Electronic Supplementary Information

Experimental section

Materials: NiCl₂· $6H_2O$, CoCl₂· $6H_2O$, NH₄F, and urea were purchased from Beijing Chemical Corp. The RuCl₃· $3H_2O$ and Nafion (5 wt%) were purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. Nitric acid (HNO₃) and ethanol were purchased from Tianjin Chemical Corporation. Carbon cloth (CC) was provided by Hongshan District, Wuhan Instrument Surgical Instruments business, and was pretreated in HNO₃ and then cleaned by sonication in water and ethanol to remove surface impurities. The water used throughout all experiments was purified through a Millipore system.

Preparation of NiCo₂O₄/CC: To prepare the precursor of NiCo₂O₄/CC, NiCl₂·6H₂O (4 mmol), CoCl₂·6H₂O (8 mmol) and urea (15 mmol) were dissolved in 75 mL water under vigorous stirring for 30 min. Then the solution was transferred to a 50 mL Teflon-lined stainless-steel autoclave in which a piece of CC was immersed into the solution. The autoclave was sealed and maintained at 120 °C for 6 h in an electric oven. After the autoclave cooled down to room temperature, the precursor was taken out and washed with water and ethanol for several times, followed by drying at 60 °C for 2 h. To prepare NiCo₂O₄/CC, the precursor was annealed at 450 °C in air for 2 h.

Preparation of NiCo₂O₄@Ni-Co-Ci/CC: The NiCo₂O₄@Ni-Co-Ci/CC was prepared by oxidative polarization of NiCo₂O₄/CC at a constant potential of 0.98 V vs. Ag/AgCl for 2.5 h. Two control samples were prepared by oxidative polarization at 1.08 V for 2.5 h and at 0.98 V for 20 h, respectively. The NiCo₂O₄/CC, Ag/AgCl and graphite plate were used as the working electrode, reference electrode and counter electrode, respectively. And 1.0 M K-Ci (pH: 8.3) was used as electrolyte. The NiCo₂O₄@Ni-Co-Ci loading was determined to be 1.7 mg cm⁻² using a high precision microbalance.

Preparation of RuO₂/CC: RuO₂ was prepared according to reported method.¹ Briefly, 2.61 g RuCl₃·3H₂O and 30 mL NaOH (1.0 M) were added into 100 mL distilled water and stirred for 45 minutes at 100 °C. The precipitates were collected by centrifugation and washed with water for several times, followed by drying at 70 °C. Finally, the product was annealed at 300 °C for 3 h under air atmosphere. RuO₂ ink was prepared by dispersing 20 mg of RuO₂ powder into 490 μ L of water/ethanol (v/v = 1:1) solvent containing 10 μ L of 5 wt% Nafion and sonicated for 30 min. Then the RuO₂ ink was coated onto a bare CC of 0.25 cm⁻².

Characterizations: The X-ray diffraction (XRD) patterns were collected by RigakuD/MAX 2550 diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å). The scanning electron microscopy (SEM) images were taken by a Hitachi S-4800 field emission scanning electron microscope at an accelerating voltage of 20 kV. The high-resolution transmission electron microscopy (HRTEM) measurements were performed on a Hitachi H-8100 electron microscopy with an accelerating voltage of 200 kV. The XPS scans were collected with a Thermal ESCALAB 250 spectrometer using Mg as the exciting source.

Electrochemical measurements: Electrochemical measurements were performed with a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) in a standard three-electrode system. NiCo₂O₄@Ni-Co-Ci/CC was used as the working electrode. A graphite plate and an Ag/AgCl electrode were used as the counter electrode and the reference electrode, respectively. The current densities were calculated with respect to the geometrical area of the electrodes (0.5 cm × 0.5 cm). The reference electrode was calibrated to the reversible hydrogen electrode (RHE) scale in all measurements using the following equation: E (RHE) = E (Ag/AgCl) + (0.197 + 0.059 pH) V. For Linear sweep voltammetry (LSV) measurements, the scan rate was set to be 5 mV s⁻¹. All experiments were carried out at 25 °C.

Fig. S1. Scanning electron microscopy images for the precursor of $NiCo_2O_4/CC$.

Fig. S2. XRD patterns of two control samples. Red curve: $NiCo_2O_4/CC$ treated by oxidative polarization at 1.08 V for 2.5 h. Blue curve: $NiCo_2O_4/CC$ treated by oxidative polarization at 0.98 V for 20 h.

Fig. S3. The Nyquist plots for NiCo₂O₄@Ni-Co-Ci/CC and NiCo₂O₄/CC in 1.0 M K-Ci. These plots were collected at 0.85V (vs. Ag/AgCl) with a frequency range from 100000 to 0.1 Hz and an amplitude of 5 mV.

Fig. S4. Cyclic voltammograms collected at various scan rates (10, 25, 50, 75 and 100 mV s⁻¹) for (a) NiCo₂O₄@Ni-Co-Ci/CC and (c) NiCo₂O₄/CC in 1.0 M K-Ci. The difference (Δj) between capacitive currents as a function of scan rates for (b) NiCo₂O₄@Ni-Co-Ci/CC and (d) NiCo₂O₄/CC in 1.0 M K-Ci. The slope is twice of double layer capacitance.

Fig. S5. SEM images of NiCo₂O₄@Ni-Co-Ci/CC after CV test.

Fig. S6. XPS spectra of NiCo₂O₄@Ni-Co-Ci after CV test in the (a) Ni 2p, (b) Co 2p,

⁽c) C 1s and (d) O 1s regions.

Fig. S7. Multi-current process of NiCo₂O₄@Ni-Co-Ci/CC. The current density started at 4 mA cm⁻² and ended at 40 mA cm⁻², with an increment of 4 mA cm⁻² per 300 s without iR correction.

Fig. S8. Practically generated and theoretically calculated oxygen amount versus time for NiCo₂O₄@Ni-Co-Ci/CC in 1.0 M K-Ci.

Catalyst	j (mA cm ⁻²)	η (mV)	Electrolyte	Ref.
NiCo ₂ O ₄ @Ni- Co-Ci/CC	10	507	0.2 M K-Ci	This work
	20	608	0.2 M K-Ci	
	20	503	0.5 M K-Ci	
	20	337	1.0 M K-Ci	
Fe-Ci/FTO	10	560	0.2 M Ci	2
Fe-Bi/ITO	10	600	0.5 M BBS	3
Co-Pi NA/Ti	10	450	0.1 M K-Pi	4
Co-Ci/GC	9.1	~771	0.2 M K-Ci	5
CoP@Co-Bi-Pi/Ti	10	410	0.1 M K-Bi	6
Fe-Co ₃ O ₄ @Fe-	10	420	0.1 M K-Bi	7
	1.0	10.0	0.1.N.W.D.	
Co-Ni LDH/FTO	1.0	490	0.1 M K-P1	8
NiO _x -Cat/GC	1.15	~604	0.2 M K-Ci	9
Ni-Bi film/FTO	1.0	390	0.5 M K-Bi	10
Ni-Bi film/FTO	1.0	413	1.0 M K-Bi	11
Ni-Bi film/FTO	0.6	618	0.1 M Na-Bi	12
NiO _x -en/FTO	1.0	510	0.6 M Na-Bi	13
NiO _x -Bi	1.0	650	0.5 M K-Bi	14
Ni-Bi/CC	10	470	0.1 M K-Bi	15
Ni-4Gly	1.0	480	0.25 M PBS	16
CuO/FTO	0.1	430	0.1 M K-Bi	17
Cu-Bi/FTO	1.0	~525	0.2 M Na-Bi	18

Table S1. Comparison of catalytic performance for $NiCo_2O_4$ @Ni-Co-Ci/CC withother reported non-noble-metal electrocatalysts under benign conditions.

References

- J. C. Cruz, V. Baglio, S. Siracusano, V. Antonucci, A. S. Aricò, R. Ornelas, L. Ortiz-Frade, G. Osorio-Monreal, S. M. Durón-Torres and L. G. Arriaga, *Int. J. Electrochem. Sci.*, 2011, 6, 6607–6619.
- F. Li, L. Bai, H. Li, Y. Wang, F. Yu and L. Sun, Chem. Commun., 2016, 52, 5753–5756.
- 3 D. R. Chowdhury, L. Spiccia, S. S. Amritphale, A. Paul and A. Singh, *J. Mater. Chem. A*, 2016, 4, 3655–3660.
- 4 L. Xie, R. Zhang, L. Cui, D. Liu, S. Hao, Y. Ma, G. Du, A. M. Asiri and X. Sun, Angew. Chem., Int. Ed., 2017, 56, 1064–1068.
- 5 K. S. Joya, K. Takanabe and H. J. M. D. Groot. *Adv. Energy Mater.*, 2014, 4, 1400252.
- 6 L. Cui, F. Qu, J. Liu, G. Du, A. M. Asiri and X. Sun, *ChemSusChem*, 2017, 10, 1370–1374.
- G. Zhu, R. Ge, F. Qu, G. Du, A. M. Asiri, Y. Yao and X. Sun, *J. Mater. Chem. A*, 2017, 5, 6388–6392.
- 8 Y. Zhang, B. Cui, C. Zhao, H. Lin and J. Li, *Phys. Chem. Chem. Phys.*, 2013, 15, 7363–7369.
- 9 K. S. Joya, Y. F. Joya and H. J. M. D. Groot, *Adv. Energy Mater.*, 2014, 4, 1301929.
- D. K. Bediako, Y. Surendranath and D. G. Nocera, J. Am. Chem. Soc., 2013, 135, 3662–3674.
- D. K. Bediako, B. Lassallekaiser, Y. Surendranath, J. Yano, V. K. Yachandra and
 D. G. Nocera, J. Am. Chem. Soc., 2012, 134, 6801–6809.
- 12 C. He, X. Wu and Z. He, J. Phys. Chem. C, 2014, 118, 4578–4584.
- 13 A. Singh, S. L. Y. Chang, R. K. Hocking, U. Bach and L. Spiccia, *Energy Environ. Sci.*, 2013, 6, 579–586.
- A. M. Smith, L. Trotochaud, M. S. Burke and S. W. Boettcher, *Chem. Commun.*, 2015, 51, 5261–5263.

- 15 X. Ji, L. Cui, D. Liu, S. Hao, J. Liu, F. Qu, Y. Ma, G. Du, A. M. Asiri and X. Sun, *Chem. Commun.*, 2017, **53**, 3070–3073.
- 16 D. Wang, G. Ghirlanda and J. P. Allen, J. Am. Chem. Soc., 2014, **136**, 10198–10201.
- 17 X. Liu, S. Cui, Z. Sun and P. Du, *Electrochim. Acta*, 2015, **160**, 202–208.
- 18 F. Yu, F. Li, B. Zhang, H. Li and L. Sun, ACS Catal., 2015, 5, 627–630.