3 5	с С		1	•	с ^			
07	э г	07		1	•	U E			
/	с 7	/		1	•	с о			
8	7	8		1	•	0			
9	<u>`</u> م	9	7	л Т	•	Э 1		^	
11	9		1	2		1	•	5	
11	9	^	Ŧ	1	1	T	•	5	Б
12	1	1		т 6	1		1	•	5 0
11	1	1		5	U T		1	•	0
14	1	1		1	2		1	•	0
16	1	1 2		1 7	2		1	•	0 0
17	1	2		7	2 ۵		1	•	0
18	1	2		1	3		1	•	ñ
19	1	23		1	4		1	•	0
20	1	3		3	0		1		5
21	1	4		1	5		1		0
22	1	4		2	7		1		0
23	1	5		1	6		1		5
24	1	5		2	0		1		5
25	1	6		1	7		1		5
26	1	6		2	4		1		0
27	1	7		7	5		1	•	0
28	1	7		1	8		1	•	5
29	1	8		7	6		1	•	0
30	1	8		1	9		1	•	5
31	1	9		7	7		1	•	0
32	1	9		2	0		1	•	5
33	2	0		2	1		1	•	0
34	2	1		7	8		1	•	0
35	2	1		2	3		1	•	0
36	2	1		2	2		1	•	0
37	2	2		7	9		1	•	0
38	2	2		8	1		1	•	0
39	2	2		8	0		1	•	0
40	2	3		8	2		1	•	0
41	2	3		8 0	3		1	•	0
42	2	с л		0	45		1	•	0
43	2	+± ∕I		о С	ך ב		1 1	•	0
44	2	4 ⊿		2	5		1 1	•	0
46	2	- - 5		28	8		1	•	0 0
47	2	5		8	6		1	•	0
48	2	5		8	7		1		0

4	9	2	6		9	1		1	•	0		
5	0	2	6		8	9		1	•	0		
5	1	2	6		9	0		1	•	0		
5	2	2	7		2	8		1	•	0		
5	3	2	7		4	4		3				
5	4	2	8		2	9		1		0		
5	5	2	8		3	2		1		0		
5	6	2	9		3	0		1		5		
5	7	2	ģ		с २	1		1	Ī	0		
5	, פ	2	0		a	2		1	•	0		
5	0 0	2	1		a	2		1	•	0		
5	و م	с С	1 1		9 0	ر ۸		1	•	0		
6	1	с С	1		9 0	4		1	•	0		
0	7	с С	1		9 2	с С		1	•	0		
6	2	3	2		3	3		1	•	5		
6	3	3	2		4	0		T	•	5		
6	4	3	3		3	7		1	•	5		
6	5	3	3		3	4		1	•	0		
6	6	3	4		9	6		1	•	0		
6	7	3	4		3	5		1	•	0		
6	8	3	4		3	6		1	•	0		
6	9	3	5		9	8		1	•	0		
7	0	3	5		9	7		1	•	0		
7	1	3	5		9	9		1	•	0		
7	2	3	6		1	0	0		1		0	
7	3	3	6		1	0	2		1		0	
7	4	3	6		1	0	1		1		0	
7	5	3	7		1	0	3		1		0	
, 7	6	3	, 7		- २	Ř	Č	1	-	5	Ŭ	
7	7	3	, 8		1	0	Δ	-	1	5	0	
' 7	γ Ω	2	Q Q		2 7	a	-	1	-	5	Ö	
7	0 0	2	0		J 1	0	5	Ŧ	•	5	٥	
0	9 0	с 2	9 0		л Т	0	J	1	Ŧ	•	0	
0	1	ر ۸	2		4	1		1	•	2		
ð	1 1	4	1		4	T	c	T	•	U	^	
8	2	4	1		T	0	6	-	T	•	0	
8	3	4	1		4	2		T	•	0		
8	4	4	T		4	3	_	T	•	0	_	
8	5	4	2		1	0	8		1	•	0	
8	6	4	2		1	0	9		1	•	0	
8	7	4	2		1	0	7		1	•	0	
8	8	4	3		1	1	2		1	•	0	
8	9	4	3		1	1	0		1	•	0	
9	0	4	3		1	1	1		1	•	0	
9	1	4	4		4	5		1	•	0		
9	2	4	4		4	9		1	•	0		
9	3	4	5		1	1	3		1	•	0	
9	4	4	5		4	6		1	•	5		
9	5	4	6		1	1	4		1		0	
9	6	4	6		4	7		1		5		
9	7	4	7		1	1	5		1		0	
9	8	4	7		4	8	-	1		5	-	
á	9	Δ	, 8		1	1	6	1	1		n	
1	00	Ŧ	4 9	R	-	<u>ہ</u>	ą		1	•	5	
⊥ 1	01		-10	2		-± 1	ע 1	7	1	•	5	٥
1	01		4 2	1 7		F	1	1	1	T	• F	U
1	02		50	ן ר		Э F	с Т		1	•	С Г	
1	03		50	ן ו		Э г	٥ ٥		1	•	5	
1	04		5	L		5	2		1	•	0	
1	05		5	L		5	3		Ţ	•	5	
1	06		53	3		5	4		1	•	0	
1	07		53	3		5	5		1	•	5	
1	08		55	5		5	6		1		0	

109 55 57 1.5 110 57 60 1.0 111 57 58 1.5 112 58 59 1.0 113 61 69 1.5 114 61 62 1.5 115 62 63 1.0 116 62 64 1.5 117 64 65 1.0 118 64 66 1.5 119 66 67 1.0 120 66 68 1.5 121 68 71 1.0 122 68 69 1.5 123 69 70 1.0 END BASIS type TZP core None createoutput None END XC GGA Becke88 Perdew86 **DISPERSION Grimme3** END GEOMETRY optim Delocalized END SAVE TAPE21 TAPE13 NumericalQuality Good NOPRINT LOGFILE

eor

6. Crystallography

Details of the data collection, structure solution and refinement procedures relating to the Xray crystal structures of [1-Ph][PhBCl₃], [1-C₆F₅][(C₆F₅)BCl₃], **3**-Ph, [K(OEt₂)₂][**6**-tBu[·]Cl], 7-tBu[·]NH₃ and (Nacnac^{BCF})^{Dipp}Al(thf)Me are included in the respective CIFs. These are included as part of the online supplementary material and are also available from the Cambridge crystallographic Data Centre (CCDC), reference numbers 1038762 and 1544787-1544791.

7. References

- S1. D. L. Reger, T. D. Wright, C. A. Little, J. J. S. Lamba and M. D. Smith, *Inorg. Chem.*, 2001, **40**, 3810-3814.
- S2. M. Mewald, R. Frohlich, and M. Oestreich, *Chem.-Eur. J.*, 2011, 17, 9406-9414.
- S3. C. Wang, G. Erker, G. Kehr, K. Wedeking and R. Frohlich, *Organometallics*, 2005, 24, 4760-4773.
- S4. C. J. Schaverien and J. B. Vanmechelen, Organometallics, 1991, 10, 1704-1709.
- S5. J.A.B. Abdalla, I.M. Riddlestone, R. Tirfoin and S.Aldridge, *Angew. Chem. Int. Ed.*, 2015, **54**, 5098-5102.
- S6. A. Adamcyk-Woźniak, M. Jakubczyk, A. Sporzyński and G. Żukowska, *Inorg. Chem. Commun.*, 2011, **14**, 1753-1755.
- S7. A.D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100.
- S8. J.P. Perdew, Phys. Rev. B, 1986, 33, 8822-8824.
- S9. J.G. Snijders, P. Vernooijs and E.J. Baerends, *Atomic Data and Nuclear Data Tables*, 1982, **26**, 483-509.