Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information for

Nickel-Catalyzed Hydrocarboxylation of Ynamides with CO₂ and H₂O:

Observation of Unexpected Regioselectivity

Ryohei Doi,^a Iman Abdullah,^a Takahisa Taniguchi,^a Nozomi Saito,^b Yoshihiro Sato*,^a

^aFaculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan ^bMeiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan

Email (YS): biyo@pharm.hokudai.ac.jp

Contents

General Information	S2
Preparation of Ynamides	S3-S6
Full List of Ligand Screening	S7
Nickel-Catalyzed Hydrocarboxylation of Ynamides	S8-S16
Other Experiments	S17-S20
References	S20
Spectrum Data	S21-S52

General Information

All reactions were performed under an atmosphere of argon or nitrogen (1 atm) unless otherwise stated. Solvents were purified under argon using The Ultimate Solvent System (Glass Counter Inc.) (THF, toluene, and DMF), and were distilled from CaH₂ (DMF). All other reagents were purified by standard procedures. Column chromatography was performed on silica gel 60 N (spherical, neutral, Kanto Chemical, Co. Inc., 45-50 µm) with the indicated solvent as an eluent. Analytical thin-layer chromatography was performed on Silica gel 60 PF_{254α} (Merck).

Infrared (IR) spectra were recorded on a JASCO FT/IR 4100 infrared spectrometer. ¹H NMR spectroscopy was recorded on JEOL ECA500 (500 MHz) or ECX400P (400 MHz) NMR spectrometer. Chemical shifts are reported in ppm from the solvent resonance as an internal standard (CDCl₃: δ = 7.26 ppm). NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad signal), coupling constant (Hz), and integration. ¹³C NMR spectroscopy was recorded on JEOL ECA500 (125 MHz) or ECX400P (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the internal reference (CDCl₃: δ = 77.00 ppm). Mass spectra were obtained on JEOL JMS-T100GCv mass spectrometer. Chiral HPLC analyses were carried out using a JASCO PU-980 and using indicated chiral column.

Preparation of Ynamides

Ynamides except for new ones **1c**, **1e**, **1m** and **1o** were prepared by previously reported methods¹⁻⁵.

Ynamide 1c²

To a solution of CuCl₂ (135.4 mg; 1.0 mmol), N-methyltosylamide (4.66 g; 25.2 mmol), and Na₂CO₃ (1.07 g; 10.0 mmol) in toluene (45 mL) was added pyridine (0.81 mL; 10.0 mmol) at room temperature. The mixture was stirred under oxygen atmosphere and the temperature was raised to 70 °C. A solution of 3-methyl-1-butyne (0.52 mL; 5.0 mmol) in toluene (5 mL) was added slowly for over 4 hours at 70 °C, then the stirring was continued for 16 h at the same temperature. After cooled to room temperature, the reaction mixture was filtered through a pad of Celite and concentrated. The crude product was purified by flash column chromatography on silica gel (hexane/AcOEt = 10/1) to give **1c** (1.075 g, 85%) as white solid. <u>¹H NMR (500 MHz, CDCl₃, δ /ppm)</u>: 1.14 (d, *J* = 6.9 Hz, 6H), 2.46 (s, 3H), 2.58-2.64 (m, 1H), 3.00 (s, 3H), 7.35 (d, *J* = 8.0 Hz, 2H), <u>7.78 (d, *J* = 8.6 Hz, 2H)</u>; <u>1³C NMR (125 MHz, CDCl₃, δ /ppm)</u>: δ 20.3, 21.6, 23.1, 39.4, 73.9, 74.5, 127.9, 129.5, 133.0, 144.4; <u>IR (film, CHCl₃)</u>: 2246, 2053, 1364, 1168 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₃H₁₇NO₂S 251.09800, found 251.09775.

Ynamide 1e¹

Step 1:

Step 3:

[Step 1] 2-methyl-2-phenyl-propanenitrile was prepared according to the method reported by Miura *et al.*⁶ To a mixture of sodium hydride (55 wt%, 1.60 g, 36.7 mmol) and THF (26 mL) was added benzyl cyanide (1.73 mL, 15.0 mmol) at 0 °C. The resulting solution was stirred for 1.5 h at room temperature. Iodomethane (2.8 mL, 45.0 mmol) was then added at 0 °C and the resulting solution was then stirred for an additional 16 h. The mixture was quenched with water, extracted with dichloromethane (DCM), dried over Na₂SO₄ and concentrated. The crude product was purified by flash column chromatography on silica gel (hexane/AcOEt = 5/1) to give 2-methyl-2-phenylpropanenitrile in a quantitative yield.

To a solution of 2-methyl-2-phenylpropanenitrile (15.0 mmol) in DCM (60 mL) at 0°C was added DIBAL-H (1.03 M in hexane, 15.5 mL, 16.0 mmol). After stirring for 5 min, 1 M HCl was added. The phases were separated and the aqueous media was extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The crude aldehyde was used in the next step without further purification.

[Step 2] To a solution of Ph₃P (15.74 g, 60.01 mmol) in DCM (75 mL) at 0 °C was added CBr₄ (9.95 g, 30.00 mmol) and the solution was stirred for 30 min. A solution of 2-methyl-2-phenylpropanal from previous step in DCM (3 mL) was added and the reaction mixture was stirred at 0 °C for 3 h. The reaction mixture was then quenched by addition of saturated NaHCO₃. The layers were separated and the aqueous phase was extracted with DCM. The combined organic layers were dried with anhydrous Na₂SO₄ and concentrated. Hexane was then added to the residue and the precipitated was filtered off *via* filtration through a plug of silica gel (washed with hexane/Et₂O mixtures). The dibromoolefin (1.43 g, 31% yield) was used in the next step without further purification.⁷

To a solution of dibromoolefin in DMF (24 mL) was added TBAF hydrate (3.68 g, 14.07 mmol). The temperature was raised to 60 °C and the mixture was stirred for 2 h. After diluted with Et₂O, the mixture was washed with water several times, dried over anhydrous Na₂SO₄, and concentrated. The crude product was used in the next step without further purification.⁸ [Step 3] To a solution of (4-bromo-2-methylbut-3-yn-2-yl)benzene in toluene (24 mL) was added CuSO₄·5H₂O (0.23 g, 0.92 mmol), 1,10-phenanthroline (0.34 g, 1.89 mmol), K₃PO₄ (1.99 g, 9.38 mmol) and N-methyl-tosylamide (0.87 g, 4.70 mmol). The mixture was stirred for 11 h at 70 °C. After cooled to room temperature, the mixture was filtered through a pad of Celite, washed with Et₂O, and concentrated. The crude product was purified by flash column chromatography on silica gel (hexane/AcOEt = 8/1) to give ynamide **1e** as a white to pale yellow solid (544.8 mg, 36% yield). <u>¹H NMR (500 MHz, CDCl₃, δ /ppm)</u>: 1.57 (s, 6H), 2.47 (s, 3H), 3.08 (s, 3H), 7.24 (tt, *J* = 7.2 Hz, 1.6 Hz, 1H), 7.30-7.50 (m, 6H), 7.79 (d, *J* = 8.2 Hz, 2H); <u>¹³C NMR (125 MHz, CDCl₃, δ /ppm)</u>: 21.6, 31.7, 35.8, 39.4, 75.0, 76.9, 125.5, 126.3, 127.9, 128.2, 129.6, 133.0, 144.5, 146.9.

Ynamide 1m¹

To a mixture of NaH (55 wt%, 219.6 mg, 5.0 mmol) and THF (10 mL) was added but-3-yn-1ol dropwise at 0 °C and stirred for 20 minutes. Benzyl bromide solution in THF was added at the same temperature, and the resulting solution was stirred at room temperature for 13 h. The mixture was diluted with AcOEt, poured into water, extracted with AcOEt, dried over anhydrous Na₂SO₄, and concentrated. The crude product was then purified by flash column chromatography on silica gel (hexane/AcOEt = 10/1) to give benzyl-protected product (748.0 mg, 93% yield).

To a solution of benzyl-protected product (736.2 mg, 4.595 mmol) in acetone (9 mL) was added NBS (0.90 g, 5.06 mmol) and AgNO₃ (78.0 mg, 0.46 mmol). The mixture was stirred at room temperature for 1.5 h, and then concentrated in vacuo. The mixture was then diluted with Et₂O, filtered by a pad of Celite, and concentrated. The crude product was then purified

by flash column chromatography on silica gel using hexane to give bromoalkyne product (775.6 mg, 71%).

To a solution of bromoalkyne product (761.6 mg, 3.19 mmol) in toluene (16 mL) were added 1,10-phenanthroline (229.6 mg, 1.27 mmol), CuSO₄·5H₂O (159.0 mg, 0.64 mmol), K₃PO₄ (1.35 g, 6.36 mmol) and N-methyltosylamide (590.0 mg, 3.19 mmol) at room temperature. The mixture was stirred and the temperature was raised to 70 °C. After 70 h, the mixture was cooled to room temperature, filtered through a pad of Celite and concentrated. The crude product was purified by flash column chromatography on silica gel (hexane/AcOEt = 10/1) to give **1m** (901.2 mg, 82%) as colorless oil. ¹H NMR (400 MHz, CDCl₃, δ /ppm): 2.42 (s, 3H), 2.57 (t, *J* = 6.8 Hz, 2H), 3.01 (s, 3H), 3.57 (t, *J* = 7.0 Hz, 2H), 4.54 (s, 2H), 7.27-7.38 (m, 7H), 7.77 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, δ /ppm): 19.7, 21.5, 39.1, 65.4, 68.6, 72.8, 75.6, 127.5, 127.6, 127.7, 128.3, 129.6, 133.0, 138.0, 144.4; <u>IR (film, CHCl₃)</u>: 2257, 2058, 1363, 1172 cm⁻¹; <u>El-HRMS</u> calcd for C₁₂H₁₄NO 188.10754, found 188.10737.

Ynamide1o¹

To a solution of1-bromohex-1-yne (0.703 g, 4.365 mmol) in toluene (22 mL) were added 1,10-phenanthroline (314.6 mg, 1.746 mmol), CuSO₄·5H₂O (217.9 mg, 0.87 mmol), K₃PO₄ (1.85 g, 8.72 mmol) and N-cyclohexyl-4-methylbenzenesulfonamide (1.11 g, 4.37 mmol) at room temperature. The mixture was stirred and the temperature was raised to 110 °C. After 23 h, the mixture was cooled to room temperature, filtered with a pad of Celite and concentrated. The crude product was purified by flash column chromatography on silica gel (hexane/AcOEt = 10/1) to give **1o** (400.9 mg, 28%) as colorless oil. <u>¹H NMR (500 MHz, CDCl₃, δ /ppm)</u>: 0.89 (t, *J* = 7.2 Hz, 3H), 0.96-1.75 (m, 14H), 2.28 (t, *J* = 7.2, 2H), 2.43 (s, 3H), 3.72 (tt, *J* = 11.7, 4.1 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.78 (d, *J* = 8.6 Hz, 2H); <u>¹³C NMR (125 MHz, CDCl₃, δ /ppm)</u>: 13.5, 18.2, 21.6, 21.8, 24.9, 25.4, 30.9, 31.1, 58.9, 70.4, 71.6, 127.3, 129.5, 136.4, 143.9; <u>IR (neat)</u>: 2246, 2044, 1363, 1169 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₉H₂₇NO₂S 333.17625, found 333.17609.

Full List of Ligand Screening

Table S1. Ligand screening^a

ⁿ Bu	Ni(cod) ₂ / ligand (10 me CO ₂ (1 atm) H ₂ O (0.5 equiv) Zn/MgBr ₂ (3 equiv)	ol%) 1. 10% HCl	Me ⁿ Bu	Me ⁿ Bu	Me ⁿ Bu	
N ^{Ts} 1a	DMF, 0 °C, 12 h	2. CH ₂ N ₂	ls´	rs ^{-N} CO ₂ Me 3a	e Ts ^{-N}	
entry	ligand		yield ^b (%)			
entry	liganu		2a	3a	4a	
1			67	9	11	
2	N N		trace	ND	16	
3			37	8	10	
4			11	7	63	
5	$Ph \qquad Ph \qquad$		37	9	32	
6		u	4	3	5	
7			2	4	55	
8		_	trace	trace	4	
9			51	5	22	
10	Ph ^{-N} Ph		-	-	complex mix.	

^a Reaction conditions: **1a** (0.4 mmol), Ni(cod)₂ (10 mol%), ligand (10 mol%), Zn (3 equiv), MgBr₂ (3 equiv), H₂O (0.5 equiv), DMF (5.7 ml), CO₂ (balloon), 0 ^oC, 12 h. ^b NMR yield.

Nickel-Catalyzed Hydrocarboxylation of Ynamides

General procedure: Ni(cod)₂ (11.0 mg, 0.040mmol), 2,2'-bipyridine (6.3 mg, 0.040 mmol), Zn (78.5 mg, 1.20 mmol), and MgBr₂ (221.0 mg, 1.20 mmol) were weighed into a flame-dried round bottom flask in a glove box (argon or nitrogen atmosphere). Then, the flask was taken out of the glove box, and DMF (2.8 mL) was added at 0 °C to the flask. To the resulting suspension was added a solution of ynamide **1a** (106.2 mg, 0.40 mmol) and water (3.6 µL, 0.20 mmol) in DMF (2.9 mL) at the same temperature via cannulation. After removal of argon/nitrogen gas in the flask by performing a freeze-pump-thaw procedure (3 times), the flask was backfilled with CO2 gas using a balloon. The reaction mixture was stirred at 0 °C for 12 hours. To the mixture was added 10% aqueous solution of HCl at 0 °C. The resulting solution was extracted with diethyl ether several times. The combined organic layer was washed with water, dried over Na₂SO₄, and concentrated. The residue was treated with diazomethane, which was generated by treatment of 1-methyl-3-nitro-1-nitrosoguanidine with 40% aqueous KOH, in Et₂O at 0 °C. After the mixture had been concentrated, the crude product was purified by flash column chromatography on silica gel (hexane/AcOEt = 10/1) to give a mixture of carboxylated product, 2a and 3a (105.0 mg, 78% yield (83/17)). The regioisomer mixture was then separated by second flash column chromatography on silica gel (toluene/hexane/ether = 10/1/1) to give **2a** as colorless oil.

Caution! Diazomethane is highly toxic and explosive. The operation must be done in a working fume hood with an adequate shield.

Spectral data for **3a**, **3f**, **3f**', **3g**, **3h**, **3k**, **3l**, **3s**, and **3t** have already been reported in our previous report.⁵

Compound 2a. ¹H NMR (500 MHz, CDCl₃, δ/ppm): 0.91 (t, J = 7.2 Hz, 3H), 1.34 (td, J = 14.7, 7.3 Hz, 2H), 1.42-1.48 (m, 2H), 2.38 (q, J = 8.2 Hz, 2H), 2.42 (s, 3H), 3.00 (s, ∽_H 3H), 3.52 (s, 3H), 7.07 (t, *J* = 7.4 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.70 (d, *J* = 8.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃, δ/ppm): 13.8, 21.5, 22.6, 28.6, 30.2, 37.0, 51.8, 127.7, 129.2, 130.3, 136.3, 143.2, 149.7, 164.4; IR (film, neat): 1725 cm⁻¹; EI-HRMS calcd for C₁₆H₂₃NO₄S 325.13478, found 325.13404.

Compound 2b and 3b. Following the general procedure using **1b** (123.8 mg, 0.395 mmol),

Ph H Ts N CO_2Me Ni(cod)₂ (21.7 mg, 0.079 mmol), bpy (12.4 mg, 0.079 mmol), Zn (77.5 mg, 1.19 mmol), MgBr₂ (210.2 mmol), Zn (77.5 mg, 1.19 mmol), MgBr₂ Ni(cod)₂ (21.7 mg, 0.079 mmol), bpy (12.4 mg, (218.2 mg, 1.19 mmol), and water (3.6 µL, 0.2

mmol) in DMF (5.6 mL) to afford a regioisomeric mixture of 2b and 3b (106.7 mg, 72% yield (79/21)) as colorless oil. Second flash column chromatography on silica gel (toluene/hexane/ether = 5/1/1) was performed to give **2b** as colorless oil. Characterization of **2b**: ¹H NMR (500 MHz, CDCl₃, δ/ppm): 2.41 (s, 3H), 2.73 (t, J = 6.8 Hz, 2H), 2.77-2.85 (m, 5H), 3.49 (s, 3H), 7.10 (t, J = 7.2 Hz, 1H), 7.16-7.32 (m, 7H), 7.68 (d, J = 8.6 Hz, 2H) ; ¹³C NMR (125 MHz, CDCl₃, δ/ppm): 21.5, 30.6, 34.0, 36.8, 51.80, 51.79, 126.2, 127.7, 128.4, 129.2, 130.7, 136.1, 140.7, 143.2, 148.2, 164.2; IR (film, CHCl₃): 1724 cm⁻¹; ESI-HRMS calcd for C₂₀H₂₃NO₄NaS 396.12400, found 396.12363. Characterization of **3b**: ¹H NMR (500 MHz, CDCl₃, δ/ppm): 2.44 (s, 3H), 2.68 (s, 4H), 2.96 (s, 3H), 3.77 (s, 3H), 7.11-7.25 (m, 5H), 7.34 (d, J = 8.0 Hz, 2H), 7.60 (s, 1H), 7.68 (d, J = 8.6 Hz, 2H); $\frac{13}{C}$ NMR (125 MHz, CDCl₃, δ /ppm): 21.6, 28.4, 35.6, 35.8, 52.0, 118.6, 126.1, 127.3, 128.37, 128.41, 130.0, 134.3, 137.8, 141.2, 144.5, 168.4; IR (neat): 1708 cm⁻¹; EI-HRMS calcd for C₂₀H₂₃NO₄S 373.13478, found 373.13403.

Compound 2c and 3c. Following the general procedure using 1c (99.6 mg, 0.40 mmol),

^{*i*}Pr H Ts $Ni(cod)_2$ (11.0 mg, 0.04 mmol), bpy (6.3 mg, 0.04 mmol), $MgBr_2$ (221.0 mg, CO_2Me 1.20 mmol) and water (3.6 µL, 0.2 mmol) in DMF

(5.7 mL) to afford regioisomeric mixture of 2cand 3c (92.3 mg, 75% yield (95/5)). Second

flash column chromatography on silica gel (toluene/hexane/ether = 10/2/1) was performed to give **2c** and **3c** as colorless oil. Characterization of **2c**: $\frac{1}{H}$ NMR (500 MHz, CDCl₃, δ /ppm): 1.05 (d, *J* = 5.7 Hz, 6H), 2.40 (s, 3H), 2.93 - 2.98 (m, 1H), 2.99 (s, 3H), 3.48 (s, 3H), 6.84 (d, *J* = 10.9 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 2H); $\frac{13}{C}$ NMR (125 MHz, CDCl₃, δ /ppm): 21.4, 28.1, 37.3, 51.7, 125.3, 127.7, 128.2, 129.1, 136.2, 143.2, 155.3, 164.5; <u>IR (film, CHCl₃)</u>: 1725 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₅H₂₁NO₄S 311.11913, found 311.11869. Characterization of **3c**: $\frac{1}{H}$ NMR (500 MHz, CDCl₃, δ /ppm): 1.17 (d, *J* = 6.9 Hz, 6H), 2.43 (s, 3H), 2.96 (s, 3H), 3.03-3.09 (m, 1H), 3.72 (s, 3H), 6.97 (s, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 2H); $\frac{13}{C}$ NMR (125 MHz, CDCl₃, δ /ppm): 20.6, 21.5, 27.1, 37.7, 51.4, 127.5, 129.9, 132.9, 133.8, 136.5, 144.2, 167.1; <u>IR (neat)</u>: 1714 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₅H₂₁NO₄S 311.11913, found 311.11880.

Compound 2d. Following the general procedure using **1d** (105.9 mg, 0.3991 mmol), Ni(cod)₂ (11.0 mg, 0.0400 mmol), bpy (6.3 mg, 0.0403 mmol), Zn (78.5 mg, 1.2007 mmol), MgBr₂ (221.0 mg, 1.2004 mmol) and water (3.6 μ L, 0.1998 mmol) in DMF (5.7 mL) to afford **2d** as white solid (109.4 mg, 84% yield). <u>1H NMR (500 MHz, CDCl₃, δ /ppm)</u>: 1.27 (s, 9H), 2.40 (s, 3H), 3.00 (s, 3H), 3.33 (s, 3H), 6.94 (s, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H); <u>13C NMR (125 MHz, CDCl₃, δ /ppm)</u>: 21.4, 29.1, 34.7, 38.2, 51.6, 127.2, 127.8, 129.0, 135.8, 143.0, 156.5, 165.2; <u>IR (film, CHCl₃)</u>: 1724 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₆H₂₃NO₄S 325.13478, found 325.13420.

Compound 2e. Following the general procedure using **1e** (130.2 mg, 0.398mmol), Ni(cod)₂

(11.0 mg, 0.040 mmol), bpy (6.3 mg, 0.040 mmol), Zn (78.5 mg, 1.201 mmol), MgBr₂ (221.0 mg, 1.200 mmol) and water (3.6 μ L, 0.200 mmol) in DMF (5.7 mL) to afford **2e** as colorless oil (97.4 mg, 63% yield). <u>¹H NMR (500 MHz, CDCl₃, δ /ppm)</u>: 1.71 (d, *J* = 14.9, 6H), 2.42 (s, 3H), 2.80 (s, 3H), 3.38 (s, 3H),

7.18 (s, 1H), 7.22-7.25 (m, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.32-7.41 (m, 4H), 7.64 (d, J = 8.6 Hz, 2H); $\frac{13}{C}$ NMR (125 MHz, CDCl₃, δ /ppm): 21.5, 37.5, 41.6, 51.7, 77.2, 126.1, 126.4, 128.0, 128.2, 128.4, 129.0, 135.7, 143.1, 147.5, 155.0, 165.1; <u>IR (film, CHCl₃)</u>: 1723 cm⁻¹; <u>EI-HRMS</u> calcd for

Compound 3f and 3f'. Following the general procedure using **1f** (112.0 mg, 0.398 mmol), Ni(cod)₂ (11.0 mg, 0.040 mmol), bpy (6.3 mg,

0.040 mmol), Zn (78.5 mg, 1.201 mmol), MgBr₂ (221.0 mg, 1.200 mmol) and water (3.6 μ L, 0.200 mmol) in DMF (5.7 mL) to afford **3f** and **3f'** in 21% ¹H NMR yield (48/52).

Compound 2g. Following the general procedure using 1g (114.3 mg, 0.401 mmol), Ni(cod)₂

(11.0 mg, 0.040 mmol), bpy (6.3 mg, 0.040 mmol), Zn (78.5 mg, 1.201 mmol), MgBr₂ (221.0 mg, 1.200 mmol) and water (3.6 μ L, 0.200 mmol) in DMF (5.7 mL) to afford regioisomeric mixture of **2g** and **3g** (44.3 mg, 32% yield (94/6)). Second flash column chromatography on silica gel (toluene/hexane/ether = 10/2/1) was performed to give **2g** as white solid.

Characterization of **2g**: $\frac{1}{H}$ NMR (500 MHz, CDCl₃, δ /ppm): 2.42 (s, 3H), 3.09 (s, 3H), 3.59 (s, 3H), 7.27 (d, J = 8.0 Hz, 2H), 7.35-7.41 (m, 3H), 7.67-7.71 (m, 3H); $\frac{1^{3}C}{1^{3}C}$ NMR (125 MHz, CDCl₃, δ /ppm): 21.5, 36.4, 52.1, 127.9, 128.1, 128.8, 129.2, 130.7, 130.8, 132.4, 136.2, 141.6, 143.4, 165.5; <u>IR (film, CHCl₃)</u>: 1719 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₈H₁₉NO₄S 345.10348, found 345.10369.

Compound 2h. Following the general procedure using 1h (126.9 mg, 0.402 mmol), Ni(cod)₂

(11.0 mg, 0.040 mmol), bpy (6.3 mg, 0.040 mmol), Zn (78.5 mg, 1.201 mmol), MgBr₂ (221.0 mg, 1.200 mmol), and water (3.6 μ L, 0.200 mmol) in DMF (5.7 mL) to afford regioisomeric mixture of **2h** and **3h** (43% yield (95/5)). Characterization of **2h**: <u>¹H NMR (400 MHz, CDCl₃, δ /ppm)</u>: 2.43 (s, 3H), 3.10

 $^{|}_{CO_2Me}$ (s, 3H), 3.53 (s, 3H), 3.85 (s, 3H), 6.91 (d, *J* = 9.1 Hz, 2H), 7.28 (d, *J* = 7.7 Hz, 2H), 7.67 (s, 1H), 7.70 (d, *J* = 8.6 Hz, 2H), 7.79 (d, *J* = 8.6 Hz, 2H); ^{13}C NMR (100 MHz, CDCl₃, δ /ppm): 21.5, 36.4, 51.9, 55.4, 114.3, 125.1, 125.5, 127.9, 129.2, 133.0, 136.3, 141.6, 143.3, 161.7, 165.7; <u>IR (film, CHCl_3)</u>: 1716, 1259, 1175 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₉H₂₁NO₅S 375.11404, found 375.11405.

Compound 2j and 3j. Following the general procedure using 1j (155.0 mg, 0.392 mmol)

Ni(cod)₂ (22.0 mg, 0.080 mmol), bpy (12.6 mg, 0.081 mmol), Zn (78.5 mg, 1.201 mmol), MgBr₂ (221.0 mg, 1.200 mmol), and water (3.6 μ L, 0.200 mmol) in DMF (5.7 mL) to afford regioisomeric mixture of **2j** and **3j** (143.5 mg, 80% yield (84/16)). Second flash column chromatography on silica gel (toluene/hexane/ether = 10/2/1) was performed to give **2j**

and **3j** as colorless oil. Characterization of **2j**: 1 H NMR (500 MHz, CDCl₃, δ /ppm): 0.04 (s, 6H), 0.88 (s, 9H), 1.47-1.57 (m, 4H), 2.36-2.43 (m, 5H), 2.99 (s, 3H), 3.50 (s, 3H), 3.60 (t, J = 5.7 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.0 Hz, 2H); 13 C NMR (125 MHz, CDCl₃, δ /ppm): -5.4, 18.3, 21.5, 24.4, 25.9, 28.6, 32.5, 37.0, 51.8, 62.6, 127.7, 129.2, 130.3, 136.2, 143.2, 149.4, 164.3; IR (film, neat): 1726 cm⁻¹; EI-HRMS calcd for C₂₁H₃₄NO₅SSi 440.19269, found 440.19156. Characterization of **3j**: 1 H NMR (500 MHz, CDCl₃, δ /ppm): 0.01 (s, 6H), 0.86 (s, 9H), 1.35-1.43 (m, 2H), 1.44-1.51 (m, 2H), 2.37 (t, J = 8.0 Hz, 2H), 2.44 (s, 3H), 3.11 (s, 3H), 3.55 (t, J = 6.3 Hz, 2H), 3.74 (s, 3H), 7.34 (d, J = 8.0 Hz, 2H), 7.60 (s, 1H), 7.70 (d, J = 8.0 Hz, 2H); 13 C NMR (125 MHz, CDCl₃, δ /ppm): -5.3, 18.3, 21.6, 25.8, 25.9, 26.3, 32.7, 35.7, 51.9, 62.6, 119.2, 127.3, 130.0, 134.3,, 137.3, 144.4, 168.6; IR (film, CHCl₃): 1709, 1629 cm⁻¹; EI-HRMS calcd for C₂₁H₃₄NO₅SSi 440.19269, found 440.19269, found 440.19269, found 440.19269, found 440.19269.

Compound 2k. Following the general procedure using **1k** (151.1 mg, 0.41 mmol), Ni(cod)₂ (22.6 mg, 0.082 mmol), bpy (12.8 mg, 0.082 mmol), Zn (80.6 mg, 1.23 mmol), MgBr₂ (227.1 mg, 1.23 mmol), and water (3.7 μ L, 0.20 mmol) in DMF (5.7 mL) to afford a crude product which was then purified by flash column chromatography on silica gel (hexane/AcOEt = 15/1) to afford regioisomeric mixture of **2k** and **3k** (128.8 mg, 73% yield (81/19)). Second flash column chromatography on silica gel (toluene/hexane/ether = 5/1/1) was performed to give **2k** as colorless oil. Characterization of **2k**: <u>1H NMR (500 MHz, CDCl₃, δ /ppm)</u>: 0.04 (s, 6H), 0.87 (s, 9H), 2.40 (s, 3H), 2.59 (q, J = 6.3 Hz, 2H), 2.99 (s, 3H), 3.49 (s, 3H), 3.74 (t, J = 6.0 Hz, 2H), 7.16 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H); <u>13C NMR (125 MHz, CDCl₃</u>, <u>δ/ppm):</u> −5.4, 18.2, 21.5, 25.8, 32.5, 37.0, 51.8, 61.1, 127.7, 129.2, 131.3, 136.1, 143.2, 146.7, 164.1; <u>IR (film, CHCl₃)</u>: 1727 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₉H₃₀NO₅SSi 412.16139, found 412.16076.

Compound 2I. Following the general procedure using **1I** (112.0 mg, 0.38 mmol), Ni(cod)₂ (20.7 mg, 0.075 mmol), bpy (11.8 mg, 0.076 mmol), Zn (73.9 mg, 1.13 mmol), MgBr₂ (208.0 mg, 1.13 mmol), and water (3.4 μ L, 0.19 mmol) in DMF (5.4 mL) to afford a regioisomeric mixture of **2I** and **3I** (95.4 mg, 71% yield). Second flash column chromatography on silica gel (toluene/hexane/AcOEt = 10/2/1) was performed to give **2I** as colorless oil. Characterization of **2I**: $\frac{1}{11}$ NMR (500 MHz, CDCl₃, δ /ppm): 2.40 (s, 3H), 2.68 (q, *J* = 6.3 Hz, 2H), 3.00 (s, 3H), 3.34 (s, 3H), 3.49 (s, 3H), 3.65 (t, *J* = 6.3 Hz, 2H), 4.60 (s, 2H), 7.15 (t, *J* = 7.2 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.6 Hz, 2H); $\frac{13}{13}$ NMR (125 MHz, CDCl₃, δ /ppm): 21.5, 29.5, 36.9, 51.8, 55.2, 65.4, 96.3, 127.7, 129.2, 131.5, 136.0, 143.3, 146.2, 164.0; <u>IR (film, CHCl₃)</u>: 1725 cm⁻¹; <u>El-HRMS</u> calcd for C₁₅H₂₀NO₅S 326.10622, found 326.10587.

Compound 2m and 3m. Following the general procedure using 1m (138.9 mg, 0.404 mmol),

Ni(cod)₂ (11.0 mg, 0.040mmol), bpy (6.3 mg, OBn OBn 0.040mmol), Zn (78.5 mg, 1.201mmol), MgBr₂ CO₂Me (221.0 mg, 1.200mmol), and water (3.6 µL, CO₂Me 0.200mmol) in DMF (5.7 mL) to afford a regioisomeric mixture of **2m** and **3m** (79.0 mg, 48% yield (75/25)). Characterization of **2m**: ¹H NMR (500 MHz, CDCl₃, δ/ppm): 2.42 (s, 3H), 2.72 (q, J = 6.1 Hz, 2H), 3.00 (s, 3H), 3.52 (s, 3H), 3.62 (t, J = 6.3 Hz, 2H), 4.52 (s, 2H), 7.19 (t, J = 7.2)Hz, 1H), 7.27-7.36 (m, 7H), 7.69 (d, J = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃, δ /ppm): 21.5, 29.6, 37.0, 51.9, 68.0, 72.9, 127.3, 127.6, 127.7, 128.4, 129.3, 131.5, 136.1, 138.1, 143.3, 146.4, 164.1; IR (film, CHCl₃): 1725, 1347, 1163; EI-HRMS calcd for C14H18NO3 248.12867, found 248.12920. Characterization of **3m**: ¹H NMR (500 MHz, CDCl₃, δ/ppm): 2.43 (s, 3H), 2.72 (t, J = 6.6 Hz, 2H), 3.21 (s, 3H), 3.49 (t, J = 6.6 Hz, 2H), 3.73 (s, 3H), 4.42 (s, 2H), 7.21-7.33 (m, 7H), 7.69 (d, J = 8.2 Hz, 2H), 7.88 (s, 1H); ¹³C NMR (125 MHz, CDCl₃, δ/ppm): 21.6, 26.6, 35.5, 51.9,

68.9, 72.9, 112.5, 127.3, 127.4, 127.5, 128.3, 130.0, 134.4, 138.3, 138.8, 144.4, 168.6; <u>IR (film, CHCl₃)</u>: 1707, 1357, 1164 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₄H₁₈NO₃ 248.12867, found 248.12914.

Compound 2n and 3n. Following the general procedure using 1n (135.4 mg, 0.40 mmol),

Ni(cod)₂ (11.0 mg, 0.04 mmol), bpy (6.3 mg, 0.04 mmol), Zn (78.5 mg, 1.20 mmol), MgBr₂ (221.0 mg, 1.20 mmol) and water (3.6 μ L, 0.2 mmol) in DMF (5.7 mL) to afford a regioisomeric mixture of **2n**

and **3n** as white solid (121.0 mg, 76% yield (91/9)). Second flash column chromatography on silica gel (toluene/hexane = 5/1) was performed to separate **2n** and **3n**. Characterization of **2n**: $\frac{1}{H}$ NMR (500 MHz, CDCl₃, δ/ppm): 0.60-1.15 (m, 7H), 1.89-2.22 (br, 2H), 2.44 (s, 3H), 3.48 (s, 3H), 4.03-4.20 (br, 1H), 4.84-4.99 (br, 1H), 7.01 (t, *J* = 7.4 Hz, 1H), 7.25-7.27 (m, 5H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H); $\frac{13}{C}$ NMR (125 MHz, CDCl₃, δ/ppm): 13.7, 21.5, 22.5, 29.2, 29.9, 51.7, 52.8, 126.3, 127.7, 127.9, 128.3, 129.3, 129.7, 135.6, 137.0, 143.2, 152.7, 164.2; IR (film, CHCl₃): 1722 cm⁻¹; ESI-HRMS calcd for C₂₂H₂₇O₄NNaS 424.15530, found 424.15518; X-ray data: *M* = 402.53, colorless, block, triclinic, P-1 (#2), a = 9.3258(3) Å, b = 9.3714(3) Å, c = 12.7379(3) Å, $\alpha = 104.226(7)^{\circ}$, $\beta = 99.435(7)^{\circ}$, $\gamma = 96.838(7)^{\circ}$, V = 1049.62(7) Å³, *Z* = 2, D_{calc} = 1.274 g/cm³, T = -140 °C, *R*₁(*wR*₂) = 0.0448 (0.1117). Characterization of **3n**: $\frac{1}{H}$ NMR (500 MHz, CDCl₃, δ/ppm): 0.74 (t, *J* = 7.4 Hz, 3H), 0.93-1.01 (m, 2H), 1.04-1.13 (m, 2H), 2.19 (t, *J* = 8.0 Hz, 2H), 2.44 (s, 3H), 3.71 (s, 3H), 4.47 (s, 2H), 7.07 (s, 1H), 7.19-7.30 (m, 5H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 2H); $\frac{13}{12}$ NMR (125 MHz, CDCl₃, δ/ppm): 13.8, 21.6, 22.7, 26.5, 31.2, 51.9, 53.2, 127.4, 127.7, 127.8, 128.6, 128.8, 129.9, 135.1, 135.2, 135.6, 144.2, 168.0; IR (film, CHCl₃): 1713 cm⁻¹; ESI-HRMS calcd for C₂₂H₂₇O₄NNaS 424.15530, found 424.15564.

Compound 20 and 30. Following the general procedure using 10 (132.9 mg, 0.40 mmol),

Ni(cod)₂ (11.0 mg, 0.04 mmol), bpy (6.3 mg, 0.04 mmol), Zn (78.5 mg, 1.20 mmol), MgBr₂ (221.0 mg, 1.20 mmol) and water (3.6 μL, 0.2 mmol) in DMF

(5.7 mL) to afford regioisomeric mixture of **2o** and **3o** (132.7 mg, 85% yield). Second flash column chromatography on silica gel (toluene/hexane = 5/1) was performed to give **2o** as colorless oil. Characterization of **2o**: <u>1H NMR (500 MHz, CDCl₃, δ /ppm)</u>: 0.88-1.65 (m, 15H), 1.72 (d, *J* = 12.6 Hz, 1H), 1.98 (d, *J* = 12.0 Hz, 1H), 2.29-2.47 (m, 5H), 3.61-3.68 (m, 4H), 7.22-7.29 (m, 3H), 7.84 (d, *J* = 8.0 Hz, 2H); <u>13C NMR (125 MHz, CDCl₃, δ /ppm)</u>: 13.8, 21.5, 22.6, 25.0, 25.8, 26.1, 29.6, 30.2, 30.7, 32.3, 51.9, 60.1, 125.8, 128.0, 129.0, 138.2, 142.9, 152.2, 166.5; <u>IR (film, CHCl₃)</u>: 1727 cm⁻¹; <u>ESI-HRMS</u> calcd for C₂₁H₃₁NO₄NaS 416.18660, found 416.18587. Characterization of **3o**: <u>1H NMR (500 MHz, CDCl₃, δ /ppm)</u>: 0.86-1.73 (m, 17H), 2.41-2.47 (m, 5H), 3.75-3.82 (m, 4H), 6.62 (s, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 2H); <u>13C NMR (125 MHz, CDCl₃, δ /ppm)</u>: 13.9, 21.5, 23.2, 25.1, 25.8, 27.5, 30.2, 30.8, 51.9, 60.2, 127.2, 129.7, 131.3, 137.4, 141.1, 143.5, 167.6; <u>IR (film, CHCl₃)</u>: 1720 cm⁻¹; <u>ESI-HRMS</u> calcd for C₂₁H₃₁NO₄NaS 416.18660, found 416.18601.

Compound 2q. Following the general procedure using **1q** (130.0 mg, 0.40 mmol), Ni(cod)₂ Ph ⁿBu (11.0 mg, 0.04 mmol), bpy (6.3 mg, 0.04 mmol), Zn (78.5 mg, 1.20 mmol), Ts -N + + MgBr₂ (221.0 mg, 1.20 mmol) and water (3.6 µL, 0.2 mmol) in DMF (5.7 mL) to afford a regioisomeric mixture of **2q** and **3q** (55.5 mg, 44% yield (89/11)). Flash column chromatography on silica (hexane/AcOEt = 5/1) provides **2q** as a yellow oil. Characterization of **2q**: <u>1H NMR (500 MHz, CDCl₃, δ /ppm)</u>: 0.85 (t, *J* = 7.2 Hz, 3H), 1.24-1.37 (m, 4H), 2.36-2.43 (m, 5H), 3.76 (s, 3H), 7.09 (t, *J* = 7.7 Hz, 1H), 7.14-7.25 (m, 5H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 2H); <u>13C NMR (125 MHz, CDCl₃, δ /ppm)</u>: 13.8, 21.5, 22.5, 28.5, 29.9, 52.3, 126.2, 126.7, 128.4, 128.9, 129.0, 131.1, 136.6, 140.6, 143.5, 148.8, 165.5; <u>IR (neat)</u>: 1726, 1356, 1164 cm⁻¹; <u>EI-HRMS</u> calcd for C₂₁H₂₅NO₄S 387.15043, found 387.15032.

Compound 2r and 3r

mg, 29% yield). Characterization of **2r**: ¹<u>H NMR (500 MHz, CDCl₃, δ/ppm)</u>: 0.91 (t, *J* = 7.2 Hz, 3H), 1.32-1.39 (m, 2H), 1.42-1.48 (m, 2H), 2.41 (q, *J* = 7.4 Hz, 2H), 3.01 (s, 3H), 3.05 (s, 3H), 3.77 (s, 3H), 7.06 (t, *J* = 7.4 Hz, 1H); ¹³<u>C NMR (125 MHz, CDCl₃, δ/ppm)</u>: 13.8, 22.5, 28.5, 30.1, 36.6, 38.1, 52.2, 130.2, 150.2, 164.5; <u>IR (film, neat)</u>: 1721 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₀H₁₉NO₄S 249.10348, found 249.10323. Characterization of **3r**: ¹<u>H NMR (500 MHz, CDCl₃, δ/ppm)</u>: 0.92 (t, *J* = 7.2 Hz, 3H), 1.32-1.38 (m, 2H), 1.39-1.45 (m, 2H), 2.42 (t, *J* = 7.7 Hz, 2H), 2.96 (s, 3H), 3.29 (s, 3H), 3.74 (s, 3H), 7.56 (s, 1H); ¹³<u>C NMR (125 MHz, CDCl₃, δ/ppm)</u>: 13.8, 22.8, 25.9, 32.2, 35.8, 37.8, 51.9, 119.1, 136.6, 168.5; <u>IR (film, CHCl₃)</u>: 1706 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₀H₁₉NO₄S 249.10348, found 249.10327.

Compound 2s. Following the general procedure using **1s** (72.0 mg, 0.39 mmol), Ni(cod)₂ $\stackrel{n}{\to} Bu$ (11.0 mg, 0.04 mmol), bpy (6.3 mg, 0.04 mmol), Zn (79.0 mg, 1.21 mmol), $\stackrel{n}{\to} H$ MgBr₂ (221.0 mg, 1.20 mmol) and water (3.6 µL, 0.2 mmol) in DMF (5.7 mL) to afford a regioisomeric mixture of **2s** and **3s** as colorless oil (70.7 mg, 74% yield (85/15)). Characterization of **2s**: $\frac{1}{H}$ NMR (500 MHz, CDCl₃, δ /ppm): 0.90 (t, *J* = 7.4 Hz, 3H), 1.09-1.44 (m, 7H), 2.10-2.17 (m, 2H), 2.97 (s, 3H), 3.71 (s, 3H), 4.02-4.17 (m, 2H), 6.68-6.79 (m, 1H); $\frac{13}{13}$ C NMR (125 MHz, CDCl₃, δ /ppm): 13.7, 14.5, 22.3, 27.3, 30.0, 36.1, 52.0, 61.5, 132.3, 142.0, 155.9, 164.9; <u>IR (neat)</u>: 1728, 1656 cm⁻¹; <u>EI-HRMS</u> calcd for C₁₂H₂₁NO₄ 243.14706, found 243.14709.

Other Experiments

Structure Elucidation of 2a

Compound 7. To a solution of **2a** (86.0 mg, 0.26 mmol) in toluene (0.5 mL) was added a solution of DIBAL-H in hexane (1.02 M, 0.78 mL, 0.79 mmol) at -78 °C, and the mixture was stirred at the same temperature for 3 hours. To the mixture was added a saturated aqueous solution of potassium sodium

tartrate, and the mixture was stirred at room temperature for 2 h. After the aqueous layer was extracted with AcOEt, the organic layer was washed with brine, dried over Na₂SO₄ and concentrated. A crude product was purified by flash column chromatography on silica gel (hexane/AcOEt = 3/1) to give **7** (70.5 mg, 90% yield) as a colorless oil. The result of NOE experiment is shown with double-headed arrows on the chemical structure of **7** above. $\frac{1}{H}$ <u>NMR (500 MHz, CDCl₃, δ /ppm)</u>: 0.79 (t, *J* = 6.9 Hz, 3H), 1.09-1.19 (m, 4H), 1.68 (q, *J* = 7.3 Hz, 2H), 2.23 (brs, 1H), 2.41 (s, 3H), 3.01 (s, 3H), 4.13 (s, 2H), 5.62 (t, *J* = 7.4 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H); $\frac{13}{C}$ <u>NMR (125 MHz, CDCl₃, δ /ppm)</u>: 13.7, 21.4, 22.4, 27.3, 30.8, 37.6, 64.8, 127.4, 129.6, 133.3, 136.6, 138.3, 143.4; <u>IR (film, CHCl₃)</u>: 3470, 2953, 2927, 1154 cm⁻¹; <u>ESI-HRMS</u> calcd for C₁₅H₂₃O₃NNaS 320.12909, found 320.12918.

Trial of Asymmetric Hydrogenation

Compound 8. $[Rh(nbd)_2]SbF_6$ (3.9 mg, 7.5 µmol, nbd = norbornadiene) and SL W008-1 (7.0 mg, 7.4 µmol) were added to a flame-dried 10 mL test tube. The test tube was purged with H₂. Chlorobenzene (0.5 mL) was added to the test tube, and the resulting mixture was stirred for 10 min under an atmosphere of H₂ (1 atm). To the mixture was added a solution of **2a** (48.5 mg, 0.15 mmol) in chlorobenzene (1.6 mL). The test tube was placed in an autoclave and pressurized under an H₂ atmosphere (5 atm). The reaction mixture was stirred at 60 °C for 20 h. The reaction mixture was concentrated, and the residue was purified by flash column chromatography on silica gel (hexane/AcOEt = 5/1) to afford **8a** (12.2 mg, 25% yield) as a colorless oil. The enantiomeric excess was determined to be 25% by HPLC analysis with a

DAICEL CHIRALPAK AS-H [eluent: hexane/2-propanol = 98/2, flow rate: 0.5 mL/min, detector: UV (254 nm)]: t_R (major) = 28.0 min; t_R (minor) = 32.0 min. $\frac{1}{H}$ NMR (500 MHz, CDCl₃, δ /ppm): 0.87 (t, J = 6.9 Hz, 3H), 1.24-1.33 (m, 6H), 1.56-1.61 (m, 1H), 1.78-1.83 (m, 1H), 2.41 (s, 3H), 2.82 (s, 3H), 3.47 (s, 3H), 4.57 (dd, J = 10.0, 5.4 Hz, 1H), 7.27 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.6Hz, 2H); $\frac{13}{C}$ NMR (125 MHz, CDCl₃, δ /ppm): 13.9, 21.5, 22.4, 25.5, 29.2, 29.7, 31.1, 51.7, 58.7, 127.3, 129.4, 136.2, 143.2, 171.4; <u>IR (neat)</u>: 1742 cm⁻¹; <u>ESI-HRMS</u> calcd for C9H18NO2 172.13375, found 172.13441.

Synthesis of Nickelalactone 5

A Schlenk flask was charged with Ni(cod)₂ (137.5 mg, 0.50 mmol), 2,2'bipyridine (78.1 mg, 0.50 mmol), ynamide **1c** (138.23 mg, 0.55 mmol) under nitrogen atmosphere. To the solids were added 3 mL of THF. The suspension was quickly degassed and then back filled with CO₂ by using a balloon. The

reaction mixture was stirred for 1 day at 0 °C. The precipitate was filtered off, washed with cold ether (distilled from Na/benzophenone) and dried out to yield orange powder (155.1 mg, 61%). Red needle crystals for X-ray diffraction study was obtained by diffusion of pentane into the solution of **5** in THF/toluene/CH₂Cl₂ mixture. $\frac{1}{11}$ NMR (500 MHz, CD₂Cl₂, δ /ppm): 0.63 (d, *J* = 7 Hz, 3H), 0.94 (d, *J* = 6.5 Hz, 3H), 1.77 (m, 1H), 2.36 (s, 3H), 3.20 (s, 3H), 7.26 (d, *J* = 8 Hz, 2H), 7.46 (t, *J* = 6.5 Hz, 1H), 7.55 (t, *J* = 6.5 Hz, 1H), 7.78 (d, *J* = 8 Hz, 2H), 7.84 (d, *J* = 7.5 Hz, 1H), 7.92-8.05 (m, 3H), 8.56 (d, *J* = 6 Hz, 1H), 8.78 (d, *J* = 5.5 Hz, 1H); $\frac{13}{29.9}$, 137.2, 138.9, 139.8, 143.6, 149.7, 152.0, 153.0, 155.6 (three signals were missing due to very low intensity); Elemental analysis did not give good results probably due to instability of the complex to the moisture; X-ray data: *M* = 510.24, red, needle, monoclinic, P2₁/n (#14), a = 18.6357(6) Å, b = 6.4232(2) Å, c = 19.8474(7) Å, β = 110.723(8)°, V = 2222.05(17) Å³, Z =

4, $D_{calc} = 1.525 \text{ g/cm}^3$, T = -140 °C, $R_1(wR_2) = 0.0498 (0.1190)$.

Treatment of Nickelalactone 5 with H₂O/MgBr₂/Zn system to give compound 6

Nickelalactone 5 (25.0 mg, 0.049 mmol), Zn (10.0 mg, 0.153 mmol), and MgBr₂ (27.3 mg, 0.148 mmol) were weighed into a flame-dried round bottom flask in a glove box (nitrogen atmosphere). Then, the flask was taken out of the glove box, and a solution of water (0.5 µL, 0.028 mmol) in DMF (0.7 mL) was added at 0 °C to the flask. After removal of nitrogen gas in the flask by performing a freeze-pump-thaw procedure (3 times), the flask was backfilled with CO₂ gas using a balloon. The reaction mixture was stirred at 0 °C for 21 hours. To the mixture was added 10% aqueous solution of HCl at 0 °C. The resulting solution was extracted with diethyl ether several times. The combined organic layers was washed with water, dried over Na₂SO₄, and concentrated. The crude product was purified by flash column chromatography on silica gel (hexane/AcOEt = 2/1) to give **6** (10.3 mg, 71% yield) as a white solid. ¹<u>H NMR (500 MHz, CDCl₃, δ/ppm)</u>: 1.21 (d, J = 6.9 Hz, 6H), 2.45 (s, 3H), 3.01-3.07 (m, 4H), 7.34-7.38 (m, 3H), 7.72 (d, J = 8.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃, δ/ppm): 20.7, 21.6, 26.8, 37.4, 127.5, 128.2, 130.0, 133.8, 138.9, 144.5, 172.4; IR (neat): 2963, 1681 cm⁻¹; EI-HRMS calcd for C₁₄H₁₉NO₄S 297.10348, found 297.10375.

Hydrocarboxylation of 1a in the presence of nickelalactone 5 as catalyst

Nickelalactone **5** (20.4 mg, 0.040 mmol), Zn (39.2 mg, 0.600 mmol), and MgBr₂ (110.5 mg, 0.600 mmol) were weighed into a flame-dried round bottom flask in a glove box. Then, the flask was taken out of the glove box, and DMF (1.4 mL) was added at 0 °C to the flask. To the resulting suspension was added a solution of ynamide **1a** (51.6 mg, 0.194 mmol) and water (2.0 μ L, 0.111 mmol) in DMF (1.5 mL) at the same temperature via cannulation method. After removal of nitrogen gas in the flask by performing a freeze-pump-thaw procedure (3 times), the flask was backfilled with CO₂ gas using a balloon. The reaction mixture was stirred at 0 °C for 12 hours. To the mixture was added 10% aqueous solution of HCl at 0 °C. The resulting solution was extracted with diethyl ether several times. The combined organic layer was

washed with water, dried over Na₂SO₄, and concentrated. The residue was treated with diazomethane in Et₂O at 0 °C. After the mixture had been concentrated, the crude product was analyzed by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard to give a mixture of carboxylated product, **2a** and **3a** (51% yield (67/33) based on the initial amount of **1a**) and **3c** (53% yield based on the initial amount of nickelalactone **5**).

References

- 1. Y. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz, E. L. Vera, Org. Lett., 2004, 6, 1151.
- 2. T. Hamada, X. Ye, S. S. Stahl, J. Am. Chem. Soc., 2008, 130, 833.
- 3. H. Yasui, H. Yorimitsu, K. Oshima, Chem. Lett., 2008, 37, 40.
- 4. N. Saito, K. Saito, M. Shiro, Y. Sato, Org. Lett., 2011, 13, 2718.
- N. Saito, I. Abdullah, K. Hayashi, K. Hamada, M. Koyama, Y. Sato, Org. Biomol. Chem., 2016, 14, 10080.
- 6. K. Takamatsu, K. Hirano, T. Satoh, M. Miura, J. Org. Chem., 2015, 80, 3242.
- 7. G. Henrion, T. E. J. Chavas, X. L. Goff, F. Gagosz, Angew. Chem. Int. Ed., 2013, 52, 6277.
- 8. M. Okutani, Y. Mori, J. Org. Chem., 2009, 74, 442.

PPM 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

PPM 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

PPM 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

S44

5: ¹H NMR, CD₂Cl₂, 500 MHz

