Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Highly Discriminative Two-type Transformations of α,β-Unsaturated Esters in the Presence of Enones and Concise Synthesis of Oxacyclic Compounds

Kenta Morita, Reiya Ohta, Hiroshi Aoyama, Kenzo Yahata, Mitsuhiro Arisawa, and Hiromichi Fujioka*

Graduate School of Pharmacecutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan

Email: <u>fujioka@phs.osaka-u.ac.jp</u>

Table of Contents	
General information	S2
Experimental Procedures and Characterization Data	S2
Synthesis of Substrates	S2
Compound Data	S8
X-ray crystal structure analysis of keto phosphonium salt	S21
HPLC Chromatograms	S24
References	S25
¹ H, ¹³ C and NOESY, COSY NMR Spectra	S26

General information

All reagents were purchased from commercial sources and used without further purification, unless otherwise noted. Reactions were performed under a nitrogen atmosphere using purchased anhydrous solvent. All reactions were monitored by thin-layer chromatography using Merck silica gel 60 F254. The products were purified by column chromatography over silica gel Kieselgel 60 (70-230 mesh ASTM) purchased from Merck or Silica Gel 60N (40-50 µm, spherical neutral) purchased from Kanto Chemical. ¹H NMR and ¹³C NMR spectra were recorded at 25 °C on a JEOL JNM-AL300 (at 300 MHz and 75 MHz, respectively), a JEOL JNM-ECS 400 (at 400 MHz and 100 MHz, respectively) or a JEOL JNM-LA 500 (at 500 MHz and 125 MHz, respectively), and the chemical shifts are reported relative to internal TMS (¹H, $\delta = 0.00$) and CDCl₃ (¹³C, $\delta = 77.0$). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (integration, multiplicity, coupling constant (Hz)). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. IR spectra (KBr) were recorded by a SHIMADZU FTIR-8400 or SHIMADZU IRAffinity-1, and are reported in frequency of absorption (cm⁻¹). High-resolution mass spectra (MALDI-TOF) were performed by the Elemental Analysis Section of Graduate School of Pharmaceutical Science in Osaka University.

Experimental procedures and characterization data

Synthesis of substrates

The substrates 1, 2, 3, and 4, are commercially available and compounds $6^{[1]}$, $19a^{[2]}$, $19b^{[3]}$ are known compounds.

Synthesis of methyl (2E,18E)-20-oxohenicosa-2,18-dienoate (5)

15-Hydroxypentadecanal (S1)

To a solution of 15-Pentadecanolide (2.40 g, 10.0 mmol) in CH_2Cl_2 (100 mL) was added dropwise DIBAL-H (1.0 M in toluene, 25.2 mL, 10.5 mmol, 1.05 equiv.) at -78°C over 2 h. After the reaction mixture wasstirred for 2 h at the same temperature, saturated sodium potassium tartrate (Rochelle salt, 100 mL) was added. The mixture was allowed to warm to rt. and stirred vigorously for 12 h. The layers were separated and the aqueous layer was extracted with DCM (50 mL × 3). The combined organic layer was washed with brine, dried over NaSO₄ and concentrated in vacuo to give **S1** (2.30 g, 96% yield) as a crude product.

IR (KBr) 3632, 1733, 1120 cm⁻¹. ¹H-NMR (300 MHz, BenzenD₆) δ : 9.32 (1H, t, J = 1.7 Hz), 3.40 (2H, t, J = 6.5 Hz), 1.82 (2H, dt, J = 1.7, 7.2 Hz), 1.4-1.75 (24H, m). ¹³C-NMR (75 MHz, CDCl₃) δ : 200.9, 62.7, 43.8, 33.2, 30.1, 30.0, 30.0, 29.9, 29.9, 29.8, 29.8, 29.7, 29.4, 26.2, 22.2. HRMS (MALDI-TOF) Calcd for C₁₅H₃₀NaO₂ [M+Na]⁺: 265.2138, found 265.2136.

Methyl (E)-17-hydroxyheptadec-2-enoate (S2)

To a solution of **S1** (2.00 g, 8.26 mmol) in toluene (41 mL) was added methyl 2-(triphenyl- λ^5 -phosphaneylidene)acetate (535mg, 12.4 mmol, 1.5 equiv.) at rt. After being stirred overnight at 80°C, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt = 5/1) to afford **S2** (2.30 g, 93%) as a colorless solid. m.p. 46 °C. **IR** (KBr) 3625, 1718, 1233 cm⁻¹. ¹**H-NMR** 400 MHz, CDCl₃) δ : 6.98 (1H, dt, *J* = 15.3, 6.9 Hz), 5.82 (1H, dt, *J* = 15.3, 1.8 Hz), 3.73 (3H, s), 3.64 (2H, t, *J* = 6.9 Hz), 2.22-2.17 (2H, m), 1.58-

1.53 (3H, m), 1.47-1.41 (2H, m), 1.36-1.26 (19H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 167.2, 149.9, 120.7, 63.0, 51.4, 32.7, 32.2, 29.6, 29.6, 29.5, 29.5, 29.4, 29.3, 29.1, 28.0, 25.7. Since the carbon chain of the substrate is long and the peak is covered with another carbon peak, the peak of ¹³C-NMR is two fewer.

HRMS (MALDI-TOF) Calcd for C₁₈H₃₄NaO₃ [M+Na]⁺: 321.2400, found 321.2405.

Methyl (E)-17-oxoheptadec-2-enoate (S3)

Dess-Martin periodinane (7.11 g, 16.8 mmol, 2.5 equiv.) was added to a solution of **S2** (2.00 g, 6.71 mmol) in CH₂Cl₂ (34 mL) and the mixture was stirred at rt. After 1 h, saturated aqueous NaHCO₃ and excess Na₂S₂O₃ were added to the reaction mixture. The mixture was extracted with CH₂Cl₂. The combined organic layer was washed with saturated aqueous NaHCO₃, dried over NaSO₄, and filtered. After removal of the solvent (aspirator), the residue was purified by flash column chromatography (*n*-Hexane/AcOEt = 10/1) eluent, to afford **S3** (1.95 g, 98%) as a colorless solid.

m.p. 50 °C. **IR** (KBr) 1725, 1680 cm⁻¹. ¹**H-NMR** (500 MHz, CDCl₃) δ : 9.77 (1H, t, J = 1.8 Hz) 6.97 (1H, dt, J = 15.3, 6.9 Hz), 5.83 (1H, dt, J = 15.3, 1.8 Hz), 3.72 (3H, s), 2.44-2.40 (2H, m), 2.22-2.17 (2H, m), 1.64-1.61 (2H, m), 1.46-1.43 (2H, m), 1.30-1.26 (18H, m). ¹³**C-NMR** (125 MHz, CDCl₃) δ : 202.9, 167.1, 149.8, 120.7, 51.3, 43.8, 32.2, 29.5, 29.5, 29.4, 29.3, 29.3, 29.3, 29.1, 29.1, 29.1, 28.0, 22.0. **HRMS** (MALDI-TOF) Calcd for C₁₈H₃₂NaO₃ [M+Na]⁺: 296.2346, found 296.2351.

Methyl (2E,18E)-20-oxohenicosa-2,18-dienoate (5)

To a solution of **S3** (500 mg, 1.60 mmol) in toluene (16 mL) was added 1-(triphenyl- λ^5 -phosphanylidene)propan-2-one (535 mg, 1.68 mmol, 1.05 equiv.) at rt. After being stirred overnight at 80°C, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt = 25/1) to afford **5** (491 mg, 87%) as a colorless solid. m.p. 34 °C. **IR** (KBr) 1725, 1680 cm⁻¹. ¹**H**-**NMR** (500 MHz, CDCl₃) δ : 6.97 (1H, dt, *J* = 15.3, 6.9 Hz), 6.81 (1H, dt, *J* = 15.3, 6.9 Hz), 6.06 (1H, dt, *J* = 15.3, 1.7 Hz), 5.83 (1H, dt, *J* = 15.3, 1.7 Hz), 3.73 (3H, s), 2.24 (3H, s), 2.22-2.15 (4H, m), 1.48-1.42 (4H, m), 1.28-1.26 (18H, m). ¹³**C**-**NMR** (125 MHz, CDCl₃) δ : 198.8, 167.2, 149.8, 148.7, 131.2, 120.7, 51.3, 32.4, 32.2, 29.6, 29.6, 29.5, 29.5, 29.3, 29.1, 29.1, 29.0, 28.0, 28.0, 26.8, 26.8. **HRMS** (MALDI-TOF) Calcd for C₂₁H₃₆NaO₃ [M+Na]⁺: 359.2552, found 359.2557.

Methyl (2E,6E)-8-oxodeca-2,6-dienoate (19c)

To a solution of methyl (*E*)-6-oxohex-2-enoate (**S4**)^[4] (426 mg, 3.00 mmol) in toluene (30 mL) was added 1-(triphenyl- λ^5 -phosphaneylidene)butan-2-one (1.49 g, 4.50 mmol, 1.5 equiv.) at rt. After being stirred overnight at 80°C, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt = 7/1) to afford **19c** (529 mg, 91%) as a colorless oil.

IR (KBr) 1732, 1689 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ : 6.94 (1H, d, J = 15.3 Hz), 6.80 (1H, d, J = 15.3 Hz), 6.14 (1H, d, J = 15.3 Hz), 5.87 (1H, d, J = 15.3 Hz), 3.73 (3H, s), 2.57 (2H, q, J = 7.3 Hz), 2.42-2.40 (4H, m), 1.10 (3H, t, J = 7.3 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 200.5, 166.5, 147.0, 144.2, 130.5, 121.6, 51.2, 33.1, 30.3, 30.3, 7.4. HRMS (MALDI-TOF) Calcd for C₁₁H₁₆NaO₃ [M+Na]⁺: 219.0992, found 219.0990.

Methyl (2E,7E)-9-oxoundeca-2,7-dienoate (19d)

To a solution of methyl (*E*)-7-oxohept-2-enoate (**S5**)^[5] (468 mg, 3.00 mmol) in toluene (30 mL) was added 1-(triphenyl- λ^5 -phosphaneylidene)butan-2-one (1.49 g, 4.50 mmol, 1.5 equiv.) at rt. After being stirred overnight at 80 °C, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt = 7/1) to afford **19d** (586 mg, 93%) as a colorless oil.

IR (KBr) 1732, 1686 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ : 6.94 (1H, dt, J = 15.3, 6.9 Hz), 6.80 (1H, dt, J = 15.3, 6.9 Hz), 6.12 (1H, dt, J = 15.3, 1.4 Hz), 5.85 (1H, dt, J = 15.3, 1.4 Hz), 3.73 (3H, s), 2.58 (2H, q, J = 7.3 Hz), 2.27 (4H, m), 1.66 (2H, m), 1.10 (3H, t, J = 7.3 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 200.7, 166.7, 148.2, 145.5, 130.3, 121.3, 51.2, 33.1, 31.4, 31.3, 26.1, 7.8. HRMS (MALDI-TOF) Calcd for C₁₂H₁₈NaO₃ [M+Na]⁺: 233.1148, found 233.1148.

Experimental details in Table 1

Table 1, entry 1: To a solution of benzalacetone (1) (14.6 mg, 0.10 mmol), methyl cinnamate (2) (16.2 mg, 0.10 mmol, 1.0 equiv.) and PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.) in CH₂Cl₂ (0.50 mL) was added dropwise TMSOTf (27 μ L, 0.15 mmol, 1.5 equiv.) at 0 °C. After being stirred for 30 min at 0 °C, the reaction mixture was then cooled to -78 °C. To the solution was added DIBAL-H (1.0 M toluene solution, 0.2 mL, 2.0 equiv.). After the starting ester **2** was consumed (TLC check), TBAF (0.30 mL of 1.0 M THF solution, 0.30 mmol) was added, then the resulting solution was stirred for 30 min. After adding H₂O, the mixture was extracted with CH₂Cl₂. The extract was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane /AcOEt=5/1) to afford the recovered **1** (14.3 mg, 98%) and cinnamyl alcohol (**8Aa**)^[7] (11.7 mg, 87%).

Table 1, entry2: A solution of benzalacetone (1) (14.6 mg, 0.10 mmol) methyl cinnamate (2) (16.2 mg, 0.10 mmol, 1.0 equiv.) in CH₂Cl₂ (0.5 mL) was cooled to -78 °C. DIBAL-H (1.0 M toluene solution, 0.20 mL, 2.0 equiv.) was added dropwise and the reaction mixture was stirred for 2 h. After the reaction mixture was quenched with 1 *N* HCl aq. and the solvent volume was reduced under vacuum. The residue left behind was extracted with AcOEt (30 ml x 3). The organic layer was separated and dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt = 5/1) to afford the recovered **1** (5.3 mg,

36%) and 2 (7.0 mg, 43%) and the reduced products 7Aa^[6] (7.1 mg, 48%) and 8Aa^[7] (5.1 mg, 38%).

Table 1, entry 3:To a solution of benzalacetone (1) (14.6 mg, 0.10 mmol), methyl cinnamate (2) (16.2 mg, 0.10 mmol, 1.0 equiv.) and PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.) in CH₂Cl₂ (0.50 mL) was added dropwise TESOTf (34 μ L, 0.15 mmol, 1.5 equiv.) at 0 °C. After being stirred for 30 min at 0 °C, CeCl₃ (74.0 mg, 0.30 mmol, 3.0 equiv.) and EtMgBr (1.6 M Diethyl ether solution, 0.19 mL, 3.0 equiv.) were added dropwise to the resulting solution. After the starting ester **2** was consumed (TLC check), TBAF (0.20 ml of 1.0 M THF solution, 0.20 mmol, 1.0 equiv.) was added. The resulting solution was stirred for 30 min. After adding H₂O, the mixture was extracted with CH₂Cl₂. The extract was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt = 4/1) to afford the recovered **1** (11.7 mg, 80%) and the alcohol **8Ab**^[8] (16.7 mg, 88%)

Table 1, entry 4: To a solution of benzalacetone (1) (14.6 mg, 0.10 mmol), methyl cinnamate (2) (16.2 mg, 0.10 mmol, 1.0 equiv.) and CeCl₃ (74.0 mg, 0.30 mmol, 3.0 equiv.) in CH₂Cl₂ (0.50 mL) was added dropwise EtMgBr (1.6 M THF solution, 0.19 mL, 3.0 equiv.). The resulting solution was stirred for 2 h. After adding H₂O, the mixture was extracted with CH₂Cl₂. The extract was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt = 4/1) to afford the recovered **1** (4.5 mg, 31%) and **2** (7.9 mg, 49%) and the reduced products **7Ab**^[9] (7.7 mg, 44%) and **8Ab**^[8] (5.7 mg, 30%).

Experimental details in Table 2

Table 2, entry 1: To a solution of benzalacetone (1) (14.6 mg, 0.10 mmol), methyl cinnamate (2) (16.2 mg, 0.10 mmol, 1.0 equiv.) and PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.) in MeOH/AcOEt (7:1) (0.50 mL) was added dropwise TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.) at 0 °C. After being stirred for 30 min at 0 °C, 5% Pd/C (20 wt%) (3.20 mg) was added to the reaction mixture The reaction mixture was stirred at rt under a H₂ balloon. After the starting ester **2** was consumed (TLC check), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol) was added, then the resulting solution was stirred for 30 min. After filtration throug celite pad, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt = 3/1) to afford the recovered **1** (14.5 mg, 99%) and the hydrogenated **10Aa**^[10] (16.1 mg, 98%).

Table 2, entry2 : To a solution of benzalacetone (1) (14.6 mg, 0.10 mmol), methyl cinnamate (2) (16.2 mg, 0.10 mmol, 1.0 equiv.) in MeOH/AcOEt (7:1) (0.50 mL) was added 5% Pd/C (20 wt%, 3.2 0mg). The reaction mixture was stirred at rt for **5 min** under a H₂ balloon. After filtration throug celite pad, the filtrate was concentrated under reduced pressure. The residue was purified by flash column

chromatography (*n*-Hexane/AcOEt = 3/1) to afford the recovered **1** (13.3 mg, 91%) and **2** (15.1 mg, 93%) and the hydrogenated products **9Aa** ^[11](1.2 mg, 8%) and **10Aa** ^[10](1.1 mg, 7%).

Table 2, entry3:To a solution of benzalacetone (1) (14.6 mg, 0.10 mmol), methyl cinnamate (2) (16.2 mg, 0.10 mmol) in MeOH/AcOEt (7:1) (0.50 mL) was added 5% Pd/C (20 wt%, 3.20 mg). The reaction mixture was stirred at rt for **15 min** under a H₂ balloon. After filtration throug celite pad, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt=3/1) to afford the recovered **1** (6.2 mg, 38%) and **2** (9.9 mg, 61%) and the hydrogenated products **9Aa**^[11] (8.7 mg, 59%) and **10Aa**^[10] (6.1 mg, 37%).

Table 2, entry 4: To a solution of benzalacetone (1) (14.6 mg, 0.10 mmol), methyl cinnamate (2) (16.2mg, 0.10 mmol, 1.0 equiv.) and PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.) in Actone/H₂O (50:1) (0.50 mL) was added dropwise TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.) at 0 °C. After being stirred for 30 min at 0 °C, K₂OsO₄/2H₂O (3.30 mg, 10 mol%) and NMO (58.6 mg, 5.0 equiv.) were added to the reaction mixture. The resulting solution was stirred at rt under N₂. After the starting ester **2** was consumed, (TLC check), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol) and Na₂SO₃ (10.4 mg, 0.10 mmol, 1.0 equiv.) were added, then the resulting solution was stirred for 30 min. After filtration throug celite pad, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane /AcOEt=1/3) to afford the recovered **1** (12.0 mg, 82%) and the dihydrogenated **10Ab**^[12] (17.5 mg, 89%)).

Table2, entry 5: To a solution of benzalacetone (1) (14.6 mg, 0.10 mmol) and methyl cinnamate (2) (16.2 mg, 0.10 mmol, 1.0 equiv.) in Acetone/H₂O (50:1) (0.50 mL) were added K₂OsO₄/2H₂O (3.30 mg, 10 mol%) and NMO (58.6 mg, 5.0 equiv.). The reaction mixture was stirred at rt for 2 h under N₂. Na₂SO₃ (10.4 mg, 0.10 mmol, 1.0 equiv.) was added, then the resulting solution was stirred for 30 min. After filtration throug celite padthe filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt = 1/3) to afford the recovered **1** (8.3 mg, 51%) and **2** (9.6 mg, 59%) and the methylated products **9Ab**^[13](8.8 mg, 49%) and **10Ab**^[12] (8.0 mg, 41%).

Experimental details in Table 3

General procedure for the selective reduction of α , β -unsaturated ester in the presence of enone (Table 3, entries 1, 3, 5, 7, 9 and 11) : To a solution of enone (0.10 mmol) and α , β -unsaturated ester (0.10 mmol, 1.0 equiv.) {or enone-unsaturated ester (0.10 mmol)} and PPh₃ (0.15 mmol, 1.5 equiv.) in CH₂Cl₂ (0.50 mL) was added dropwise TMSOTf (0.15 mmol, 1.5 equiv.) at 0 °C. After being stirred for 30 min at 0 °C, the reaction mixture was then cooled to -78°C. DIBAL-H (0.2 mL, 1.0 M toluene

solution, 2.0 equiv.) was added to the mixture. After the starting α , β -unsaturated ester was consumed (TLC check), TBAF (0.30 mL, 1.0 M THF solution, 0.30 mmol) was added, then the resulting solution was stirred for 30 min. After adding H₂O, the mixture was extracted with CH₂Cl₂. The extract was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford the recovered enone and the reduced alcohol.

(E)-3-Phenylprop-2-en-1-ol (8Aa)^[7] (Table 3, entries 1 and 5)

Table 3, entry 1 (Same as entry 1 of Table 1): According to the general procedure, benzalacetone (1) (14.6 mg, 0.10 mmol), methyl cinnamate (2) (16.2 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.), TMSOTF (27 μ L, 0.15 mmol, 1.5 equiv.), DIBAL-H (0.20 mL of 1.0 M toluene solution, 0.20 mmol, 2.0 equiv.), and TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave recovered 1 (12.7 mg, 87%) and 8Aa^[7] (11.7 mg, 87%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 5/1).

Table 3, entry 5: According to the general procedure, **3** (14.0 mg, 0.10 mmol), methyl cinnamate (**2**) (16.2 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.), TMSOTf (27 µL, 0.15 mmol, 1.5 equiv.), DIBAL-H (0.20 mLof 1.0 M toluene solution, 0.20 mmol, 2.0 equiv.), and TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave recovered **3** (12.8 mg, 88%) and **8Aa**^[7] (12.2 mg, 91%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 5/1).¹H-NMR (400 MHz, CDCl₃) δ : 7.38 (2H, d, J = 7.3 Hz), 7.31 (2H, t, J = 7.3 Hz), 7.24 (1H, t, J = 7.3 Hz), 6.60 (1H, d, J = 15.6 Hz), 6.35 (1H, dt, J = 16.0, 5.4 Hz), 4.30 (2H, dd, J = 5.4, 1.4 Hz), 2.10 (1H, brs). ¹³C-NMR (CDCl₃, 100 MHz) δ : 136.4, 131.3, 128.4, 128.2, 127.7, 126.6, 63.7.

(E)-Oct-2-en-1-ol (8Ba)^[14] (Table3, entries 3 and 7)

Table 3, entry 3: According to the general procedure, benzalacetone (1) (14.6 mg, 0.10 mmol), 4(15.6 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.), TMSOTf (27 μ L, 0.15 mmol, 1.5 equiv.), DIBAL-H (0.20 mL of 1.0 M toluene solution, 0.20 mmol, 2.0 equiv.), and TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave recovered 1 (13.0 mg 89%) and 8Ba^[14] (10.9 mg, 85%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 5/1). Table 3, entry 7: According to the general procedure, 3 (14.0 mg, 0.10 mmol), 4 (15.6 mg, 0.10 mmol,

1.0 equiv.), PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.), TMSOTf (27 μ L, 0.15 mmol, 1.5 equiv.), DIBAL-H (0.20 mL of 1.0 M toluene solution, 0.20 mmol, 2.0 equiv.), and TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol) gave recovered **3** (10.2 mg, 73%) and **8Ba**^[14] (10.3 mg, 80%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 5/1).

¹**H-NMR** (400 MHz, CDCl₃) δ : 5.73– 5.54 (2H, m), 4.06 (2H, d, J = 6.0 Hz), 2.01 (2H, dt, J = 7.3, 6.7 Hz), 1.55 (1H, brs), 1.41–1.20 (6H, m), 0.86 (3H, t, J = 6.7 Hz). ¹³**C-NMR** (CDCl₃, 100 MHz) δ :133.5, 128.7, 63.7, 32.2, 31.7, 28.9, 22.3, 14.0.

(3E,18E)-20-Hydroxyhenicosa-3,18-dien-2-one (11) (Table 3, entry 9)

According to the general procedure, **5** (35.0 mg, 0.10 mmol), PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.), TMSOTf (27 µL, 0.15 mmol, 1.5 equiv.), DIBAL-H (0.20 mL of 1.0 M toluene solution, 0.20 mmol, 2.0 equiv.), and TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave **11** (28.1 mg, 84%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 10/1). **IR** (KBr) 3388, 1669 cm⁻¹. ¹**H**-**NMR** (500 MHz, CDCl₃) δ : 6.80 (1H, dt, J = 15.3, 6.9 Hz), 6.06 (1H, dt, J = 15.3, 1.2 Hz), 5.71-5.60 (2H, m), 4.09 (2H, d, J = 5.7 Hz), 2.24 (3H, s), 2.23-2.20 (2H, m), 2.05-2.01 (2H, m), 1.50-1.43 (2H, m), 1.40-1.24 (2H, m), 1.29-1.22 (19H, m).¹³**C**-**NMR** (125 MHz, CDCl₃) δ : 198.9, 148.8, 133.6, 131.2, 128.8, 63.8, 32.5, 32.2, 29.6, 29.6, 29.5, 29.5, 29.4, 29.2, 29.1, 28.0, 26.8. Since the carbon chain of the substrate is long and the peak is covered with another carbon peak, the peak of ¹³C-NMR is three fewer. **HRMS** (MALDI-TOF) Calcd for C₂₀H₃₆NaO₂ [M+Na]⁺: 331.2613, found 331.2615.

(E)-4-(4-((E)-3-Hydroxyprop-1-en-1-yl)phenyl)but-3-en-2-one (13) (Table1, entry11)

According to the general procedure, **6** (35.7 mg, 0.15 mmol), PPh₃ (60.0 mg, 0.23 mmol, 1.5 equiv.), TMSOTf (42 μ L, 0.23 mmol, 1.5 equiv.), DIBAL-H (0.30 mL of 1.0 M toluene solution, 0.30 mmol, 2.0 equiv.), and TBAF (0.30 mL of 1.0 M THF solution, 0.30 mmol, 2.0 equiv.) gave **13** (25.2 mg, 83%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 3/1). **IR** (KBr) 3413, 1710 cm^{-1.1}**H-NMR** (500 MHz, CDCl₃) δ : 7.50 (1H, d, *J* = 15.6 Hz), 7.46 (2H, d, *J* = 8.3 Hz), 7.39 (2H, d, *J* = 8.3 Hz), 6.68 (1H, d, *J* = 15.6 Hz), 6.60 (1H, d, *J* = 15.6 Hz), 6.44 (1H, dt, *J* = 15.6, 5.6 Hz), 4.35 (2H, dd, *J* = 5.6, 1.6 Hz), 2.38 (3H, s), 2.01 (1H, s). ¹³C-NMR (125 MHz, CDCl₃) δ : 198.6, 143.0, 139.0, 133.5, 130.4, 129.8, 128.6, 126.9, 126.7, 63.4, 27.5. **HRMS** (MALDI-TOF) Calcd for C₁₃H₁₅O₂ [M]⁺: 203.1067, found 203.1063

General procedure for the selective alkylation of α , β -unsaturated ester in the presence of enone (Table 3, entries 2, 4, 6, 8, 10, 12): To a solution of enone (0.10 mmol), α , β -unsaturated ester (0.10 mmol, 1.0 equiv.) (or enone-unsaturated ester (0.10 mmol)) and PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.) and CeCl₃ (74.0 mg, 0.30 mmol, 3.0 equiv.) in CH₂Cl₂ (0.50 mL) was added dropwise TESOTf (34 μ L, 0.15 mmol, 1.5 equiv.) at 0 °C. After being stirred for 30 min at 0 °C, Grignard reagent in THF

(1.0 M, 0.20 mL, 2.0 equiv.) was added to the solution. After the α,β -unsaturated ester was consumed (TLC check), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) was added, then the resulting solution was stirred for 30 min. After adding H₂O, the mixture was extracted with CH₂Cl₂. The extract was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford the desired products.

(E)-3-Ethyl-1-phenylpent-1-en-3-ol (8Ab)^[8] (Table 3, entries 2 and 6)

Table 3, entry 2 (Same as entry 3 of Table 1): According to the general procedure, benzalacetone (1) (14.6 mg, 0.10 mmol), methyl cinnamate (2) (16.2mg, 0.10 mmol, 1.0 equiv.), PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.), TESOTf (34 μ L, 0.15 mmol, 1.5 equiv.), CeCl₃ (74.0 mg, 0.30 mmol, 3.0 equiv.), EtMgBr (0.13 mL of 1.6 M THF solution, 0.20 mmol, 2.0 equiv.), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave recovered 1 (11.7 mg, 80%) and the alcohol 8Ab^[8] (16.7 mg, 88%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 2/1). Table 3, entry 6: According to the general procedure, 3 (14.0 mg, 0.10 mmol), methyl cinnamate (2) (16.2mg, 0.10 mmol, 1.0 equiv.), PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.), TESOTf (34 μ L, 0.15 mmol, 1.5 equiv.), EtMgBr (0.13 mL of 1.6 M THF solution, 0.20 mmol, 2.0 equiv.), TESOTf (34 μ L, 0.15 mmol, 1.5 equiv.), EtMgBr (0.13 mL of 1.6 M THF solution, 0.20 mmol, 2.0 equiv.), TESOTf (34 μ L, 0.15 mmol, 1.5 equiv.), EtMgBr (0.13 mL of 1.6 M THF solution, 0.20 mmol, 2.0 equiv.), TESOTf (34 μ L, 0.15 mmol, 1.5 equiv.), EtMgBr (0.13 mL of 1.6 M THF solution, 0.20 mmol, 2.0 equiv.), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave recovered 3 (11.5 mg, 82%) and 8Ab (16.1 mg, 85%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 2/1). ¹H-NMR (500 MHz, CDCl₃) δ : 7.38 (2H, d, *J* = 7.5 Hz), 7.32 (2H, t, *J* = 7.5 Hz), 7.24 (1H, t, *J* = 7.5 Hz), 6.58 (1H, d, *J* = 16.0 Hz), 6.18 (1H, d, *J* = 16.0 Hz), 1.64 (4H, q, *J* = 7.5 Hz), 0.92 (6H, t, *J* = 7.5 Hz), 6.58 (1H, d, *J* = 16.0 Hz), 6.18 (1H, d, *J* = 16.0 Hz), 1.64 (4H, q, *J* = 7.5 Hz), 0.92 (6H, t, *J* = 7.5 Hz), 6.58 (1H, d, *J* = 16.0 Hz), 6.18 (1H, d, *J* = 16.0 Hz), 1.64 (4H, q, *J* = 7.5 Hz), 0.92 (6H, t, *J* = 7.5 Hz),

7.5 Hz). ¹³C-NMR (125 MHz, CDCl₃) δ: 137.1, 135.3, 128.5, 128.1, 127.2, 126.3, 75.8, 33.3, 7.9.

(E)-3-Ethyldec-4-en-3-ol (8Bb) (Table 3, entries 4 and 8)

Et Et OH

Table3, entry4: According to the general procedure, benzalacetone (1) (14.6 mg, 0.10 mmol), **4** (15.6 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.), TESOTf (34 μ L, 0.15 mmol, 1.5 equiv.), CeCl₃ (74.0 mg, 0.30 mmol, 3.0 equiv.), EtMgBr (0.125 mL of 1.6 M THF solution, 0.20 mmol, 2.0 equiv.), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave recovered **1** (12.6 mg, 86%) and **8Bb** (16.4 mg, 89%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 30/1).

Table 3, entry 8: According to the general procedure, **3** (14.0 mg, 0.10 mmol), 4 (15.6 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (39.3 mg, 0.15 mmol, 1.5 equiv.), TESOTF (34 μ L, 0.15 mmol, 1.5 equiv.), EtMgBr (0.13 mL of 1.6 M THF solution, 0.20 mmol, 2.0 equiv.), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave recovered **3** (11.3 mg, 81%) and **8Bb** (16.5 mg, 88%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 30/1).

IR (KBr) 3427 cm⁻¹.¹H-NMR (400 MHz, CDCl₃) δ : 5.59 (1H, dt, J = 15.5, 6.9 Hz), 5.39 (1H, dt, J = 15.5, 7.8 Hz), 7.8

15.5, 1.4 Hz), 2.05 (2H, tdd, J = 14.2, 14.2, 1.4 Hz), 1.57-1,26 (10H, m), 1.29-0.83 (9H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 135.1, 128.9, 75.2, 33.0, 32.3, 31.3, 29.2, 22.5, 14.0, 7.8. **HRMS** (MALDI-TOF) Calcd for C₁₂H₂₄NaO [M+Na]⁺: 207.1711, found 207.1719.

(3E,18E)-20-hydroxy-20-methylhenicosa-3,18-dien-2-one (12) (Table 3, entry 10)

According to the general procedure, **5** (60.0 mg, 0.18 mmol), PPh₃ (70.2 mg, 0.27 mmol, 1.5 equiv.), TESOTf (90 µL, 0.27 mmol, 1.5 equiv.), MeMgBr (0.62 mL of 1.0 M THF solution, 0.62 mmol, 3.4 equiv.), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 1.1 equiv.) gave **12** (53.3 mg, 89%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 3/1). **IR** (KBr) 3440, 2941, 2851, 1647 cm⁻¹. ¹**H-NMR** (400 MHz, CDCl₃) δ : 6.80 (1H, dt, J = 16.0, 6.8 Hz), 6.05 (1H, dt, J = 16.0, 1.4 Hz), 5.60 (2H, m), 2.25 (3H, s), 2.23-2.20 (2H, m), 2.03-1.98 (2H, m), 1.48-1.43 (2H, m), 1.371.26 (27H, m). ¹³**C-NMR** (100 MHz, CDCl₃) δ :198.9, 148.7, 137.7, 131.2, 127.3, 70.6, 32.5, 32.1, 29.8, 29.6 (2C), 29.5 (2C), 29.4, 29.3, 29.2, 29.1, 28.0, 26.8. **HRMS** (MALDI-TOF) Calcd for C₂₂H₄₀NaO₂ [M+Na]⁺: 359.2918 found .359.2921.

(E)-4-(4-((E)-3-Hydroxy-3-methylbut-1-en-1-yl)phenyl)but-3-en-2-one (14) (Table 3, entry 12)

According to the general procedure, **6** (46.0 mg, 0.20 mmol), PPh₃ (78.6 mg, 0.30 mmol, 1.5 equiv.), TESOTF (68 μ L, 0.30 mmol, 1.5 equiv.), MeMgBr (0.40 mL of 1.0 M THF solution, 0.40 mmol, 2.0 equiv.), TBAF (0.40 mL of 1.0 M THF solution, 0.40 mmol, 2.0 equiv.) gave **14** (38.6 mg, 84%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 4/1). **IR** (KBr) 3461, 2974, 2929, 1663 cm⁻¹. ¹**H-NMR** (500 MHz, CDCl₃) δ : 7.50 (2H, d, *J* = 8.2 Hz), 7.48

(1H, d, J = 16.0 Hz), 7.41 (2H, d, J = 8.2 Hz), 6.71 (1H, d, J = 16.0 Hz), 6.60 (1H, d, J = 16.0 Hz), 6.43 (1H, d, J = 16.0 Hz), 2.38 (3H, s), 1.44 (6H, s). ¹³C-NMR (125 MHz, CDCl₃) δ : 198.5, 143.0, 139.3, 139.2, 133.4, 128.6, 127.0, 126.7, 125.7, 71.1, 29.9, 27.5. HRMS (MALDI-TOF) Calcd for C₁₅H₁₈NaO₂ [M+Na]⁺: 253.1204, found 253.1207.

Experimental details in Table 4

General procedure for the selective hydrogenation of α , β -unsaturated ester in the presence of enone (Method A) (Table 4, entries 1, 3, 5, 7, 9, 11)

To a solution of enone (0.10 mmol) and α,β -unsaturated ester (0.10 mmol, 1.0 equiv.) (or enoneunsaturated ester (0.10 mmol)) and PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.) in MeOH/AcOEt (7:1) (0.50 mL) was added dropwise TMSOTf (0.10 mmol, 1.0 equiv.) at 0 °C. After being stirred for 30 min at 0 °C, 5% Pd/C (20 wt%) was added to the reaction mixture. The reaction solution was stirred at rt under a H₂ balloon. After the starting α,β -unsaturated ester was consumed (TLC check), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) was added, then the resulting solution was stirred for 30 min. After filtration through clite pad, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt) to afford the recovered enone and the hydrogenated ester.

Methyl 3-phenylpropanoate (10Aa)^[10] (Table 4, entries 1 and 5)

Table 4, entry 1 (Same as entry 1 of Table 2): According to the general procedure, 1 (14.6 mg, 0.10 mmol), 2 (16.2 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.), TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.), 5% Pd/C (20 wt%, 6.2 mg), under H₂ balloon, and TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol) gave recovered 1 (13.6 mg, 93%), 10Aa^[10] (16.2 mg, 99%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 15/1).

Table 4, entry 5: According to the general procedure, **3** (14.6 mg, 0.10 mmol), **2** (16.2 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (26.2 mg, 0.10 mmol), TMSOTf (18 µL, 0.10 mmol), 5% Pd/C (20 wt%, 6.2 mg), H₂, and TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave recovered **3** (13.6 mg, 97%) and **10Aa^[10]** (16.4 mg, quant) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 15/1).¹H-NMR (400 MHz, CDCl₃) δ : 7.32 (2H, d, *J* = 7.5 Hz), 7.20 (2H, t, *J* = 7.5 Hz), 7.17 (1H, t, *J* = 7.5Hz), 3.64 (3H, s), 2.96 (2H, t, *J* = 7.5 Hz), 2.63 (2H, t, *J* = 7.5 Hz), 1¹³C-NMR (100 MHz, CDCl₃, pp) δ :173.4, 140.5, 128.8, 128.2, 126.5, 51.6, 36.1, 31.2 .

Methyl octanoate (10Ba)^[15] (Table 4, entries 3 and 7)

Table 4, entry 3: According to the general procedure, **1** (14.6 mg, 0.10 mmol), **4** (15.6 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.), TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.), 5% Pd/C (20 wt%, 6.0 mg), H₂, and TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave recovered **1** (13.9 mg, 95%) and **10Ba**^[15] (15.3 mg, 97%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 20/1).

Table 4, entry 7: According to the general procedure, **3** (14.0 mg, 0.10 mmol), **4** (15.6 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.), TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.), 5% Pd/C (20 wt%, 5.9 mg), H₂, and TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave recovered **3** (14.0 mg, quant) and **10Ba**^[15] (15.7 mg, 99%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 20/1).

¹**H-NMR** (400 MHz, CDCl₃) δ: 3.65 (s, 3H), 2.32 (2H, t, *J* = 7.9 Hz), 1.6 (2H, m), 1.30 (8H, m), 0.88

(3H, t, *J* = 6.8 Hz); ¹³**C-NMR** (100 MHz, CDCl₃) δ: 174.6, 51.6, 34.3, 31.9, 29.3, 29.1, 25.2, 22.8, 14.3.

Methyl (E)-19-oxohenicos-17-enoate (15)

Table 4, entry 9: According to the general procedure, **5** (33.4 mg, 0.10 mmol), PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.), TMSOTf (18 µL, 0.10 mmol, 1.0 equiv.), 5% Pd/C (20 wt%, 6.7 mg), under H₂ balloon, and TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) gave **15** (31.9 mg, 95%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 10/1). **IR** (KBr) 2927, 2855, 1734, 1696 cm⁻¹. ¹**H-NMR** (500 MHz, CDCl₃) δ : 6.80 (1H, dt, *J* = 15.3, 6.9 Hz), 6.08 (1H, d, *J* = 15.3 Hz), 3.67 (3H, s), 2.31-2.24 (2H, m), 2.22 (3H, s), 2.21-2.20 (2H, m), 1.63-1.60 (2H, m), 1.48-1.45 (2H, m), 1.29-1.25 (22H, m). ¹³**C-NMR** (125 MHz, CDCl₃) δ : 198.9, 174.4, 148.8, 131.3, 51.5, 34.1, 32.5, 29.7, 29.6, 29.6, 29.5, 29.5, 29.4, 29.4, 29.3, 29.2, 29.2, 28.1, 27.8, 26.8, 25.0. **HRMS** (MALDI-TOF) Calcd for C₂₁H₃₈NaO₃ [M+Na]⁺: 361.2719, found 361.2711.

Methy (E)-3-(4-(3-oxobut-1-en-1-yl)phenyl)propanoat (17)

Table 4, entry 11: According to the general procedure, **6** (46.0 mg, 0.20 mmol), PPh₃ (52.4 mg, 0.20 mmol, 1.0 equiv.), TMSOTf (36 µL, 0.20 mmol, 1.0 equiv.), 5% Pd/C (20 wt%, 9.2 mg), under H₂ balloon, and TBAF (0.40 mL of 1.0 M THF solution, 0.40 mmol, 2.0 equiv.) gave **17** (44.4 mg, 96%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 8/1). **IR** (KBr) 2958, 1726, 1650 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ : 7.42 (2H, d, *J* = 8.1 Hz), 7.40 (1H, d, *J* = 16.6 Hz), 7.17 (2H, d, *J* = 8.1 Hz), 6.62 (1H, d, *J* = 16.6 Hz), 3.60 (3H, s), 2.90 (2H, t, *J* = 7.5 Hz), 2.30 (3H, s). ¹³C-NMR (125 MHz, CDCl₃) δ : 198.4, 173.0, 143.4, 143.2, 132.5, 129.0, 128.5, 126.7, 51.7, 35.2, 30.7, 27.5. **HRMS** (MALDI-TOF) Calcd for C₁₄H₁₆NaO₃ [M+Na]⁺: 255.0992, found 255.0992.

General procedure for the selective dihydroxylation of α , β -unsaturated ester in the presence of enone (Method B) (Tables 4, entry 2, 4, 6, 8, 10, 12) : To a solution of enone (0.10 mmol), α , β -unsaturated ester (0.10 mmol, 1.0 equiv.) (or enone-unsaturated ester (0.10 mmol)) and PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.) in acetone (0.5 mL) was added dropwise TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.) at 0 °C. After being stirred for 30 min at 0 °C, H₂O (10 μ L), K₂OsO₄ (10 mol%), and NMO

(0.50 mmol, 5.0 equiv.) were added to the mixture. After the starting ester was consumed (TLC check), Na₂SO₃ (0.10 mmol, 1.0 equiv.) and TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) were added to the mixture, then the resulting solution was stirred for 30 min. The mixture was poured into H₂O (10 mL) and extracted with CH₂Cl₂ (20 mL \times 3). The extract was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt) to afford the recovered enone and dihydrated ester.

Methyl 2,3-dihydroxy-3-phenylpropanoate (10Ab)^[12] (Table 4, entries 2 and 6)

Table 4, entry 2: According to the general procedure, **1** (14.6 mg, 0.10 mmol), **2** (16.2 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.), TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.), K₂OsO₄ • 2H₂O (3.70 mg, 10 mol%), NMO (59.0 mg, 0.50 mmol, 5.0 equiv.), H₂O (10 μ L), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) and Na₂SO₃ (10.4 mg, 0.10 mmol, 1.0 equiv.) gave recovered **1** (12.0 mg, 82%) and **10Ab**^[12] (17.5 mg, 89%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 1/2).

Table 4, entry 6: According to the general procedure, **3** (14.0 mg, 0.10 mmol), **2** (16.2 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.), TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.), K₂OsO₄ • 2H₂O (3.70 mg, 10 mol%), NMO (59.0 mg, 0.50 mmol, 5.0 equiv.), H₂O (10 μ L), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) and Na₂SO₃ (10.4 mg, 0.10 mmol, 1.0 equiv.) gave recovered **3** (11.5 mg, 77%) and **10Ab**^[12] (15.7 mg, 80%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 1/2).¹H-NMR (300 MHz, CDCl₃) δ :7.42 (2H, d, *J* = 7.6 Hz), 7.24 (2H, t, *J* = 7.6 Hz), 7.21 (1H, t, *J* = 7.6 Hz), 5.05 (1H, d, *J* = 2.6 Hz), 4.38 (1H, d, *J* = 2.6 Hz), 3.80 (3H, s), 3.17 (1H, brs), 2.80 (1H, brs).¹³C-NMR (75 MHz, CDCl₃) δ :173.0, 139.7, 128.4, 128.1, 126.0, 74.5. 74.4, 52.7.

Methyl 2,3-dihydroxyoctanoate (10Bb)^[16] (Table 4, entries 4, 8)Table 4, entry 4: According to the general procedure, 1 (14.6 mg, 0.10 mmol), 4 (15.6 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.), TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.), K₂OsO₄ • 2H₂O (3.70 mg, 10 mol%), NMO (59 mg, 0.50 mmol, 5.0 equiv.), H₂O (10 μ L), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) and Na₂SO₃ (10.4 mg, 0.10 mmol, 1.0 equiv.) gave recovered 1 (11.2 mg, 78%) and 10Bb^[16] (15.7 mg, 82%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 1/4).

Table 4, entry 8: According to the general procedure, 3 (14.0 mg, 0.10 mmol), 4 (15.6 mg, 0.10 mmol, 1.0 equiv.), PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.), TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.), K₂OsO₄ • 2H₂O (3.70 mg, 10 mol%), NMO (59.0 mg, 0.50 mmol, 5.0 equiv.), H₂O (10 μ L), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) and Na₂SO₃ (10.4 mg, 0.10 mmol, 1.0 equiv.) gave recovered 3 (11.1 mg, 79%) and 10Ab^[16] (15.8 mg, 83%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 1/4).

¹**H-NMR** (300 MHz, CDCl₃) δ :4.19-4.08 (1H, m), 3.82–3.90 (1H, m), 3.82 (3H, s), 3.48 (1H, br), 2.56(1H, br), 1.68 (2H, m), 1.58-1.68 (2H, m), 1.47 (1H, m), 1.25–1.41 (5H, m), 0.87 (3H, t, J = 6.8 Hz). ¹³**C-NMR** (75MHz, CDCl₃) δ : 169.4, 56.9, 51.4, 48.9, 30.6, 29.2, 29.1, 24.0, 23.3.

Methyl (E)-2,3-dihydroxy-19-oxoicos-17-enoate (16)

Table 4, entry 10: According to the general procedure, 5 (35.0 mg, 0. 10 mmol), PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.), TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.), K₂OsO₄ · 2H₂O (3.70 mg, 10 mol%), NMO (59.0 mg, 0.50 mmol, 5.0 equiv.), H₂O (10 μ L), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) and Na₂SO₃ (10.4 mg, 0.10 mmol, 1.0 equiv.) gave 16 (28.4 mg, 74%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 1/3).

IR (KBr) 3480, 2919, 2853, 1734, 1684 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ : 6.81 (1H, dt, J = 15.3, 6.9 Hz), 6.06 (1H, dt, J = 15.3, 1.0 Hz), 4.11 (1H, dt, J = 5.48, 1.0 Hz), 3.84 (3H, s), 3.02 (1H, d, J = 5.48 Hz), 2.25 (3H, s), 2.23-2.20 (2H, m), 1.64-1.58 (2H, m), 1.43-1.29 (22H, m).¹³C-NMR (100 MHz, CDCl₃) δ : 207.9, 167.2, 149.9, 120.7, 56.9, 51.4, 48.2, 33.8, 32.2, 31.1, 29.7, 29.6, 29.6, 29.5, 29.4, 29.1, 28.0, 25.0. Since the carbon chain of the substrate is long and the peak is covered with another carbon peak, the peak of ¹³C NMR is three fewer. **HRMS** (MALDI-TOF) Calcd for C₂₁H₃₈NaO₅ [M+Na]⁺: 393.2612, found 393.2610

Methyl (E)- 2,3-dihydroxy-3-(4-(3-oxobut-1-en-1-yl)phenyl)propanoate (18)

Table 4, entry 12: According to the general procedure, 6 (23.0 mg, 0.10 mmol), PPh₃ (26.2 mg, 0.10 mmol, 1.0 equiv.), TMSOTf (18 μ L, 0.10 mmol, 1.0 equiv.), K₂OsO₄ · 2H₂O (3.70 mg, 10 mol%), NMO (59.0 mg, 0.50 mmol, 5.0 equiv.), H₂O (10 μ L), TBAF (0.20 mL of 1.0 M THF solution, 0.20 mmol, 2.0 equiv.) and Na₂SO₃ (10.4 mg, 0.10 mmol, 1.0 equiv.) gave **18** (18.7 mg, 71%) as a colorless oil after purification by flash column chromatography (*n*-Hexane/AcOEt = 1/3).

IR (KBr) 3658, 1724, 1695 cm⁻¹. ¹**H-NMR** (400 MHz, CDCl₃) δ : 7.53 (2H, d, J = 8.2 Hz), 7.49 (1H, d, J = 16.5 Hz), 7.44 (2H, d, J = 8.2 Hz), 6.68 (1H, d, J = 16.5 Hz), 5.05 (1H, dd, J = 6.9, 2.8 Hz), 4.38 (1H, dd, J = 6.0, 2.7 Hz), 3.83 (3H, s), 3.36 (1H, d, J = 6.0 Hz), 3.19 (1H, d, J = 7.3 Hz), 2.37 (3H, s). ¹³**C-NMR** (100 MHz, CDCl₃) δ : 198.7, 172.9, 143.0, 142.6, 134.0, 128.3, 127.2, 126.8, 74.5, 74.0, 52.9, 27.5. **HRMS** (MALDI-TOF) Calcd for C₁₄H₁₆NaO₅ [M+Na]⁺: 287.0890, found 287.0891

General procedure for the one-pot synthesis of cyclic ethers (Scheme 2)

To a solution of enone-unsaturated ester **19** (0.30 mmol) and PPh₃ (78.9 mg, 0.30 mmol, 1.0 equiv.) in CH₂Cl₂ (1.2 mL) was added dropwise TMSOTf (54 μ L, 0.30 mmol, 1.0 equiv.) at 0 °C. After being stirred for 30 min at 0 °C, DIBAL-H (1.0 M toluene solution, 0.90 mL, 3.0 equiv.) was added to the mixture. TLC analysis was conducted after quenching a small amount of the reaction mixture with a drop of TBAF (1.0 M THF solution). 1*N* HCl (100 μ L) was added, then the resulting solution was stirred for 2 h. The solvent was evaporated. Acetone/H₂O (50:1) (1.2 mL), K₂OsO₄ • 2H₂O (111 mg, 0.03 mmol, 10 mol%), and NMO (176 mg, 1.5 mmol, 5.0 equiv.) were added to the residue, and the resulting solution was stirred at 0°C. TLC analysis was conducted after quenching a small amount of the reaction mixture with a drop of TBAF (1.0 M THF solution). The solvent was evapolated. After addition of 1,4-dioxane (6.0 mL) and K₂CO₃ (207 mg 1.5 mmol, 5.0 equiv.) at rt, the mixture was refluxed. In the cases of **20c** and **20d**, THF and KO'Bu were used in place of 1,4-dioxane and K₂CO₃. After the enone diol was consumed by TLC check, the reaction was quenched by adding saturated NH₄Cl aq. The mixture was extracted with AcOEt (20 mL × 15). The extract was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (*n*-Hexane/AcOEt) to afford the desired cyclic ether **20**.

2-(5-(1,2-Dihydroxyethyl)tetrahydrofuran-2-yl)-1-phenylethan-1-one (±)-20a

entry 1: According to the general procedure, 19a (73.2 mg, 0.30 mmol), PPh₃ (78.9 mg, 0.30 mmol, 1.0 equiv.), CH₂Cl₂ (1.2 mL), TMSOTf (54 μ L, 0.3 mmol, 1.0 equiv.), DIBAL-H (1.0 M toluene solution, 0.9 mL, 3.0 equiv.), 1 *N* HCl (100 μ L), Acetone/H₂O (50:1) (1.2 mL), K₂OsO₄ · 2H₂O (11.1 mg, 0.03 mmol, 10 mol%), NMO (176 mg, 1.5 mmol, 5.0 equiv.), 1,4-dioxane (6.0 mL) and K₂CO₃ (207 mg, 1.5 mmol, 5.0 equiv.) afforded **20a** (42.8 mg, 57%) as a colorless oil after purification (AcOEt only) by flash column chromatography.

IR (KBr) 3432, 3055, 1683 cm⁻¹. ¹H-NMR. (500 MHz, CDCl₃) δ : 7.95 (2H, dd, J = 7.0, 1.2 Hz), 7.56 (1H, tt, J = 7.0, 1.2 Hz) 7.47 (2H, t, J = 7.0 Hz), 4.57-4.54 (1H, m), 4.09-4.05 (1H, m), 3.73-3.63 (2H, m), 3.57-3.54 (1H, m), 3.38 (1H, dd, J = 16.0, 6.3 Hz), 3.08 (1H, dd, J = 16.0, 6.3 Hz), 2.31-2.26 (1H, m), 2.06-2.01 (1H, m), 1.95-1.89 (1H, m), 1.69-1.61 (1H, m). ¹³C-NMR (125 MHz, CDCl₃) δ : 198.1, 136.9, 133.3, 128.6, 128.1, 80.1, 75.9, 73.0, 64.5, 44.4, 32.4, 27.9. HRMS (MALDI-TOF) Calcd for C₁₄H₁₈NaO₄ [M+Na]⁺: 273.1097, found 273.1097.

2-(6-(1,2-Dihydroxyethyl)tetrahydro-2H-pyran-2-yl)-1-phenylethan-1-one (±)-20b

entry 2: According to the general procedure, 19b (77.4 mg, 0.30 mmol), PPh₃ (78.9 mg, 0.30 mmol, 1.0 equiv.), CH₂Cl₂ (1.2 mL), TMSOTf (54 μ L, 0.3 mmol, 1.0 equiv.), DIBAL-H (1.0 M toluene solution, 0.9 mL, 3.0 equiv.), 1N HCl (100 μ L), Acetone/H₂O (50:1) (1.2 mL), K₂OsO₄ · 2H₂O (11.1 mg, 0.03 mmol 10 mol%), NMO (176 mg, 1.5 mmol, 5.0 equiv.), 1,4-dioxane (6.0 mL) and K₂CO₃ (207 mg 1.5 mmol, 5.0 equiv.) afford the desired products **20b** (53.9 mg, 68%) as a colorless oil after purification (AcOEt only) by flash column chromatography.

2-((2S,6R)-6-((R)-1,2-Dihydroxyethyl)tetrahydro-2H-pyran-2-yl)-1-phenylethan-1-one (+)-20b

entry 3: According to the general procedure, 19b (38.7 mg, 0.15 mmol), PPh₃ (39.5 mg, 0.15 mmol, 1.0 equiv.), CH₂Cl₂ (0.6 mL), TMSOTf (27 μL, 0.15 mmol, 1.0 equiv.), DIBAL-H (1.0 M toluene solution, 0.45 mL, 3.0 equiv.), 1N HCl (100 μL), Acetone/H₂O (50:1) (0.6 mL), OsO₄ (1.9 mg, 5 mol%), Hydroquinidine 4-cholorobenzoate (7.0 mg, 10 mol%), NMO (88 mg, 1.5 mmol, 3.0 equiv.), 1,4-dioxane (3.0 mL) and K₂CO₃ (104 mg, 1.50 mmol, 5.0 equiv.) afforded optically active 20b (23.5 mg, 59%) as a colorless oil after purification (AcOEt only) by flash column chromatography. Optical purity (83% ee) was determined by HPLC using chiral DAICEL CHIRALPAK OD-H $[\alpha]_D^{23} = +2.44$ (c = 1.00, CHCl₃). IR (KBr) 3345, 1699 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ: 7.96 (2H, dd, J = 6.9, 1.3 Hz), 7.57 (1H, tt, J = 6.9, 1.3 Hz), 7.49 (2H, t, J = 6.9 Hz), 4.04-3.98 (1H, m), 3.69-3.60 (2H, m), 3.52-3.44 (2H, m), 3.28 (1H, dd, J = 19.5, 6.8 Hz), 2.97 (1H, dd, J = 19.5, 6.8 Hz), 2.65-2.43 (2H, brs), 1.93-1.33 (6H, m). ¹³C-NMR (125 MHz, CDCl₃) δ: 198.4, 137.0, 133.2, 128.6, 128.1, 78.8, 74.5, 73.8, 63.9, 44.9, 31.2, 26.8, 22.8. HRMS (MALDI-TOF) Calcd for C₁₅H₂₀NaO₄ [M+Na]⁺: 287.1254, found 287.1253. HPLC (DAICEL CHIRALPAK OD-H, Hexane/iPrOH = 70/30, flow rate = 0.9 ml/ min, 254nm) : t_{major} = 11.5 min, t_{minor} = 16.6 min.

1-(5-(1,2-Dihydroxyethyl)tetrahydrofuran-2-yl)butan-2-one (±)-20c

entry 4: According to the general procedure, 19c (58.8 mg, 0.30 mmol), PPh₃ (78.9 mg, 0.30 mmol, 1.0 equiv.), CH₂Cl₂ (1.2 mL), TMSOTf (54 μL, 0.30 mmol, 1.0 equiv.), DIBAL-H (1.0 M toluene solution, 0.9 mL, 3.0 equiv.), 1 *N* HCl (100 μL), Acetone/H₂O (50:1) (1.2 mL), K₂OsO₄ • 2H₂O (11.1

mg, 0.03 mmol, 10 mol%), NMO (176 mg, 1.5 mmol, 5.0 equiv.), THF (6.0 ml), and KO'Bu (34.0 mg, 0.30 mmol, 1.0 equiv.) afforded **20c**(37.6 mg, 63%) as a colorless oil after purification (AcOEt only) by flash column chromatography.

IR (KBr) 3388, 1706 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ :4.33-4.29 (1H, m), 3.99-3.95 (1H, m), 3.67-3.66 (1H, m), 3.54 (1H, brs), 3.00-2.99 (1H, m), 2.74-2.67 (1H, m), 2.63-2.59 (1H, m), 2.53-2.43 (3H, m), 2.12-2.06 (1H, m), 1.99-1.85 (3H, m), 1.64-1.57 (1H, m), 1.05 (3H, t, J = 7.1 Hz).¹³C-NMR (125 MHz, CDCl₃) δ : 209.9, 80.5, 75.8, 73.1, 64.9, 48.1, 36.6, 31.2, 27.2, 7.5. HRMS (MALDI-TOF) Calcd for C₁₀H₁₈NaO₄ [M+Na]⁺: 225.1097, found 225.1098

1-(6-(1,2-Dihydroxyethyl)tetrahydro-2H-pyran-2-yl)butan-2-one (±)-20d

entry 5: According to the general procedure, 19d (63.0 mg, 0.30 mmol), PPh₃ (78.9 mg, 0.30 mmol, 1.0 equiv.), CH₂Cl₂ (1.2 mL), TMSOTf (54 μ L, 0.30 mmol, 1.0 equiv.), DIBAL-H (1.0 M toluene solution, 0.9 mL, 3.0 equiv.), 1 *N* HCl (100 μ L), Acetone/H₂O (50:1) (1.2 mL), K₂OsO₄ · 2H₂O (11.1 mg, 0.03 mmol, 10 mol%), NMO (176 mg, 1.5 mmol, 5.0 equiv.), THF (6.0 mL), and KO'Bu (34.0 mg 0.30 mmol, 1.0 equiv.) afforded 20d (38.9 mg, 60%) as a colorless oil after purification (AcOEt only) by flash column chromatography.

IR (KBr) 3374, 1710 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ : 3.89-3.84 (1H, m), 3.72-3.64 (2H, m), 3.50-3.47 (2H, m), 2.65 (1H, dd, J= 15.3, 5.5Hz), 2.44 (1H, dd, J= 15.3, 5.0Hz), 2.43, (2H, q, J= 7.1 Hz), 1.90-1.86, (1H, m), 1.62-1.54 (3H, m), 1.47-1.43 (1H, m), 1.27-1.22 (1H, m), 1.05 (3H, t, J= 7.1 Hz). ¹³C-NMR (125 MHz, CDCl₃) δ : 209.5, 78.9, 77.2, 73.7, 64.1, 48.7, 36.9, 31.1, 26.8, 22.8, 7.6. HRMS (MALDI-TOF) Calcd for C₁₁H₂₀NaO₄ [M+Na]⁺:239.1254 , found 239.1253 .

Compounds **20a-d** were acetylated to give diacetylated products **21a-d**, which were used for NMR study including nOe experiments for determining their structures.

1-(5-(2-Oxo-2-phenylethyl)tetrahydrofuran-2-yl)ethane-1,2-diyl diacetate (21a)

A solution of **20a** (40.0 mg, 0.16 mmol), acetic anhydride (0.30 mL, 3.2 mmol, 20 equiv.) and pyridine (1.6 mL) was stirred until disappearance of the starting material. The mixture was quenched with a saturated aqueous NaHCO₃ solution. The aqueous layer was extracted with diethyl ether. The combined organic layer was washed with a saturated aqueous CuSO₄ solution, water, dried over NaSO₄, and concentrated under vacuum. The crude product was purified by flash chromatography (*n*-Hexane /AcOEt = 5/1) to give **21a** (52.8 mg, 99%) as a colorless oil.

IR (KBr) 1750, 1690 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ : 7.95 (2H, dd, J = 6.9, 1.1 Hz), 7.56 (1H, tt, J = 6.9, 1.1 Hz) 7.47 (2H, t, J = 6.9, 1.1 Hz), 5.11-5.08 (1H, m), 4.53-4.50 (1H, m), 4.33-4.30 (1H, m), 4.16-4.11 (2H, m), 3.43 (1H, dd, J = 16.6, 5.2 Hz), 3.04 (1H, dd, J = 16.6, 5.2 Hz), 2.31-2.29 (1H, m), 2.09 (3H, s), 2.05 (1H, m), 2.04 (3H, s), 1.76-1.72 (1H, m), 1.67-1.59 (1H, m). ¹³C-NMR (125 MHz, CDCl₃) δ : 198.1, 170.7, 170.6, 136.9, 133.2, 128.6, 128.1, 76.1, 72.8, 63.4, 44.5, 44.4, 32.2, 28.0, 21.0, 20.7. HRMS(MALDI-TOF) Calcd for C₁₈H₂₂NaO₆ [M+Na]⁺: 357.1306, found 357.1306

1-(6-(2-Oxo-2-phenylethyl)tetrahydro-2H-pyran-2-yl)ethane-1,2-diyl diacetate (21b)

A solution of **20b** (40.0 mg, 0.15 mmol), acetic anhydride (0.30 mL, 3.0 mmol, 20 equiv.) and pyridine (1.5 mL) was stirred until disappearance of the starting material. The mixture was quenched with a saturated aqueous NaHCO₃ solution. The aqueous layer was extracted with diethyl ether. The organic layer was washed with a saturated aqueous CuSO₄ solution, water, dried over NaSO₄, and concentrated under vacuum. The crude product was purified by flash chromatography (*n*-Hexane /AcOEt = 5/1) to give **21b** (51.2 mg, 98%) as a colorless oil.

IR (KBr) 2940, 1741, 1241 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ : 7.95 (2H, d, J = 6.9 Hz), 7.56 (1H, t, J = 6.9 Hz) 7.46 (2H, t, J = 6.9 Hz), 5.09-5.06 (1H, m), 4.24 (1H, dd, J = 12.0, 3.4 Hz), 4.04 (1H, dd, J = 12.0, 3.4 Hz), 3.98-3.93 (1H. m), 3.60-3.56 (1H, m), 3.33 (1H, dd, J = 16.0, 7.5 Hz), 2.87 (1H, dd, J = 16.0, 7.5 Hz) 2.02 (3H, s), 1.96 (3H, s), 1.91-1.89 (1H, m), 1.76-1.73 (1H, m), 1.64-1.58 (1H, m), 1.53-1.50 (1H, m), 1.36-1.27 (2H, m). ¹³C-NMR (125 MHz, CDCl₃) δ : 198.6, 170.7, 170.5, 137.4, 133.0, 128.5, 128.3, 76.8, 76.4, 75.3, 72.7, 63.0, 45.0, 31.2, 26.4, 23.0, 20.8. HRMS(MALDI-TOF) Calcd for C₁₉H₂₄NaO₆ [M+Na]⁺: 371.1456, found 371.1465

1-(5-(2-Oxobutyl)tetrahydrofuran-2-yl)ethane-1,2-diyl diacetate (21c)

A solution of **20c** (30.0 mg, 0.15 mmol), acetic anhydride (0.30 mL, 3.0 mmol, 20 equiv.) and pyridine (1.5 mL) was stirred until disappearance of the starting material. The mixture was quenched with a saturated aqueous NaHCO₃ solution. The aqueous layer was extracted with diethyl ether. The organic layer was washed with a saturated aqueous CuSO₄ solution, water, dried over NaSO₄, and concentrated under vacuum. The crude product was purified by flash chromatography (*n*-Hexane /AcOEt = 5/1) to give **21c** (42.5 mg, puant) as a colorless oil.

IR (KBr) 1783, 1242 cm^{-1.1}H-NMR (500 MHz, CDCl₃) δ : 5.11-5.08 (1H, m), 4.32-4.26 (2H, m), 4.12-4.04 (2H, m), 2.80-2.76 (1H, dd, J = 16.0, 6.9 Hz), 2.53-2.45 (4H, m), 2.08 (3H, s), 2.05 (3H, s), 2.02-1.96 (1H, m), 1.74-1.69 (1H, m), 1.55-1.51 (1H, m), 1.26 (3H, t, J = 7.5 Hz).¹³C-NMR (125 MHz, CDCl₃) δ : 209.7, 170.7, 170.5, 77.2, 76.0, 72.8, 63.4, 48.0, 36.9, 31.1, 27.5, 21.0, 20.7, 7.5. HRMS (MALDI-TOF) Calcd for C₁₄H₂₂NaO₆ [M+Na]⁺: 309.1305, found 309.1309

1-(6-(2-Oxobutyl)tetrahydro-2H-pyran-2-yl)ethane-1,2-diyl diacetate (21d)

A solution of **20d** (30.0 mg, 0.15 mmol), acetic anhydride (0.30 mL, 3.0 mmol, 20 equiv.) and pyridine (1.5 mL) was stirred until disappearance of the starting material. The mixture was quenched with a saturated aqueous NaHCO₃ solution. The aqueous layer was extracted with diethyl ether. The organic layer was washed with a saturated aqueous CuSO₄ solution, water, dried over NaSO₄, and concentrated under vacuum. The crude product was purified by flash chromatography (*n*-Hexane /AcOEt = 5/1) to give **21d** (42.5 mg, quant) as a colorless oil.

IR (KBr) 1743, 1243, 1255 cm^{-1.1}H-NMR (500 MHz, CDCl₃) δ : 5.10-5.07 (1H, m), 4.28 (1H, dd, J = 12.0, 3.4 Hz), 4.10 (1H, dd, J = 12.0, 3.4 Hz), 3.78 (1H, m), 3.57-3.53 (1H, m), 2.71-2.66 (1H, m), 2.47-2.43 (2H, m), 2.39-2.35 (1H, m), 2.06 (3H, s), 2.04 (3H, s), 1.89-1.86 (1H, m), 1.61-1.48 (2H, m), 1.31-1.21 (3H, m), 1.04 (3H, t, J = 7.5 Hz).¹³C-NMR (125 MHz, CDCl₃) δ : 209.8, 170.7, 170.5, 76.3, 75.0, 72.7, 62.9, 48.7, 37.3, 31.0, 26.3, 22.9, 21.0, 20.8, 7.5. HRMS (MALDI-TOF) Calcd for C₁₅H₂₄NaO₆ [M+Na]⁺: 323.1466, found 323.1465

X-ray crystallographic analysis of keto phosphonium salt B

Data Collection

A colorless block crystal of $C_{29}H_{26}F_3O_4P$ having approximate dimensions of 0.79 x 0.56 x 0.42 mm was mounted on a glass fiber. All measurements were made on a Rigaku RAXIS RAPID imaging plate area detector with graphite monochromated Cu-K α radiation. Indexing was performed from 3 oscillations that were exposed for 135 seconds. The crystal-to-detector distance was 127.40 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

$$a = 17.1568(3) \text{ Å}$$

$$b = 31.6078(6) \text{ Å} \qquad \beta = 96.7608(7)^{\circ}$$

$$c = 19.9304(4) \text{ Å}$$

$$V = 10732.9(4) \text{ Å}^{3}$$

For Z = 16 and F.W. = 558.55, the calculated density is 1.383 g/cm³. The systematic absences of:

- h0l: $h \pm 2n$
- 0k0: $k \pm 2n$

uniquely determine the space group to be: $P2_1/a$

The data were collected at a temperature of $-100 \pm 1^{\circ}$ C to a maximum 20 value of 136.5°. A total of 90 oscillation images were collected. A sweep of data was done using ω scans from 80.0 to 260.0°

in 10.0° step, at $\chi = 54.0^{\circ}$ and $\varphi = 0.0^{\circ}$. The exposure rate was 50.0 [sec./°]. A second sweep was performed using ω scans from 80.0 to 260.0° in 10.00 step, at $\chi = 54.0^{\circ}$ and $\varphi = 105.0^{\circ}$. The exposure rate was 50.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.0° step, at $\chi = 54.0^{\circ}$ and $\varphi = 195.0^{\circ}$. The exposure rate was 50.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.0° step, at $\chi = 54.0^{\circ}$ and $\varphi = 285.0^{\circ}$. The exposure rate was 50.0 [sec./°]. Another sweep was performed using ω scans from 80.0 to 260.0° in 10.0° step, at $\chi = 10.0^{\circ}$ and $\varphi = 60.0^{\circ}$. The exposure rate was 50.0 [sec./°]. The crystal-to-detector distance was 127.40 mm. Readout was performed in the 0.100 mm pixel mode.

Data Reduction

The intensity data sets were integrated by CrystalClear software¹. Of the 19,601 reflections that were collected, 19,601 were unique ($R_{int} = 0.082$). The linear absorption coefficient, μ , for Cu-K α radiation is 21.157 cm⁻¹. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structures were solved by direct methods using SIR2004 program² and refined by full-matrix least squares on F² using SHELXL-97 program³, implemented in program package WinGX⁴. The final models include anisotropic refinement for the non-hydrogen atoms and a isotropic riding model for H atoms. Further details of the refinements are given table 1.

Crystallographic data for the structures reported in this paper have been deposited at the Cambridge Crystallographic Data Centre (CCDC-1507846).

- (1) CrystalClear Rigaku Corporation, The Woodlands, Texas, USA (1999)
- (2) Burla MC, Caliandro R, Camalli M, Carrozini B, Cascarano GL, De Caro L, Giacovazzo C, Polidor G, Spagna R J. Appl. Crystallogr. (2005) 38,381-338
- (3) G. M. Sheldrick Acta Cryst., (2008) A64, 112-122
- (4) L.J. Farrugia J. Appl. Crystallogr., (1999) 32, 837-838

Table 1. Crystallographic data and structure refinement for compound :

Compound	$C_{29}H_{26}F_{3}O_{4}PS$
Moiety formula	C ₂₈ H ₂₅ OP, CF ₃ O ₃ S
Sum formula	C ₂₉ H ₂₆ F ₃ O ₄ PS
Formula weight	558.55
Crystal system	monoclinic
Lattice Type	Primitive
Space group	$P2_1/a$
a (Å)	17.1563 (3)
<i>b</i> (Å)	31.6078 (6)
<i>c</i> (Å)	19.9304 (4)
β(°)	96.7608 (7)
V (Å ³)	10732.9 (4)
Z value	16
D_{calcd} (g/cm ³)	1.383
No. of Reflections Measured	19601
No. of Observations $(I > 2.00\sigma(I))$	13494
No. of Variables $(I > 2.00\sigma(I))$	1369
Reflection/Parameter ratio	9.86
Data completeness	0.998
Residuals : R (I > $2.00\sigma(I)$)	0.0672
Residuals : $R_w (I > 2.00\sigma(I))$	0.2098
Goodness-of-fit	0.847

HPLC chart for 20b

DAICEL CHIRALPAK OD-H, Hexane/iPrOH = 70/30, flow rate = 0.9 ml/min, 254 nm : $t_{\text{major}} = 11.4 \text{ min}$, $t_{\text{minor}} = 13.1 \text{ min}$.

References and Notes

- [1] C. Burmester, S and Mataka, T. Thiemann, Synth. Commun., 2010, 40, 3196-3208.
- [2] L. Marques, H. Eugenia and P. Raquel, Synthesis., 2013, 45, 1016-1028.
- [3] K. Li and A. Alexakis, Chem. Eur. J., 2007, 13, 3765-3771.
- [4] M. Yu and S.G. Kim, Tetrahedron Lett., 2015, 56, 4159-4162.
- [5] Y. Sahara, J. Cui, M. Furutachi, J. Chen, T. Watanabe and M. Shibasaki, Synthesis, 2017, 49, 69-75
- [6] T. N. Nguyen, O. Thiel, F. Pape and F. Teichert, Org Lett, 2016, 18, 2455-2458.
- [7] R. Tomita, K. Mantani, A. Hamasaki, T. Ishida and M. Tokunaga, *Chem. Eur. J.*, 2014, 20, 9914-9917.
- [8] W. Tuckmantel, K, Oshima and H. Nozaki, Chem. Ber., 1986, 119, 1581-1593.
- [9] C. A. Parrodi and J. Walsh, Synlett, 2004, 13, 2417-2420.
- [10] S. T. Heller and S. Richmond, Org Lett, 2010, 12, 4572-4575.
- [11] B. Meryem, T. Sakari and P. M. Petri, Chem. Eur. J., 2011, 17, 8404-8413.
- [12] S. Superchi, D. Casarini, C. Summa and C. Rosini, J. Org. Chem., 2004, 69, 1685-1694.
- [13] Li. L. Y, D. C. Yang, Z. Guan and Y. H. He, Tetrahedron, 2015, 71, 1659-1667.
- [14] R. Tomita, K. Mantani, A. Hamasaki, T. Ishida and M. Tokunaga, *Chem. Eur. J.*, 2014, 20, 9914-9917.
- [15] A. B. Powell and S. S. Stahl, Org Lett, 2013, 15, 5072-5075.
- [16] K. Mori, K. Osada and M. Amaike, Tetrahedron Asymmetry, 2015, 26, 861-867.

<u>G:¥論文 新規化合物データ H1NMR¥160903-ronbun1 inter alkyl genryou_proton-1-1.als</u>

<u>G:¥論文 新規化合物データ 13CNMR¥160903-ronbun1 inter alkyl genryou_Carbon-1-1.als</u>

<u>F:Y論文 新規化合物データ H1NMR¥160904-ronbun4-seisei_carbon-1-1.als</u>

<u>G:Y論文 新規化合物データ 13CNMR¥160907-ronbun9 yarinaoshi_carbon-1-1.als</u>

<u>G:¥160903-ronbun9 inter alkyl pdc_proton-1-1.als</u>

<u>F:¥論文 新規化合物データ 13CNMR¥160903-ronbun9 inter alkyl pdc_Carbon-1-1.als</u>

<u>F:Y論文 新規化合物データ 13CNMR¥160908 ronbun10_carbon-1-1.als</u>

DATIM	31-01-2017 16:47:57	
DFILE	170131-5ring-	-ac-monohon
OBNUC	1H	
EXMOD	noesy.jxp	
OFR	500.16	MHz
OBSET	2.41	KHz
OBFIN	6.01	Hz
POINT	1024	
FREQU	9384.38	Hz
SCANS	2	
ACQTM	0.1091	sec
PD	1.5000	sec
PW1	10.00	usec
IRN		
CTEMP	460.0	С
SLVNT	CDCL3	
EXREF	0.00	ppm
BF	4.20	Hz
RGAIN	50	

2D spectrum

DATIM	31-01-2017 17	7:24:54
DFILE	170131-5ring-	-ac-monohon
OBNUC	1H	
EXMOD	cosy.jxp	
OFR	500.16	MHz
OBSET	2.41	KHz
OBFIN	6.01	Hz
POINT	1024	
FREQU	7507.51	Hz
SCANS	4	
ACQTM	0.1364	sec
PD	1.5000	sec
PW1	10.00	usec
IRN		
CTEMP	460.0	С
SLVNT	CDCL3	
EXREF	0.00	ppm
BF	4.20	Hz
RGAIN	50	

DATIM	31-01-2017 19	9:56:56
DFILE	170131-6ph-ad	_NOESY-1-1
OBNUC	1H	
EXMOD	noesy.jxp	
OFR	500.16	MHz
OBSET	2.41	KHz
OBFIN	6.01	Hz
POINT	1024	
FREQU	9384.38	Hz
SCANS	2	
ACQTM	0.1091	sec
PD	1.5000	sec
PW1	10.00	usec
IRN		
CTEMP	460.0	С
SLVNT	CDCL3	
EXREF	0.00	ppm
BF	4.20	Hz
RGAIN	52	

DATIM	31-01-2017 20	0:33:58
DFILE	170131-6ph-a	c_cosy-1-1.
OBNUC	1H	
EXMOD	cosy.jxp	
OFR	500.16	MHz
OBSET	2.41	KHz
OBFIN	6.01	Hz
POINT	1280	
FREQU	9384.38	Hz
SCANS	4	
ACQTM	0.1364	sec
PD	1.5000	sec
PW1	10.00	usec
IRN		
CTEMP	460.0	С
SLVNT	CDCL3	
EXREF	0.00	ppm
BF	4.20	Hz
RGAIN	52	

DATIM	02-02-2017 20):43:40
DFILE	170202-5ring-	-et-ac_NOES
OBNUC	1H	
EXMOD	noesy.jxp	
OFR	500.16	MHz
OBSET	2.41	KHz
OBFIN	6.01	Hz
POINT	1024	
FREQU	9384.38	Hz
SCANS	2	
ACQTM	0.1091	sec
PD	1.5000	sec
PW1	10.00	usec
IRN		
CTEMP	460.0	С
SLVNT	CDCL3	
EXREF	0.00	ppm
BF	4.20	Hz
RGAIN	50	

DATIM	02-02-2017 23	L:20:43
DFILE	170202-5ring-	-et-ac_cosy
OBNUC	1H	
EXMOD	cosy.jxp	
OFR	500.16	MHz
OBSET	2.41	KHz
OBFIN	6.01	Hz
POINT	1280	
FREQU	9384.38	Hz
SCANS	4	
ACQTM	0.1364	sec
PD	1.5000	sec
PW1	10.00	usec
IRN		
CTEMP	460.0	С
SLVNT	CDCL3	
EXREF	0.00	ppm
BF	4.20	Hz
RGAIN	44	

S77

DATIM	02-02-2017 1	7:39:51
DFILE	170202-6ring	-et-ac_NOES
OBNUC	1H	
EXMOD	noesy.jxp	
OFR	500.16	MHz
OBSET	2.41	KHz
OBFIN	6.01	Hz
POINT	1024	
FREQU	9384.38	Hz
SCANS	2	
ACQTM	0.1091	sec
PD	1.5000	sec
PW1	10.00	usec
IRN		
CTEMP	460.0	С
SLVNT	CDCL3	
EXREF	0.00	ppm
BF	4.20	Hz
RGAIN	50	

DATIM	02-02-2017 18:16:51
DFILE	170202-6ring-et-ac_cosy
OBNUC	1H
EXMOD	cosy.jxp
OFR	500.16 MHz
OBSET	2.41 KHz
OBFIN	6.01 Hz
POINT	1280
FREQU	9384.38 Hz
SCANS	4
ACQTM	0.1364 sec
PD	1.5000 sec
PW1	10.00 usec
IRN	
CTEMP	460.0 c
SLVNT	CDCL3
EXREF	0.00 ppm
BF	4.20 Hz
RGAIN	60

S79